The present invention relates to a light-emitting element that emits a primary light at a light-emitting layer, and, in particular, to a light-emitting element used, for example, for sensors and the like.
In general, in a light-emitting element having a double hetero structure, a primary light emitted at a light-emitting layer directs not only toward a front surface of the light-emitting element but also isotropically toward all directions. The primary light directing toward a rear surface of the light-emitting element is absorbed or scattered by a rear-surface electrode or a substrate, and hence does not contribute directly to a light output, which causes the reduction of a light-emitting efficiency.
In order to suppress such a phenomenon as this, there has been developed a technique in which a reflective film formed by at least one layer and reflecting the primary light is arranged between the substrate and the light-emitting layer. However, with this technique, it is difficult to completely reflect the primary light, that is, part of the primary light passes through the reflective film and reaches the substrate, and an excited light is secondarily emitted from the substrate. This excited light from the substrate has a wavelength different from the primary light, and hence, causes a problem that the excited light serves as a noise when used in a sensor for example, possibly having a deleterious effect on reliability of operation of the sensor. Further, in a case of suppressing the excited light from the substrate by absorbing the light, the excited light is accumulated as heat within the light-emitting element, which also has a deleterious effect on the reliability of operation of the sensor.
In view of the facts described above, Patent Literature 1 discloses a technique in which, in a red light emitting diode, a transparent layer having a higher Al composition than that of an active layer is formed between a substrate and the active layer to control an intensity of an excited light generated at the substrate.
Further, Patent Literature 2 discloses a technique in which a reflective layer is disposed between a light-emitting layer and a semiconductor having a composition different from the light-emitting layer, to suppress an excited light generated at the semiconductor from being picked up from a surface.
The purposes of these disclosed techniques are to control or suppress the intensity of the generated exited light, but a peak intensity of the excited light generated at the substrate cannot be sufficiently suppressed. Further, in the case of this method of controlling the excited light, light energy is absorbed, so that heat is accumulated.
An object of the present invention is to provide a light-emitting element in which a peak intensity of an excited light generated at a substrate by a primary light is reduced, thereby reducing a deleterious effect of the excited light on reliability of operation of a sensor. Another object of the present invention is to provide a light-emitting element possessing improved reliability, in which the peak intensity is reduced without absorbing the excited light, whereby heat is not generated within the light-emitting element.
To achieve the objects above, main configurations of the present invention are as follows:
(1) A light-emitting element including a substrate; a light-emitting layer disposed above the substrate and emitting a primary light; and, a reflective film disposed between the substrate and the light-emitting layer and formed by at least one layer that reflects the primary light, in which the light-emitting element further includes a light dispersing multilayered film disposed between the substrate and the reflective film and formed by two or more types of light dispersing layers, and the light dispersing multilayered film multiple-disperses a secondary light into plural wavelengths and discharges the secondary light, which is excited by the primary light passing through the reflective film.
(2) The light-emitting element according to (1) described above, in which the light dispersing multilayered film is made of an AlxGa(1-x)As material (0≦x≦1), an Al composition (x) in the AlxGa(1-x)As material is made continuously changed between a lower Al composition and a higher Al composition in a thickness direction of the light dispersing multilayered film from the substrate side toward the reflective film side, while the change is being made plural times, and the Al composition (x) of at least one of the lower Al composition and the higher Al composition to be changed and a thickness of each of the light dispersing layers are changed in a stepwise manner.
(3) The light-emitting element according to (2) described above, in which a difference between the lower Al composition and the higher Al composition(x) is sequentially decreased for every plural cycles from the substrate side toward the reflective film side, and the thickness of each of the light dispersing layers is sequentially increased for every plural cycles from the substrate side toward the reflective film side.
(4) The light-emitting element according to (1), (2) or (3) described above, in which the light dispersing multilayered film reflects a substrate excited light excited by the primary light passing through the light dispersing multilayered film and reaching the substrate.
(5) The light-emitting element according to any one of (1)-(4) described above, in which the thickness of the light dispersing multilayered film is 500-1500 nm.
A light-emitting element according to the present invention includes a light dispersing multilayered film disposed between a substrate and a reflective film and formed by two or more types of light dispersing layers, and the light dispersing multilayered film multiple-disperses a secondary light excited by a primary light passing through the reflective film into plural wavelengths, and discharges the secondary light. More specifically, energy of the primary light passing through the reflective film is divided into plural wavelengths, so that excitement and discharge are performed little by little; this reduces the light energy arriving at the substrate, thereby suppressing excitation of the substrate; and, a peak intensity of the light is reduced, whereby the deleterious effect on the reliability of operation of a sensor is reduced. Further, the peak intensity is reduced without absorbing the excited light, thereby preventing heat from being generated within the light-emitting element. Accordingly, it is possible to provide a light-emitting element possessing the improved reliability.
a) and 8(b) are graphs illustrating measurement results of an emission spectrum on light-emitting elements according to Example 1 and Comparative Example 1, respectively;
a) and 9(b) are graphs illustrating measurement results of an emission spectrum on light-emitting elements according to Example 2 and Comparative Example 1, respectively;
Next, an embodiment of a light-emitting element according to the present invention will be described with reference to the drawings.
A light-emitting element 1 illustrated in
In the light-emitting element 1, at least the light dispersing multilayered film 5, the reflective film 4 and the light-emitting layer 3 are formed on the substrate 2 by an epitaxial growth by using an MOCVD method.
Although not illustrated in
It is preferable for the light dispersing multilayered film 5 to be made of an AlxGa(1-x)As material (0≦x≦1). This is because, by using the AlGaAs-based material, an Al composition and a Ga composition are easily controlled; a degree of lattice mismatch with the GaAs substrate 2 is small; and, an index of reflection and a band gap can be extensively selected. Further, since the index of reflection decreases as the Al composition increases, an optical design can be easily made, reproducibility is favorable, and a desired structure can be obtained as designed.
As illustrated in
With the increase in the Al composition (x), the AlGaAs-based material is brought closer to a range of an indirect transition, which makes it possible to decrease a light-emitting efficiency. On the other hand, since the secondary light is generated in the lower Al composition portion (L-side), it is particularly important to design the lower Al composition that determines a wavelength of the secondary light. Further, it is important for the higher Al composition (H-side) to be designed such that carriers are sufficiently confined in the lower Al composition (L-side) region to efficiently generate the secondary light. As a result, it is preferable for the design of the higher Al composition (H-side) to be fixed, for example, in the region of x=0.9−1.0.
At this time, when the lower Al composition (L-side) and the higher Al composition (H-side) are repeated as similar to a quantum well for example, a confining strength of the quantum well increases, and hence, the light-emitting efficiency is high. This results in generation of the strong secondary emitted light even if the number of layers is low. Therefore, as a confining structure of the lower Al composition (L-side), it is preferable to employ a structure whose light-emitting efficiency is slightly decreased. For example, by using the confining structure in which the composition is made continuously changed between the lower Al composition (L-side) and the higher Al composition (H-side), the light-emitting efficiency sufficient for generating the secondary emitted light can be obtained, although the light-emitting efficiency decreases as compared with the case of the quantum well.
Further, as illustrated in
It should be noted that a method for narrowing the difference between the Al compositions (x) includes the following three cases: sequentially decreasing only the higher Al composition (H-side); sequentially decreasing the higher Al composition (H-side) while sequentially increasing the lower Al composition (L-side); and, sequentially increasing only the lower Al composition (L-side). In the case of sequentially decreasing only the higher Al composition (H-side), the lower Al composition (L-side) that causes the secondary emitted light is determined uniquely, and hence, the secondary emitted light cannot be weak sufficiently. Further, in the case of sequentially decreasing the higher Al composition (H-side) while sequentially increasing the lower Al composition (L-side), it is difficult to effectively generate the secondary emitted light because the confining effect is weak when the higher Al composition decreases at the same time when the light-emitting efficiency decreases by increasing the lower Al composition (L-side). Accordingly, it is preferable to sequentially increase only the lower Al composition (L-side).
It is preferable for the light dispersing multilayered film 5 to reflect a substrate excited light that is excited by the primary light passing through the light dispersing multilayered film 5 and reaching the substrate 2. By averaging indices of refraction (=(index of refraction on the lower Al side+index of refraction on the higher Al side)/2), and implementing optical design using a thickness of the film (using the Bragg's reflection equation d=λ/4n), it is possible to make the light dispersing multilayered film 5 function as a reflective layer that reflects the substrate excited light. In a case of using the GaAs substrate for example, in order to function as a reflective layer that reflects a wavelength of 870 nm of the substrate excited light, when one cycle of the Al composition of AlGaAs is set at x=1→0→1 as one example, a reflection effect for 870 nm can be expected by setting a thickness of one cycle at 65.9 nm. This is based on the fact that the index of refraction of GaAs is 3.6; the index of refraction of AlAs is 3.0; the average index of refraction is 3.3; and, d=870/(4*3.3)=65.9 nm. This makes it possible to further reduce noises with respect to a signal light.
The thickness of the light dispersing multilayered film 5 can be set at 500-1500 nm. This thickness has a relationship with the number of layers of the light dispersing layer, and it is preferable that the number of layers be set such that the layer of the higher Al composition-lower Al composition-higher Al composition is repeated at 2-5 cycles. When the repeated number is set at one cycle, the intensity of the excitement of the secondary light decreases especially in a composition in the lower AI composition where the Al composition is high and the light-emitting efficiency is low, whereby it is impossible to obtain the intensity of the secondary emitted light sufficient for dispersing. On the other hand, when the repeated number is 6 cycles or more, the intensity of the secondary emitted light becomes too large at a wavelength corresponding to the layered lower Al compositions.
Note that
By using the MOCVD method, a light-emitting element (total thickness (excluding a substrate): 3.9 μm) according to the present invention was formed by sequentially growing: a light dispersing multilayered film (831.5 nm, dopant Se); an n-reflective film (thickness: 1.8 μm, layer formed by repeating Al0.45Ga0.55As (42.3 nm)/AlAs (47.3 nm) 20 times, dopant Se); an n-clad layer (thickness: 90 nm, Al0.5In0.5P, dopant Se); a light-emitting layer (thickness: 84 nm, InyGa(1-y)P (y=0.53), undoped); a p-clad layer (thickness: 180 nm, Al0.5In0.5P, dopant Mg); and, a p-reflective layer (thickness: 0.9 μm, layer formed by repeating Al0.45Ga0.55As (42.3 nm)/AlAs (47.3 nm) 10 times, dopant C) on the GaAs substrate (Si doped, plane direction: (100) 15° off, thickness: 350 μm). The p-reflective layer functioned as a vertical resonator with an n-reflective layer, and was inserted to narrow the emission spectrum and make the light-emitting element further suitable for use in sensors.
The light dispersing multilayered film was made of an AlxGa(1-x)As material (0≦x≦1), and, as illustrated in
In
After the respective layers were epitaxially grown, an N electrode (AuGeNi alloy, thickness: 0.2 μm) was formed on the rear surface of the substrate, and, a P round electrode of φ130 μm (AuZn alloy+Ti/Au alloy, thickness: 0.8 μm+1 μm) was formed on the epitaxially grown front surface. Then, a chip was diced to be a square size of 300 μm, and an LED chip was formed. The emission spectrum of this LED chip was evaluated with a method described later. In addition, a PL measurement was made on a sample having only the light dispersing multilayered film grown on the substrate.
A light-emitting element similar to that in Example 1 was prepared, except that the light dispersing multilayered film in Example 2 was made of a AlxGa(1-x)As material (0≦x≦1), and, as illustrated in
In addition, a PL measurement was made on a sample having only the light dispersing multilayered film grown on the substrate.
A light-emitting element (total thickness (excluding a substrate): 4.5 μm) similar to that in Example 1 was prepared, except that the light dispersing multilayered film was not formed in Comparative Example 1.
A light dispersing multilayered film was grown on the substrate similar to Example 1 by using the MOCVD method such that the light dispersing multilayered film was made of a AlxGa(1-x)As material (0≦x≦1), and, as illustrated in
A light dispersing multilayered film was grown on the substrate similar to Example 1 by using the MOCVD method such that the light dispersing multilayered film was made of a AlxGa(1-x)As material (0≦x≦1), and, as illustrated in
A light dispersing multilayered film was grown on the substrate similar to Example 1 by using the MOCVD such that the light dispersing multilayered film was made of a AlxGa(1-x)As material (0≦x≦1), and as illustrated in
The emission spectrum was measured on the light-emitting elements of Examples 1 and 2, and Comparative Example 1 described above. This measurement was performed by using a spectrum analyzer (MCPD-3000 made by Otsuka Electronics).
Table 1 shows a total output using an integrating sphere: Po (mW), a forward voltage: Vf(V), a center wavelength of the primary light with the emission spectrum measurement: λp(nm), and a ratio of intensity of the secondary light to the primary light ((peak intensity of secondary light)/(peak intensity of primary light)): IR (%) of Examples 1 and 2, and Comparative Example 1. Table 1 shows values obtained by mounting an LED chip on a TO-18, applying a direct electric current of 20 mA for Po and Vf, and, applying a direct electric current of 5 mA for λp and IR. Measurement was performed by using a spectrum analyzer (MCPD-3000 made by Otsuka Electronics).
From results shown in
A PL spectrum measurement (PLM-100 made by Phillips) was made on samples in which only the light dispersing multilayered films of Examples 1 and 2, and Comparative Examples 1-4 described above were grown. A D-YAG (second harmonic of YAG: Double YAG) laser (wavelength of 532 nm) was employed for a light source, and the laser was entered perpendicularly to the respective samples.
The light-emitting element according to the present invention is provided with the light dispersing multilayered film disposed between the substrate and the reflective film and having two or more types of the light dispersing layers. With this light dispersing multilayered film, the secondary light excited by the primary light passing through the reflective film is multiply dispersed into plural wavelengths and is discharged, whereby the excitement of the substrate by the primary light can be suppressed and the noises with respect to the signal light and can be reduced.
Number | Date | Country | Kind |
---|---|---|---|
2008-186400 | Jul 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/060360 | 6/5/2009 | WO | 00 | 1/14/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/007841 | 1/21/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20070241668 | Ottermann et al. | Oct 2007 | A1 |
20080043796 | Jikutani et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
A 9-074218 | Mar 1997 | JP |
A 9-172197 | Jun 1997 | JP |
A 9-289336 | Nov 1997 | JP |
A 2001-339098 | Dec 2001 | JP |
A 2004-241462 | Aug 2004 | JP |
A 2004-304049 | Oct 2004 | JP |
A 2005-005558 | Jan 2005 | JP |
A 2005-116922 | Apr 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20110115359 A1 | May 2011 | US |