Not Applicable
Not Applicable
1. Field of Invention
This invention relates to a light-emitting semiconductor device having enhanced brightness, particularly to one for enhancing current distribution of a front contact in a light emitting diode, so as to enhance the light emitting efficiency of a light-emitting semiconductor.
2. Background
The principles lying behind luminance of light emitting diodes relate to passing current sequentially through P-N junctions of a semiconductor to generate light, wherein AlGaInP is implemented in high brightness red, orange, yellow and yellowish green LEDs, AlGaInN is in blue and green LEDs. The process of metal organic vapor phase epitaxy (MOVPE) is commonly adopted in the mass production of the LEDs, while the light-emitting components are of the structures, including: homo-junction (HOMO), single-heterostructure (SH), double-heterostructure (DH), single-quantum well (SQW) and multiple-quantum well (MQW) or other appropriate structures.
The structure of a conventional light emitting diode is illustrated in
The refractive index (n=3.4˜3.5) of most materials for making semiconductor LEDs is greater than the surrounding refractive index (n=1˜1.5, n=1.5 for epoxy). In other words, a great portion of the light emitted by a semiconductor LED is completely reflected back to the semiconductor by the interface between the semiconductor and its exterior epoxy. The portion of the light that has been completely reflected is then absorbed by the active layer, the contacts and the substrate thereby reducing the actual luminance beneficial results of the LED (as shown in
To enhance the current distribution, improvements have been made to the structures and materials, such as that disclosed in U.S. Pat. No. 5,008,718 by Fletcher et al., where a capping layer 15 (or window layer), made of GaP, GaAsP and AlGaAs having a low resistance value and being pervious to light, is added between the front contact and active layer, as shown in
Another measure is to change the design of contacts. F. A. Kish and R. M. Fletcher suggested re-designing the contacts to include fingers 16 (as shown in
To improve the current distribution, this invention discloses another design for the contacts so as to provide even current distribution and to reduce the regions masked by the contacts thereby enhancing the brightness.
It is a primary objective of this invention to provide a light-emitting semiconductor device having enhanced brightness, where width of the meshes of the metallic patterns constructing the front contact ranges from 0.1 to 5 micrometers, thereby enhancing the light-emitting efficiency.
It is another objective of this invention to provide a light-emitting semiconductor device having enhanced brightness, where the metallic patterns constructing the front contact may be meshed, dotted, checkered or another other geometrical patterns that are evenly distributed above the entire active layer.
It is a further objective of this invention is to provide a light-emitting semiconductor device having enhanced brightness, where the metallic patterns constructing the front contact does not mask the light illuminated by the active layer because the width of the metallic patterns is less than 5 micrometers.
To achieve the above objectives, this invention adopts the method comprising the steps of: forming an active layer on a substrate; forming a capping layer on the active layer to enhance current distribution, where a back contact is located on another side of the substrate and a front contact is located above the capping layer. This invention is characterized in that, the front contact is re-designed to reduce the width of metallic patterns constructing fingers or Mesh lines and to increase the number of the fingers or Mesh lines, so as to resolve the current crowding problem. When the metallic patterns are dimensioned to be 2 micrometers, even the light emitted by the active layer that is exactly located below the metal is still visible through the capping layer at a light-emitting angle of 3.8 to 18 degrees, whereby current concentration may be enhanced to improve the light-emitting efficiency.
These and other modifications and advantages will become even more apparent from the following detained description of preferred embodiments of the invention and from the drawings in which:
This invention may be implemented in enhancement of current distribution in light emitting diodes, by re-designing the front contact to enhance the light-emitting efficiency, wherein an active layer and a substrate may be modified based on the light wavelength of diodes. However, such modifications are not the features of this invention. In this invention, all examples use the term “active layer” to represent the primary structure of the LED component, including homo-junction, single-heterostructure, double-heterostructure, single-quantum well or multiple-quantum well.
In Example I, a light emitting diodes (LED) is used to describe the features of this invention.
In detail, the material of the substrate 100 is dependent on the material of the active layer 120. When the active layer 120 is made of AlGaInP, GaAs is selected to form the substrate. When the active layer 120 is made of AlGaInN. Any of sapphire, SiC, MgAlO4, ZnO, LiG2O2 and LiAlO2 may be selected to form the substrate. The active layer is preferred to be in the range from 0.3 to 3 micrometers thick. The capping layer 140 is preferred to be in the range from 10 to 50 micrometers thick. Both the active layer 120 and the capping layer 140 are formed by adopting MOVPE or Molecular Beam Epitaxy (MBE).
This invention discloses an effective measure for resolving the current crowding problem, where the front contact is re-designed to reduce the width of metallic patterns constructing fingers or Mesh lines and to increase the number of the fingers or Mesh lines, so as to resolve the current crowding problem and to enhance the light-emitting efficiency of the light-emitting diode. Example I suggests a metallic pattern. However, the exemplified pattern does not intend to limit the scope of this invention.
In a conventional light emitting diodes front contact having Mesh lines, the width of the Mesh lines are mostly in the range of 5 to 25 micrometers, such that the current can only be distributed to a bout 40 micrometers away from the Mesh lines, to leave a light-emitting vacant of greater than 80 micrometers between the Mesh lines. Since the current below the contacts is most intensive, as shown in
Thickness of capping layer 15 micrometers:
d cos 2θ=15
Halved width of Mesh line 11 of contact:
d sin 2θ=7.5
Generally speaking, the critical angle θc of the material commonly used for light emitting diodes is approximately 18 degrees. In other words, when the refractive angle of the light is greater than 18 degrees, the light will be completely reflected back to the semiconductor by the interface between the semiconductor and its exterior, thereby reducing the actual LED luminous beneficial results of the LED. When the light generated in the light-emitting layer is dispersed by radiation, complete reflection will be observed outside the range of θc. On the other hand, light will penetrate through the capping layer within the range of θc. When the width of the mesh is greater than 10 micrometers, light emitted exactly below the contact, where there is the highest concentration, cannot penetrate through the mesh thereby affecting the light-emitting efficiency significantly.
By re-designing the Mesh lines each having a wider width to be constructed of equal-distant metallic meshes 210, as shown in
The reduction of the light-emitting angle θc significantly reduces the region where the light emitted by the active layer is masked by the front contact. The light emitted by the enhanced current concentration, that is located exactly located below the contact, may now penetrate through the capping layer within the range of θ=3.8 to 18 degrees, so as to greatly increase the current concentration and the enhance the light-emitting efficiency.
Example II discloses a further light emitting diodes (LED) to describe the features of this invention.
Example II is characterized by a front contact that is divided into two layers, as shown in
Two examples are disclosed in this invention to explain the changes made to the front contact for enhancing the current distribution. The front contact in Example I includes a metallic bonding pad and metallic patterns with reduced dimensions. The front contact in Example II includes two conductive layers; the metallic patterns that allow more variations in Example II are embedded in a transparent conductive layer and may be disconnected. The spirits of this invention, however, reside in the arrangement of the front contact above the active layer, with the metallic patterns constructing the front contact being dimensioned to 0.1 to 5 micrometers. So long as the metallic patterns are dimensioned to be sufficiently small so as to prevent the active layer from masking most of the light emitted, the metallic patterns may be configured to any geometrical designs.
This invention is related to a novel creation that makes a breakthrough in the art. Aforementioned explanations, however, are directed to the description of preferred embodiments according to this invention. Since this invention is not limited to the specific details described in connection with the preferred embodiments, changes and implementations to certain features of the preferred embodiments without altering the overall basic function of the invention are contemplated within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
092128496 | Oct 2003 | TW | national |