The present application relates to a light-emitting structure, and more particularly to a light-emitting structure having at least two light-emitting units and an electrical connection for connecting the light-emitting units.
A light-emitting diode array is constructed by electrically connecting several light-emitting diodes in series or parallel. One diode is electrically separated from another by a trench or groove. To connect the separated diodes, metal line(s) or film(s) can be used to span the trench between the diodes. However, the metal line(s) or film(s) can be easily damaged during the manufacturing process due to a high aspect ratio of the trench.
An embodiment of the present application discloses a light-emitting device, including a substrate with a top surface; a first light-emitting structure unit and a second light-emitting structure unit separately formed on the top surface and adjacent to each other, and wherein the first light-emitting structure unit includes a first sidewall and a second sidewall; a trench between the first and the second light-emitting structure units; and an electrical connection arranged on the first sidewall and the second light-emitting structure unit, and electrically connecting the first light-emitting structure unit and the second light-emitting structure unit; wherein the first sidewall connects to the top surface; wherein the first sidewall faces the second light-emitting structure units, and the second sidewall is not between the first light-emitting structure unit and the second light-emitting structure unit; and wherein the second sidewall is steeper than the first sidewall.
Another embodiment of the present application discloses a light-emitting device, including a substrate with a top surface; a first light-emitting structure unit and a second structure light-emitting unit separately formed on the top surface and spaced apart from each other, wherein each of the first light-emitting structure unit and the second light-emitting structure unit includes a lower layer having a first conductivity and an upper layer having a second conductivity; a trench between the first light-emitting structure unit and the second light-emitting structure unit, including a bottom portion which is a part of the top surface; a first isolation layer, disposed on the trench and contacting the bottom portion and the lower layers of the first light-emitting structure unit and the second light-emitting structure unit; and a second isolation layer, disposed on the trench and the first isolation layer; and an electrical connection, formed on the second isolation layer and electrically connecting the first light-emitting structure unit and the second light-emitting structure unit; wherein each of the lower layers includes an inclined sidewall and the second isolation layer includes an edge with an acute angle in a cross-sectional view.
The left light-emitting structure unit 10A and the right light-emitting structure unit 10B can be supported by a common substrate or discrete substrates, and electrically separated by a trench 15. For example, the light-emitting structure units 10A and 10B can be commonly formed on a single bulk substrate, such as sapphire, GaAs, Si, metal, glass, or PCB; or each light-emitting structure unit is formed on its independent bulk substrate as described aforementioned, while each independent bulk substrate can be further integrated together by mechanical gadgets, organic material, metallic material, or any combination thereof. The trench 15 is formed to reach to, enter in, or penetrate the substrate or any layer between the units. The trench 15 has a cross-sectional profile of at least one rounded edge and/or at least one chamfered edge. The rounded edge and/or the chamfered edge can be formed on a single layer or several layers. For example, as shown in the drawing, the rounded edge and/or the chamfered edge can be formed on the lower layer 11A and/or the lower layer 11B. However, the rounded edge and/or the chamfered edge can be also formed on both of the upper layer and the lower layer. The rounded edge preferably has a radius R not less than 1 μm. The chamfered edge can have two equal or different bevel lengths (Lbevel).
Moreover, a sidewall of the trench is inclined by more than 80 degree against the bottom surface of the lower layer. For example, the angle θ between the sidewall and the bottom surface of the lower layer, as illustrated in the drawing, is smaller than 80 degree, 70 degree, 60 degree, 50 degree, or 40 degree. The angle θ can also fall within a specific range, such as 80 degree˜70 degree, 70 degree 60 degree, and 60 degree˜40 degree. Besides, the trench may have sidewalls inclined at similar or different angles. For example, one sidewall is inclined at an angle of 50 degree˜40 degrees; the other sidewall is inclined at an angle of 60 degree˜50 degree. Provided one or more sidewalls are inclined, the trench can have a trapezoid cross section having a height, a longer side, and a shorter side parallel to the longer side. The height is close to the thickness of the lower layer or the total thickness of the upper layer and the lower layer. For example, the height is between 1 μm˜10 μm; the longer side has a length of 3 μm˜100 μm; the shorter side has a length of 1 μm˜40 μm; the ratio of the longer side to the short side is between 3:1 and 1.5:1. Specifically, the height is between 4 μm˜9 μm; the length of the longer side is between 5 μm˜40 μm; the length of the shorter side is between 2.5 μm˜20 μm.
To build an electrical passage between the units, an electrical connection 18 bridges the trench 15 and electrically connects any two layers, which do not belong to the same unit, of the lower layer 11A, lower layer 11B, upper layer 12A, and upper layer 12B. For example, the units can be coupled together in series connection by bridging the lower layer 11A and the upper layer 12B, or the upper layer 12A and the lower layer 11B; the units can be coupled in parallel connection by bridging the upper layer 12A and upper layer 12B.
To prevent the electrical connection 18 from unintentionally contacting with other layer, an isolation layer 16 can be also provided on the trench 15 and some areas near the trench opening, such as the sidewall(s) of the lower layer 11A and/or the lower layer 11B, the edge(s) of the trench 15, the sidewall(s) of the upper layer 12A and/or the upper layer 12B, the top surface(s) of the upper layer 12A and/or the upper layer 12B, and/or the bottom surface(s) of the current spreading layer 14A and/or the current spreading layer 14B. Optionally, an isolation layer 17 can be further provided between the isolation layer 16 and the electrical connection 18. The isolation layer 17 can be used to fill the empty space between the isolation layer 16 and the electrical connection 18, to fill voids on the isolation layer 16, to smooth the outer surface of the isolation layer 16, to fill the trench 15, to form a flat plane for laying the electrical connection 18, to cover area(s) not under the shade of the isolation layer 16, to improve ESD protection, and/or to support the electrical connection 18.
The isolation layer 16 can have an edge with an acute angle; the layer laid on the isolation layer 16 therefore can smoothly cover the drop on the edge of the isolation layer 16. The slope of the edge can release the stress concentrated on the layer over the drop. The acute angle can be less than 90, 80, 70, 60, or 50 degree. Besides the isolation layer 16, the isolation layer 17 can also have an edge with an acute angle.
In addition, to protect the electrical connection 18 from oxidation, erosion, and/or damage, a passivation 19 can be formed on the electrical connection 18. The passivation 19 can cover not only outer surface(s) of the electrical connection 18 but also the area beyond the outer surface(s). Specifically, the passivation 19 can be further formed on any surfaces of the isolation layer 17, the current spreading layer 14A, the current spreading layer 14B, the upper layer 12A, the upper layer 12B, the lower layer 11A, and/or the lower layer 11B.
The light-emitting structure units 1, 2, 3, 4 are laterally separated by trenches 15. An electrical connection 18 can bridge the trench 15 from one light-emitting structure unit (for example, unit 3) to another light-emitting structure unit (for example, unit 4) and couple the two units in series or parallel connection. As shown in cross section AA′, the trench 15 (for example, between units 1 and 4) on which no electrical connection 18 is formed has steeper sidewalls, therefore, more volume of the light-emitting structure unit resides nearby the trench 15. In contrast, as shown in cross section BB′, the trench 15 (for example, between units 3 and 4) on which the electrical connection 18 is formed has less steep sidewalls in comparison with the sidewalls in the cross section AA′. In one embodiment, some of the light-emitting structure units are removed to form a trench having a ladder-shaped, and/or inclined sidewall. In other words, the trench has a reversed-trapezoid or quasi-reversed-trapezoid cross-sectional profile. For example, the method for forming the trench can be selected from wet etching, dry etching, laser machining, diamond scribing, and any combination thereof. In general, the steeper the sidewall is, the shorter the processing time is taken.
In addition, the less steep sidewall can be formed on either a full length trench Lfull or a partial length trench Lpartial (as illustrated in
To build a current passage from one light-emitting structure unit to another, an electrical connection 250 is provided on the two light-emitting structure units 26. As shown in the drawing, one end of the electrical connection 250 is installed on the upper layer 28, and the other end is installed on the lower layer 27. However, the two ends of the electrical connection 250 can be also installed on two upper layers 28 or two lower layers 27. The electrical connection 250 can be constructed by metal, semiconductor, metal oxide, or any combination thereof. Provided a metal oxide, which has higher transparency than that of metal, is used to form the electrical connection 250, fewer light escaping areas are therefore shaded by the electrical connection 250. The metal oxide is such as ITO, IZO, and CTO.
Two light-emitting structure units 26 are separated by a trench 23. Provided the two light-emitting structure units 26 are coupled in series connection, an isolation layer 21 is formed on the trench 23 to leave the electrical connection 250 touching the upper layer 28 of one light-emitting structure unit 26 and the lower layer 27 of another light-emitting structure unit 26. In this embodiment, the isolation layer 21 is formed to expose not only the top surface but a portion of the sidewall of the lower layer 27. The exposure of the sidewall of the lower layer 27 can increase the contact area between the electrical connection 250 and the lower layer 27, and accordingly the current density can decrease.
In accordance with one embodiment of the present invention, the light-emitting structure unit can include at least a first conductivity layer (for example, the upper layer), a conversion unit (for example, the light-emitting zone), and a second conductivity layer (for example, the lower layer). Each of the first conductivity layer and the second conductivity layer has a single layer or a group of multiple layers (“multiple layers” means two or more layers), and the two single layers or the two groups of the multiple layers, which are respectively located on the first and the second conductivity layers, have distinct polarities or distinct dopants. For example, the first conductivity layer is a p-type semiconductor layer; the second conductivity layer is an n-type semiconductor layer. The conversion unit disposed between the first conductivity layer and the second conductivity layer is a region where the light energy and the electrical energy could be transferred or induced to transfer. The one that the electrical energy can be transferred to the light energy is such as a light-emitting diode, a liquid crystal display, and an organic light-emitting diode. The one that the light energy can be transferred to the electrical energy is such as a solar cell, and an optoelectronic diode.
The transferred light emission spectrum of the light-emitting diode can be controlled by changing the physical or chemical arrangement of one layer or more layers in the light-emitting diode. The light-emitting diode can be composed of several materials, such as the series of aluminum gallium indium phosphide (AlGaInP), the series of aluminum gallium indium nitride (AlGaInN), and/or the series of zinc oxide (ZnO). The conversion unit can be configured to be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (MWQ). Besides, the wavelength of the emitting light could be controlled by changing the number of the pairs of the quantum well.
The material of the substrate(s) used for growing or supporting the light-emitting structure unit(s) can include but not limits to germanium (Ge), gallium arsenide (GaAs), indium phosphide (InP), sapphire, silicon carbide (SiC), silicon (Si), lithium aluminium oxide (LiAlO2), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), glass, composite, diamond, CVD diamond, diamond-like carbon (DLC) and any combination thereof.
Referring to
Referring to
In addition to the patterning process mentioned above, the step-like sidewalls could also be formed by using a gray-tone mask or by a half-tone mask. Taking advantage of different opening ratio existing on a single mask, the step-like sidewall profile can be formed through a one-step exposure.
Referring to
This application a continuation application of U.S. patent application Ser. No. 16/037,862, filed on Jul. 17, 2018, which is a continuation application of U.S. patent application Ser. No. 15/196,717, filed on Jun. 29, 2016, which is a continuation application of U.S. patent application Ser. No. 14/924,264, filed on Oct. 27, 2015, which is a continuation application of U.S. patent application Ser. No. 13/230,988, filed on Sep. 13, 2011, now U.S. Pat. No. 9,196,605, which claims the right of priority based on U.S. provisional application Ser. No. 61/382,451, filed on Sep. 13, 2010, and the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5075253 | Sliwa, Jr. | Dec 1991 | A |
6784105 | Yang et al. | Aug 2004 | B1 |
7923738 | Murofushi et al. | Apr 2011 | B2 |
7998761 | Kim et al. | Aug 2011 | B2 |
8030669 | Shakuda et al. | Oct 2011 | B2 |
8483433 | Lee et al. | Jul 2013 | B1 |
9093627 | Lee et al. | Jul 2015 | B2 |
10062730 | Shen | Aug 2018 | B2 |
20050186712 | Smith | Aug 2005 | A1 |
20050281303 | Horio et al. | Dec 2005 | A1 |
20060108593 | Kim et al. | May 2006 | A1 |
20060157717 | Nagai et al. | Jul 2006 | A1 |
20070152226 | Salam | Jul 2007 | A1 |
20070262331 | Ogihara et al. | Nov 2007 | A1 |
20100059768 | Hasanain | Mar 2010 | A1 |
20100163900 | Seo et al. | Jul 2010 | A1 |
20100210046 | Kao et al. | Aug 2010 | A1 |
20100213474 | Hsu et al. | Aug 2010 | A1 |
20110062891 | Chen et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
101276871 | Oct 2008 | CN |
101388427 | Mar 2009 | CN |
101431092 | May 2009 | CN |
101685842 | Mar 2010 | CN |
101783378 | Jul 2010 | CN |
101820043 | Sep 2010 | CN |
0846279 | Feb 1996 | JP |
2002359402 | Dec 2002 | JP |
3654745 | Jun 2005 | JP |
2006080441 | Mar 2006 | JP |
2010118624 | May 2010 | JP |
100679449 | Feb 2007 | KR |
100690323 | Feb 2007 | KR |
102008002161 | Jan 2008 | KR |
1020100097028 | Sep 2010 | KR |
201031036 | Aug 2010 | TW |
201031036 | Aug 2010 | TW |
201031977 | Sep 2010 | TW |
201031977 | Sep 2010 | TW |
Entry |
---|
Shi et al., EP 0777281 B1, 1997. |
Number | Date | Country | |
---|---|---|---|
20210183942 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
61382451 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16037862 | Jul 2018 | US |
Child | 17170407 | US | |
Parent | 15196717 | Jun 2016 | US |
Child | 16037862 | US | |
Parent | 14924264 | Oct 2015 | US |
Child | 15196717 | US | |
Parent | 13230988 | Sep 2011 | US |
Child | 14924264 | US |