This invention relates to light energy delivery heads, and more particularly to a laser diode head or other light energy delivery head for delivering light energy to a selected depth in a medium, particularly a scattering medium, which head provides improved heat management for both the laser diodes (or other light energy emitter) and the medium and/or which more efficiently utilizes light energy from the laser/emitter.
Light energy emitters, including lasers, and in particular semiconductor diode lasers, flash lamps, halogen and other filament lamps, etc., are finding increasing application in medical, industrial, research, governmental and other applications. For many of these applications, the light energy is to be delivered at a selected depth in a light scattering medium. Because of the scattering, only a fraction of the light energy delivered to the surface of the medium reaches the target area, with much of the remaining energy being refracted out of the medium and dissipated in the surrounding atmosphere. For a highly scattering medium such as skin, as much as 50-80 percent of the incident energy may be lost due to this back scattering effect, requiring more powerful light energy emitters/lasers or a larger number of emitters/diodes lasers (where diode lasers are used), or requiring that light energy be delivered over a much smaller area, in order to achieve a desired fluence at a target. Utilizing a head with a more powerful emitter/laser or utilizing a larger number of and/or more powerful emitters/diode lasers makes the head larger and more expensive and increases the heat management problems resulting from use of the head. Concentrating the beam to achieve higher fluence with smaller spot size or aperture adversely affects the depth in the medium which can be reached by the light energy and can significantly increase the time required to perform a given procedure.
U.S. Pat. No. 5,824,023, to Rox Anderson, teaches one way of dealing with the reflection problem with certain laser or other light energy emitting devices. However, the technique of this patent also results in small spot sizes and is not readily adaptable for use in certain applications, such as in laser diode heads. An improved technique is therefore required to permit optimum utilization of the light energy from light energy emitting devices in general, and from laser diodes or laser diode bars of a laser diode head in particular, by recycling or reusing light scattered from the surface of the irradiated medium and directing it back toward a desired target area in the medium.
A related problem involves heat management when using a laser diode head, or other head containing light energy emitters, and in particular the ability to utilize a common cooling element to cool both the laser diodes/light energy emitters and the surface of the medium being irradiated. Surface cooling can be required in various applications, particularly medical applications, since laser energy being delivered at a depth in the medium, for example a patient's skin, must pass through the surface of the medium, for example the epidermis of a patient's skin, in order to reach the target area. Heating of the medium surface can cause damage at the surface if suitable cooling is not provided. Prior art systems have either not provided cooling for the medium surface or have required separate cooling elements for the diodes and the medium.
In accordance with the above, this invention provides, in a first aspect, a head for applying light energy to a selected depth in a scattering medium having an outer layer in physical and thermal contact with the head. The head includes a thermally conductive block or mount having an energy emitting surface; at least one laser diode or other energy emitting element mounted in the block adjacent the energy emitting surface, each of the elements being in thermal contact with the mount and being oriented to direct light energy through the energy emitting surface. A thin, transparent, thermally conductive layer is provided over the light emitting surface and in thermal contact therewith, the layer being in contact with the outer layer of the medium when the head is applying light energy thereto. Finally, a cooling mechanism is provided for the mount, permitting the mount to sink heat from both the elements and the outer layer of the medium. For some embodiments, the thermally conductive layer is a coating formed on the light emitting surface of the mount.
For preferred embodiments, the head also includes a reflecting layer formed on the thermally conductive layer, which reflecting layer has an opening formed therein under each element through which light energy may be applied to the medium. The reflecting layer is preferably between the thermally conductive layer and the energy emitting surface of the mount/block, and preferably has an area larger than the area of the block. In particular, the area of the reflecting layer could be at least substantially as large as the aperture of reflection for scattered light energy from the medium. In order to achieve a desired amplification coefficient (f) as a result of retroreflection from the reflecting layer, the aperture through which light energy is applied to the medium should have a minimum dimension
where d is a back-scatter aperture increment for a given wavelength and medium, R is the reflection coefficient of the medium and r is the reflection coefficient of the reflecting layer.
The block for the laser diode head may assume a variety of forms. In particular, for some embodiments of the invention, the block has a depression formed therein, with the energy emitting surface being the surface of the depression, and with each of the elements for some embodiments being mounted to emit light energy substantially perpendicular to the depression surface at the point thereon where the element is mounted. The medium is forced into the depression and into contact with the surface thereof. The forcing of medium into the depression may be accomplished by merely pressing the head against a soft deformable medium, such as some areas of a person's skin, or suction, for example a vacuum line, may be provided to draw the skin or other medium into the depression. The depression may have a variety of shapes, including being substantially semi-cylindrical or substantially rectangular. Where the head is being utilized for hair removal on for example a person, the depression may be of a size sufficient to permit a single hair follicle to enter the depression in the plane of the rectangular depression.
The reflecting layer may also be formed and utilized for heads which use the cooled block to cool the diodes or other light energy emitters only and not to cool the surface of the medium, for example in applications where a thicker transparent layer is employed or for heads using light energy emitting elements other than laser diode bars, for example filament lamps or light pipes fed by a suitable light emitting component. For such heads, the reflecting layer would still have areas of the type indicated above and would preferably have an emitting aperture with a minimum dimension Dmin determined as indicated above. For these embodiments, the transparent layer could be a waveguide of selected shape, which shape could be a truncated shape which, depending on desired aperture size, would have either its larger end or shorter end adjacent the block. Selected sides or walls of the waveguide may have an angle dependent reflecting layer to attenuate sharply angled light energy entering the waveguide.
In still another aspect of the invention, the head may include at least one energy emitting element mounted to apply light energy to the medium through an aperture, which aperture has a minimum dimension Dmin defined as indicated above, and a reflecting layer mounted to retroreflect light energy back-scattered from the medium. The aperture may be circular, with D being a diameter of the aperture, or substantially rectangular, with D as the length of a short side of the aperture.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more specific description of preferred embodiments of the invention as illustrated in the accompanying drawings.
Referring first to
Block 12 serves as a heat sink for diode bars 11 and a variety of techniques may be utilized to remove heat from block 12. These include providing one or more channels through block 12 and flowing a fluid, which is generally water but may be some other liquid or gas, through the channel to remove heat from block 12. Alternatively, one or more thermo-electric components 14, for example Peltier elements, may be attached to block 12 and utilized to remove heat therefrom.
A transparent element 15 having a high reflectivity mask 16 attached thereto is mounted to the bottom of block 12, with mask 16 preferably being between block 12 and element 15. For a preferred embodiment where head 10 is being used for dermatological treatment, the scattering media 18 being the skin of a patient, the transparent element is preferably formed of sapphire or some other material having a good index match with skin, and is preferably either a sapphire coating which is for example 1 to 2 microns thick, or a sapphire plate or wafer which is for example 1 to 2 mm thick. If component 15 is a plate or wafer, then mask 16 may be a coating of a highly reflective material such as Ag, Cu, Au or a multilayer dielectric coating which is formed using an appropriate coating technology known in the art, such as lithography, on the plate/wafer 15. Openings 20 (
Finally, the apparatus of
The apparatus of
Further, as illustrated in the Figure, light energy emitted from a diode bar 11 in the form of rays 26 is scattered in media 18, for example in a patient's skin, and at least some of this energy, perhaps 70 percent, depending on the pigmentation of the patient's skin, is reflected back and exits the patient's skin at some angle. Substantially all of this light impinges on reflecting surface or mask 16, and, since this mask has a reflectivity approaching 100 percent, substantially all of this light energy is retroreflected back into the skin. This retroreflection results in a roughly 300 percent increase in the light energy or fluence reaching a target at a selected depth in the patient's skin for a given fluence emitted from diode bars 11. This means that either the same therapeutic results can be achieved using less diode bars 11 or lower energy diode bars 11 or that higher energy, and therefore more effective treatment, can be achieved using the same number and power of diode bars. More effective results can thus be achieved for a given size, cost and complexity of the diode laser head.
Further, as illustrated in
The reflection by reflective mask 16 can increase the amount of energy reaching a desired target area by several times. This increase in effective usage of light energy can be quantitatively described by the increase in illumination inside scattering medium 18, this increase being the ratio (f) between the illumination at an arbitrary target point inside the scattering medium when the reflected light is returned back to the medium (IR) and when it is not (IO) (i.e., f=IR/IO). The value of f depends on the reflectance coefficient R of the scattering medium 18 and the coefficient of reflection of the reflecting mask 16 (r) which returns the scattered light back into the medium (i.e., f=1/1−Rr). However, this known dependence does not take into account the influence of beam aperture D; since the beam aperture increases by d as a result of scattering, amplification coefficient f has a strong dependence on the aperture D of the incident beam. In particular, in accordance with the teachings of this invention, it has been determined that when beam aperture is taken into account, the amplification coefficient f can be approximated by the following equation:
Using equation 1 for a given medium, a given reflector, and a desired illumination amplification, a minimum beam aperture (Dmin) can be determined. Dmin is generally given by:
For f=2, this minimum reduces to
With light skin as a reflecting medium, and an incident beam in the red region of the spectrum, the values in the above equation would be R≈0.7 and d≈3 mm. Assuming a reflector with r≈0.95 would then result in a Dmin=19.5 mm. This suggests that for most applications in laser dermatology, the beam diameter or other appropriate dimension (D) should be greater than 20 mm in order for retroreflection to provide desired illumination amplification. This is illustrated in
The embodiment shown in
The embodiment of
While the embodiment of
The second disadvantage is that, depending on the thickness of concentrator 34A, cooled block 12 may not be effective for cooling the surface of medium 18. In particular, the time (t) it takes to remove heat from a slab of material having one side in good thermal contact with the surface to be cooled, an opposite side in good thermal contact with the cooling medium, in this case the block 12, and a distance or thickness (l) therebetween is given by:
t=l2/α (4)
where α is the dielectric slab temperature conductivity coefficient. Where energy is being applied to the slab as successive laser pulses spaced by a time tp, the slab thickness l for cooling to be affected is generally given by:
l<√{square root over (α·tp)} (5)
Where the dielectric layer through which optical energy is transmitted and through which it is desired to perform cooling is formed of sapphire having a maximum α=15·10−6 m2/s, and for a typical interval between pulses of 0.25 s, this would result in the combined thickness for transparent layer 15 and concentrator 34A of less than 1.9 mm. Therefore, block 12 being utilized to cool both diode bars 11 and the surface of medium 18 would normally not be feasible when a concentrator 34A is utilized and, if cooling is required, it would normally be achieved by providing a separate cooling mechanism, for example one or more thermoelectric cooling elements 36, in contact with concentrator 34A, and preferably near the lower surface thereof. While only a single such cooling element is shown in
For the embodiment of
The embodiment of
While not specifically mentioned above, the embodiments of
While for the embodiments described above, diode bars have been mounted in block 12 of head 10, in some applications other light emitters, for example filament lamps such as halogen lamps, could be suitably mounted in block 12 in place of the diode bars. Many of the advantages of this invention could also be achieved if a light pipe receiving light from a laser or other light emitting source is substituted for each diode bar 11 for the various embodiments. For example,
Further, transparent layer 15 is preferably spaced by at least several micron, for example 50-100 microns, from the diode bars to assure against shorting of the laser bars, and this space may be filled with air or other gas, or with a liquid or solid insulating material which is transparent at least in the areas under the openings or slits in the reflective layer 16. For this embodiment, the spacing may be such that cooling of the medium from block 12 is no longer possible.
An invention has thus been disclosed, including a number of embodiments and various species of each embodiment, which provides a simpler cooling mechanism for certain embodiments for the surface of a medium undergoing a laser or other optical energy procedure and which also provides more optimum, and in some cases substantially optimum, use of light energy produced by diode laser bars, or other optical energy source, even when the light is being delivered to a highly scattering medium, by designing the device to provide an adequate input aperture and suitable mechanisms for retroreflecting such light. Further, while a number of embodiments and species thereof have been disclosed, it is apparent that these are being provided for purposes of illustration only and that other similar or equivalent mechanisms might also be employed. Thus, while the invention has been particularly shown and described above with reference to preferred embodiments and species, the foregoing and other changes in form and detail may be made therein by one skilled in the art without departing from the spirit and scope of the invention, which is to be defined only by the appended claims.
This application is a continuation of application Ser. No. 10/052,474, filed Jan. 18, 2002, now U.S. Pat. No. 6,663,620 which was a continuation of application Ser. No. 09/473,910, filed Dec. 28, 1999 (now U.S. Pat. No. 6,517,532), which claims priority from provisional specification Nos. 60/115,447 filed Jan. 8, 1999 and 60/164,492, filed Nov. 9, 1999; and which was also a continuation-in-part of application Ser. No. 09/078,055, filed May 13, 1998, now U.S. Pat. No. 6,273,884, which application claims priority from provisional specification Nos. 60/046,542, filed May 15, 1997 and 60/077,726, filed Mar. 12, 1998. The contents of all of these prior application specifications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1706161 | Hollnagel | Mar 1929 | A |
2472385 | Rollman | Jun 1949 | A |
3327712 | Kaufman et al. | Jun 1967 | A |
3486070 | Engel | Dec 1969 | A |
3527932 | Thomas | Sep 1970 | A |
3538919 | Meyer | Nov 1970 | A |
3622743 | Muncheryan | Nov 1971 | A |
3693623 | Harte et al. | Sep 1972 | A |
3818914 | Bender | Jun 1974 | A |
3834391 | Block | Sep 1974 | A |
3846811 | Nakamara et al. | Nov 1974 | A |
3857015 | Clark et al. | Dec 1974 | A |
3900034 | Katz et al. | Aug 1975 | A |
4233493 | Nath | Nov 1980 | A |
4273109 | Enderby | Jun 1981 | A |
4275335 | Ishida | Jun 1981 | A |
4316467 | Muckerheide | Feb 1982 | A |
4388924 | Weissman et al. | Jun 1983 | A |
4456872 | Froeschle | Jun 1984 | A |
4461294 | Baron | Jul 1984 | A |
4524289 | Hammond et al. | Jun 1985 | A |
4539987 | Nath et al. | Sep 1985 | A |
4561440 | Kubo et al. | Dec 1985 | A |
4591762 | Nakamura | May 1986 | A |
4608978 | Rohr | Sep 1986 | A |
4617926 | Sutton | Oct 1986 | A |
4695697 | Kosa | Sep 1987 | A |
4718416 | Nanaumi | Jan 1988 | A |
4733660 | Itzkan | Mar 1988 | A |
4745909 | Pelton et al. | May 1988 | A |
4747660 | Nishioka et al. | May 1988 | A |
4749913 | Stuermer et al. | Jun 1988 | A |
4819669 | Politzer | Apr 1989 | A |
4832024 | Boussignac et al. | May 1989 | A |
4860172 | Schlager et al. | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4905690 | Ohshiro et al. | Mar 1990 | A |
4917084 | Sinofsky | Apr 1990 | A |
4926227 | Jensen | May 1990 | A |
4928038 | Nerone | May 1990 | A |
4930504 | Diamantopoulos et al. | Jun 1990 | A |
4945239 | Wist et al. | Jul 1990 | A |
5000752 | Hoskin et al. | Mar 1991 | A |
5057104 | Chess | Oct 1991 | A |
5059192 | Zaias | Oct 1991 | A |
5065515 | Iderosa | Nov 1991 | A |
5071417 | Sinofsky | Dec 1991 | A |
5108388 | Trokel | Apr 1992 | A |
5127395 | Bontemps | Jul 1992 | A |
5137530 | Sand | Aug 1992 | A |
5140984 | Dew et al. | Aug 1992 | A |
5178617 | Kuizenga et al. | Jan 1993 | A |
5182557 | Lang | Jan 1993 | A |
5182857 | Simon | Feb 1993 | A |
5196004 | Sinofsky | Mar 1993 | A |
5207671 | Franken et al. | May 1993 | A |
5225926 | Cuomo et al. | Jul 1993 | A |
5226907 | Tankovich | Jul 1993 | A |
5267399 | Johnston | Dec 1993 | A |
5282797 | Chess | Feb 1994 | A |
5300097 | Lerner et al. | Apr 1994 | A |
5304170 | Green | Apr 1994 | A |
5306274 | Long | Apr 1994 | A |
5320618 | Gustafsson | Jun 1994 | A |
5334191 | Poppas et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5344418 | Ghaffari | Sep 1994 | A |
5344434 | Talmore | Sep 1994 | A |
5348551 | Spears et al. | Sep 1994 | A |
5350376 | Brown | Sep 1994 | A |
5358503 | Bertwell et al. | Oct 1994 | A |
5380317 | Everett et al. | Jan 1995 | A |
5403306 | Edwards et al. | Apr 1995 | A |
5405368 | Eckhouse | Apr 1995 | A |
5415654 | Daikuzono | May 1995 | A |
5425728 | Tankovich | Jun 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5474549 | Ortiz et al. | Dec 1995 | A |
5486172 | Chess | Jan 1996 | A |
5505726 | Meserol | Apr 1996 | A |
5505727 | Keller | Apr 1996 | A |
5519534 | Smith et al. | May 1996 | A |
5522813 | Trelles | Jun 1996 | A |
5531739 | Trelles | Jul 1996 | A |
5531740 | Black | Jul 1996 | A |
5549660 | Mendes et al. | Aug 1996 | A |
5558667 | Yarborough et al. | Sep 1996 | A |
5578866 | DePoorter et al. | Nov 1996 | A |
5595568 | Anderson et al. | Jan 1997 | A |
5616140 | Prescott | Apr 1997 | A |
5620478 | Eckhouse | Apr 1997 | A |
5626631 | Eckhouse | May 1997 | A |
5630811 | Miller | May 1997 | A |
5649972 | Hochstein | Jul 1997 | A |
5655547 | Karni | Aug 1997 | A |
5658323 | Miller | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662643 | Kung et al. | Sep 1997 | A |
5662644 | Swor | Sep 1997 | A |
5683380 | Eckhouse et al. | Nov 1997 | A |
5698866 | Doiron et al. | Dec 1997 | A |
5707403 | Grove et al. | Jan 1998 | A |
5720772 | Eckhouse | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5735844 | Anderson et al. | Apr 1998 | A |
5735884 | Thompson et al. | Apr 1998 | A |
5742392 | Anderson et al. | Apr 1998 | A |
5743901 | Grove et al. | Apr 1998 | A |
5755751 | Eckhouse | May 1998 | A |
5759200 | Azar | Jun 1998 | A |
5769076 | Maekawa et al. | Jun 1998 | A |
5782249 | Weber et al. | Jul 1998 | A |
5810801 | Anderson et al. | Sep 1998 | A |
5814008 | Chen et al. | Sep 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5814041 | Anderson et al. | Sep 1998 | A |
5817089 | Tankovich et al. | Oct 1998 | A |
5820625 | Izawa et al. | Oct 1998 | A |
5820626 | Baumgardner | Oct 1998 | A |
5824023 | Anderson | Oct 1998 | A |
5828803 | Eckhouse | Oct 1998 | A |
5830208 | Muller | Nov 1998 | A |
5836999 | Eckhouse et al. | Nov 1998 | A |
5840048 | Cheng | Nov 1998 | A |
4884560 | Kuracina | Dec 1998 | A |
5849029 | Eckhouse et al. | Dec 1998 | A |
5851181 | Talmor | Dec 1998 | A |
5853407 | Miller | Dec 1998 | A |
5860967 | Zavislan et al. | Jan 1999 | A |
5868731 | Budnik et al. | Feb 1999 | A |
5871480 | Tankovich | Feb 1999 | A |
5883471 | Rodman et al. | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5885273 | Eckhouse et al. | Mar 1999 | A |
5885274 | Fullmer et al. | Mar 1999 | A |
5891063 | Vigil | Apr 1999 | A |
5913883 | Alexander et al. | Jun 1999 | A |
5916211 | Quon et al. | Jun 1999 | A |
5944748 | Mager et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5949222 | Buono | Sep 1999 | A |
5954710 | Paolini et al. | Sep 1999 | A |
5955490 | Kennedy et al. | Sep 1999 | A |
5964749 | Eckhouse et al. | Oct 1999 | A |
5968033 | Fuller et al. | Oct 1999 | A |
5968034 | Fullmer et al. | Oct 1999 | A |
5977723 | Yoon | Nov 1999 | A |
5984915 | Loeb et al. | Nov 1999 | A |
6015404 | Altshuler et al. | Jan 2000 | A |
6022316 | Eppstein et al. | Feb 2000 | A |
6026828 | Altshuler | Feb 2000 | A |
6027495 | Miller | Feb 2000 | A |
6030399 | Ignotz et al. | Feb 2000 | A |
6032071 | Binder | Feb 2000 | A |
RE36634 | Ghaffari | Mar 2000 | E |
6036684 | Tankovich et al. | Mar 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
D424197 | Sydlowski et al. | May 2000 | S |
6056738 | Marchitto et al. | May 2000 | A |
6059820 | Baronov | May 2000 | A |
6074382 | Asah et al. | Jun 2000 | A |
6080146 | Altshuler et al. | Jun 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6096029 | O'Donnell, Jr. | Aug 2000 | A |
6096209 | O'Brien et al. | Aug 2000 | A |
6104959 | Spertell | Aug 2000 | A |
6117129 | Mukai | Sep 2000 | A |
6120497 | Anderson | Sep 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6149644 | Xie | Nov 2000 | A |
6162211 | Tankovich et al. | Dec 2000 | A |
6162212 | Kreindel et al. | Dec 2000 | A |
6173202 | Eppstein et al. | Jan 2001 | B1 |
6174325 | Eckhouse | Jan 2001 | B1 |
6176854 | Cone | Jan 2001 | B1 |
6183434 | Eppstein | Feb 2001 | B1 |
6183500 | Kohler | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6187001 | Azar et al. | Feb 2001 | B1 |
6197020 | O'Donnell | Mar 2001 | B1 |
6210425 | Chen | Apr 2001 | B1 |
6214034 | Azar | Apr 2001 | B1 |
6228075 | Furumoto | May 2001 | B1 |
6229831 | Nightingale et al. | May 2001 | B1 |
6235016 | Stewart | May 2001 | B1 |
6236891 | Ingle et al. | May 2001 | B1 |
6263233 | Zavislan et al. | Jul 2001 | B1 |
6264649 | Whitcroft et al. | Jul 2001 | B1 |
6267780 | Streeter | Jul 2001 | B1 |
6273884 | Altshuler et al. | Aug 2001 | B1 |
6273885 | Koop et al. | Aug 2001 | B1 |
6280438 | Eckhouse et al. | Aug 2001 | B1 |
6283956 | McDaniel | Sep 2001 | B1 |
6290713 | Russell | Sep 2001 | B1 |
6306130 | Anderson et al. | Oct 2001 | B1 |
6319274 | Shadduck | Nov 2001 | B1 |
6340495 | Sumian et al. | Jan 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6354370 | Miller et al. | Mar 2002 | B1 |
6358272 | Wilden | Mar 2002 | B1 |
6383177 | Balle-Petersen et al. | May 2002 | B1 |
6387089 | Kreindel et al. | May 2002 | B1 |
6402739 | Neev | Jun 2002 | B1 |
6406474 | Neuberger et al. | Jun 2002 | B1 |
6424852 | Zavislan | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6436094 | Reuter | Aug 2002 | B1 |
6471712 | Burres | Oct 2002 | B2 |
6471716 | Pecukonis | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6494900 | Salansky et al. | Dec 2002 | B1 |
6508785 | Eppstein | Jan 2003 | B1 |
6508813 | Altshuler | Jan 2003 | B1 |
6511475 | Altshuler et al. | Jan 2003 | B1 |
6514243 | Eckhouse et al. | Feb 2003 | B1 |
6517532 | Altshuler et al. | Feb 2003 | B1 |
6530915 | Eppstein et al. | Mar 2003 | B1 |
6537270 | Elbrecht et al. | Mar 2003 | B1 |
6558372 | Altshuler | May 2003 | B1 |
6572637 | Yamazaki et al. | Jun 2003 | B1 |
6602245 | Thiberg | Aug 2003 | B1 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6629971 | McDaniel | Oct 2003 | B2 |
6629989 | Akita | Oct 2003 | B2 |
6632219 | Baranov et al. | Oct 2003 | B1 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
6653618 | Zenzie | Nov 2003 | B2 |
6660000 | Neuberger et al. | Dec 2003 | B2 |
6663620 | Altshuler et al. | Dec 2003 | B2 |
6663658 | Kollias et al. | Dec 2003 | B1 |
6663659 | McDaniel | Dec 2003 | B2 |
6808532 | Andersen et al. | Oct 2004 | B2 |
RE38670 | Asah et al. | Dec 2004 | E |
Number | Date | Country |
---|---|---|
400305 | Apr 1995 | AT |
1851583 | Mar 1984 | AU |
3837248 | May 1990 | DE |
9102407 | Jul 1991 | DE |
0142671 | May 1985 | EP |
0565331 | Oct 1993 | EP |
0598984 | Jun 1994 | EP |
0724894 | Aug 1996 | EP |
0726083 | Aug 1996 | EP |
0736308 | Oct 1996 | EP |
0755698 | Jan 1997 | EP |
0763371 | Mar 1997 | EP |
0765673 | Apr 1997 | EP |
0765674 | Apr 1997 | EP |
0783904 | Jul 1997 | EP |
0884066 | Dec 1998 | EP |
0885629 | Dec 1998 | EP |
1038505 | Sep 2000 | EP |
1138349 | Oct 2001 | EP |
1147785 | Oct 2001 | EP |
1219258 | Jul 2002 | EP |
1226787 | Jul 2002 | EP |
1 457 234 | Sep 2004 | EP |
2199453 | Apr 1974 | FR |
2591902 | Jun 1987 | FR |
2044908 | Oct 1980 | GB |
2123287 | Feb 1984 | GB |
2360946 | Oct 2001 | GB |
2001145520 | May 2001 | JP |
2003 192809 | Feb 2005 | JP |
2082337 | Jun 1997 | RU |
2089126 | Oct 1997 | RU |
2089127 | Oct 1997 | RU |
2096051 | Nov 1997 | RU |
2122848 | Oct 1998 | RU |
21228484954402 | Oct 1998 | RU |
WO 8602783 | May 1986 | WO |
WO 9000420 | Jan 1990 | WO |
WO 9216338 | Jan 1992 | WO |
WO 9219165 | Nov 1992 | WO |
WO 9305920 | Apr 1993 | WO |
WO 9515725 | Jun 1995 | WO |
WO 9532441 | Nov 1995 | WO |
WO 9623447 | Aug 1996 | WO |
WO 9625979 | Aug 1996 | WO |
WO 96036396 | Nov 1996 | WO |
WO 96041579 | Dec 1996 | WO |
WO 9713458 | Apr 1997 | WO |
WO 9804317 | Feb 1998 | WO |
WO 9824507 | Jun 1998 | WO |
WO 9851235 | Nov 1998 | WO |
WO 9852481 | Nov 1998 | WO |
WO 99014667 | Apr 1999 | WO |
WO 99017666 | Apr 1999 | WO |
WO 9927997 | Jun 1999 | WO |
WO 9929243 | Jun 1999 | WO |
WO 9938569 | Aug 1999 | WO |
WO 9946005 | Sep 1999 | WO |
WO 9949937 | Oct 1999 | WO |
WO 0003257 | Jan 2000 | WO |
WO 0043070 | Jul 2000 | WO |
WO 00064537 | Nov 2000 | WO |
WO 0071045 | Nov 2000 | WO |
WO 0074781 | Dec 2000 | WO |
WO 0078242 | Dec 2000 | WO |
WO 0103257 | Jan 2001 | WO |
WO 0126573 | Apr 2001 | WO |
WO 0134048 | May 2001 | WO |
WO 0142671 | Jun 2001 | WO |
WO 0154606 | Aug 2001 | WO |
WO 01054770 | Aug 2001 | WO |
WO 0253050 | Jul 2002 | WO |
WO 02094116 | Nov 2002 | WO |
WO 04073537 | Sep 2004 | WO |
WO 04084752 | Oct 2004 | WO |
WO 04086947 | Oct 2004 | WO |
WO 05007003 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050038418 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60115447 | Jan 1999 | US | |
60164492 | Nov 1999 | US | |
60077726 | Mar 1998 | US | |
60046542 | May 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10052474 | Jan 2002 | US |
Child | 10738738 | US | |
Parent | 09473910 | Dec 1999 | US |
Child | 10052474 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09078055 | May 1998 | US |
Child | 09473910 | US |