Various protocols in biological or chemical research involve performing controlled reactions. The designated reactions can then be observed or detected and subsequent analysis can help identify or reveal properties of chemicals involved in the reaction.
In some multiplex assays, an unknown analyte having an identifiable label (e.g., fluorescent label) can be exposed to thousands of known probes under controlled conditions. Each known probe can be deposited into a corresponding well of a microplate. Observing any chemical reactions that occur between the known probes and the unknown analyte within the wells can help identify or reveal properties of the analyte. Other examples of such protocols include known DNA sequencing processes, such as sequencing-by-synthesis (SBS) or cyclic-array sequencing.
In some fluorescent-detection protocols, an optical system is used to direct excitation light onto fluorophores, e.g. fluorescently-labeled analytes and to also detect the fluorescent emissions signal light that can emit from the analytes having attached fluorophores. However, such optical systems can be relatively expensive and require a larger benchtop footprint. For example, the optical system can include an arrangement of lenses, filters, and light sources.
In other proposed detection systems, the controlled reactions in a flow cell define by a solid-state light sensor array (e.g. a complementary metal oxide semiconductor (CMOS) detector or a charge coupled device (CCD) detector). These systems do not involve a large optical assembly to detect the fluorescent emissions.
There is set forth herein a light energy exciter that can include one or more light sources. A light energy exciter can emit excitation light directed toward a detector surface that can support biological or chemical samples.
There is set forth herein a method comprising: emitting with a light energy exciter excitation light, wherein the light energy exciter comprises a first light source and a second light source, the first light source to emit excitation light rays in a first wavelength emission band, the second light source to emit excitation light rays in a second wavelength emission band; and receiving with a detector the excitation light and emissions signal light resulting from excitation by the excitation light, the detector comprising a detector surface for supporting biological or chemical samples and a sensor array spaced apart from the detector surface, the detector blocking the excitation light and permitting the emissions signal light to propagate toward light sensors of the sensor array; and transmitting with circuitry of the detector data signals in dependence on photons sensed by the light sensors of the sensor array.
There is set forth herein a light energy exciter comprising: at least one light source to emit excitation light rays; and a light pipe homogenizing the excitation light and directing the excitation light toward a distal end of the light energy exciter, the light pipe comprising a light entrance surface and a light exit surface, the light pipe receiving the excitation light rays from the at least one light source; wherein the distal end of the light energy exciter is adapted for coupling with a detector assembly that comprises a detector surface for supporting biological or chemical samples.
There is set forth herein a system comprising: a light energy exciter comprising at least one light source to emit excitation light rays, and a light pipe to homogenize the excitation light rays and to direct the excitation light rays, the light pipe comprising a light entrance surface to receive the excitation light rays from the at least one light source; and a detector comprising a detector surface for supporting biological or chemical samples and a sensor array comprising light sensors spaced apart from the detector surface, wherein the detector receives excitation light from the exciter and emissions signal light, wherein the detector comprises circuitry to transmit data signals in dependence on photons detected by light sensors of the sensor array, wherein the detector blocks the excitation light and permits the emissions signal light to propagate toward the light sensors.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein.
These and other features, aspects, and advantages set forth herein will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
In
Detector 200 can include a plurality of light guides 214 that receive excitation light and emissions signal light from detector surface 206 resulting from excitation by the excitation light. The light guides 214 can guide light from detector surface 206. The light guides 214 extend toward respective light sensors 102 and can include filter material that blocks the excitation light and permits the emissions signal light to propagate toward the respective light sensors.
According to one example, detector 200 can be provided by a solid-state integrated circuit detector such as a complementary metal oxide semiconductor (CMOS) integrated circuit detector or a charge coupled device (CCD) integrated circuit detector.
According to one example, each light sensor 202 can be aligned to a respective light guide 214 and a respective reaction recess 210 so that longitudinal axis 268 extends through a cross sectional geometric center of a light sensor 202, light guide 214 and reaction recess 210. Flow cell 282 can be defined by detector surface 206, sidewalls 284, and flow cover 288. Flow cover 288 can be a light transmissive cover to transmit excitation light provided by light energy exciter 10.
In another aspect, detector 200 can include dielectric stack areas 218, intermediate of the light guides 214. Dielectric stack areas 218 can have formed therein circuitry, e.g. for read out of signals from light sensors 202 digitization storage and processing.
System 100 can include inlet portal 289 through which fluid can enter flow cell 282 and outlet portal 290 through which fluid can exit flow cell 282. Inlet portal 289 and outlet portal 290 can be defined by flow cover 288.
According to one example, system 100 can be used for performance of biological or chemical testing with use of fluorophores. For example, a fluid having one or more fluorophore can be caused to flow into and out of flow cell 282 through inlet port using inlet portal 289 and outlet portal 290. Fluorophores can attract to various samples 502 and thus, by their detection fluorophores can act as markers for the samples 502 e.g. biological or chemical analytes to which they attract.
To detect the presence of a fluorophore within flow cell 282, light energy exciter 10 can be energized so that excitation light 101 in an excitation wavelength range is emitted by light energy exciter 10. On receipt of excitation light fluorophores attached to samples 502 can radiate emissions signal light 501 which is the signal of interest for detection by light sensors 202. Emissions signal light 501 owing to fluorescence of a fluorophore attached to a sample 502 will have a wavelength range red shifted relative to a wavelength range of excitation light 101.
Light energy exciter 10 can be activated to emit excitation light 101 to excite fluorophores that have attached to samples 502. On being excited by excitation light 101 fluorophores attached to samples 5102 can fluoresce to radiate emissions signal light 501 at a wavelength range having longer wavelengths than a wavelength range of excitation light 101. The presence or absence of emissions signal light 501 can indicate a characteristic of a sample 502. Light guides 214 according to one example can filter light in the wavelength range of excitation light 101 transmitted by light energy exciter 10 so that light sensors 202 do not detect excitation light 101 as emissions signal light 501.
System 100 in test support systems area 300 can include process control system 310, fluid control system 320, fluid storage system 330, and user interface 340 which permits an operator to enter inputs for control of system 100. Process control system 310 according to one example can be provided by processor based system. Process control system 310 can run various biological or chemical processes such as DNA sequence reconstruction processes. According to one example, for running of a biological or chemical process, process control system 310 can send coordinated control signals e.g. to light energy exciter 10, detector 200 and/or fluid control system 320. Fluid storage system 330 can store fluids that flow through flow cell 282.
According to one example, light energy exciter 10 can include one or more light sources. According to one example, light energy exciter 10 can include one or more light shaping element. Light energy exciter 10 can include one or more optical component for shaping light emissions directing light emitted from the one or more light sources. The one or more light sources can include, e.g. one or more light pipe, lens, wedge, prism, reflector, filter, grating, collimator, or any combination of the above.
Light energy exciter 10 can include light pipe 110 and lens 114 for shaping excitation light rays transmitted through light pipe 110. Light pipe 110 and lens 114 can have cross sectional geometric centers centered on optical axis 106.
Light pipe 110 can include light entry surface 109 and light exit surface 111. Excitation light 101 emitted from light source bank 102 can enter light entry surface 109 and can exit light exit surface 111 of light pipe 110. Light pipe 110 by having an index of refraction selected for providing internal reflections can reflect received light rays received from light source bank 102 in various directions to homogenize light so that exit light rays transmitted through light pipe 110 are homogenous. Thus, even where a light source of light source bank 102 may have “hot spots” or is asymmetrically disposed with respect to light pipe 110 or have other irregularities, homogenous light can be produced at the light exit surface 111 of light pipe 110.
Light pipe 110 by having an index of refraction selected for providing internal reflections can confine excitation light rays that it receives and transmits to the volumetric area delimited by sidewall surfaces defining light pipe 110. Light pipe 110 can be formed of homogenous light transmissive material, e.g. polycarbonate or silica glass.
According to one example, light pipe 110 can be of tapered construction defined by an increasing diameter throughout its length in a direction from the light entry surface 109 to the light exit surface 111 of light pipe 110. According to one example, light pipe 110 can be of tapered construction defined by a linearly increasing diameter throughout its length in a direction from the light entry surface 109 to the light exit surface 111 of light pipe 110.
According to one example, light energy exciter 10 can be configured so that lens 114 images light exit surface 111 of light pipe 110 onto image plane 130 and according to one example system 100 can be configured so that image plane 130 coincides with detector surface 206 which can be configured to support a sample 502 such as a DNA fragment. Lens 114 by imaging an object plane onto an image plane can project an image of homogenized light present at light exit surface 111 of light pipe 110 onto sample supporting detector surface 206 of detector 200 (
Examples herein recognize that while light source bank 102 can be selected so that excitation light rays emitted from light source bank 102 do not include fluorescence range light rays, fluorescence range light rays can nevertheless radiate within light energy exciter 10 as a result of autofluorescence. In another aspect, light energy exciter 10 can include a short pass filter 122 to filter fluorescence range wavelengths radiating as a result of autofluorescence from within light energy exciter 10, e.g. radiating from lens 114, light pipe 110, and reflector 118 as well as other surfaces of light energy exciter 10
Light energy exciter 10 can include light reflector 118 for folding optical axis 106 so that optical axis 106 changes direction from a first direction in which optical axis 106 extends parallel to the reference Y axis shown to a second direction in which optical axis 106 extends parallel to the reference Z axis shown. Light energy exciter 10 can include window 126 having a cross sectional center centered on optical axis 106 as well as housing 134 and other supporting components for supporting the various optical components in certain spatial relation such as the certain spatial relation depicted in
A ray trace diagram for light energy exciter 10 in the example of
Examples herein recognize for example that in the case that light pipe 110 is constructed alternatively to have a uniform diameter, i.e. a non-tapered diameter, a substantial percentage of exit light rays exiting light pipe 110 may exit light exit surface 111 at a divergence angle that is sufficiently large that a light entry surface 113 of lens 114 may not collect the exit light rays. Examples herein recognize that providing light pipe 110 to be of tapered construction, tapered along its length and having a geometric cross sectional center centered on optical axis 106 and including an appropriate index of refraction provides reflections within light pipe 110 so that light exiting light rays exiting light exit surface 111 of light pipe 110 exit light exit surface 111 of light pipe 110 at an angle that is reduced relative to a 90° angle of maximum divergence.
In the example described in reference to
According to one example, light energy exciter 10 can be configured so that exit light rays exiting light exit surface 111 of light pipe 110 define a diverging cone of light 1100 having light rays that diverge at angles ranging from zero degrees to a maximum divergence angle in respect to a reference light ray extending from the light exit surface in a direction parallel to optical axis 106, wherein the light pipe 110 is configured so that the maximum divergence angle is about 60 degrees or less. According to one example, light energy exciter 10 is configured so that exit light rays exiting light exit surface 111 of light pipe 110 define a diverging cone of light 1100 having light rays that diverge at angles ranging from zero degrees to a maximum divergence angle in respect to a reference light ray extending from the light exit surface in a direction parallel to optical axis 106, wherein the light pipe 110 is configured so that the maximum divergence angle is about 50 degrees or less. According to one example, light energy exciter 10 is configured so that exit light rays exiting light exit surface 111 of light pipe 110 define a diverging cone of light 1100 having light rays that diverge at angles ranging from zero degrees to a maximum divergence angle in respect to a reference light ray extending from the light exit surface in a direction parallel to optical axis 106, wherein the light pipe 110 is configured so that the maximum divergence angle is about 40 degrees or less. According to one example, light energy exciter 10 is configured so that exit light rays exiting light exit surface 111 of light pipe 110 define a diverging cone of light 1100 having light rays that diverge at angles ranging from zero degrees to a maximum divergence angle in respect to a reference light ray extending from the light exit surface in a direction parallel to optical axis 106, wherein the light pipe 110 is configured so that the maximum divergence angle is about 35 degrees or less. According to one example, light energy exciter 10 is configured so that exit light rays exiting light exit surface 111 of light pipe 110 define a diverging cone of light 1100 having light rays that diverge at angles ranging from zero degrees to a maximum divergence angle in respect to a reference light ray extending from the light exit surface in a direction parallel to optical axis 106, wherein the light pipe 110 is configured so that the maximum divergence angle is about 30 degrees or less.
For providing imaging functionality, lens 114 can converge received excitation light rays transmitted through light pipe 110. In the example described in reference to
Process control system 310 for example can energize only light sources 102A-102G provided by green LEDs during a first exposure period of detector 200 in which light sensors 202 are exposed and can energize only light sources 102H-102J provided by blue LEDs during a second exposure period of detector 200 in which light sensors 202 are exposed. Providing light source bank 102 to emit at two independently selectable peak wavelengths facilities a dye chemistry process that can use both green (532 nm) and blue (470 nm) excitation. According to one example, light source bank 102 can include a light source e.g. a red LED disposed on printed circuit board 1020 that emits at a red band center wavelength (e.g. red: 630 nm). Providing red illumination facilitates additional test and calibration procedures according to one example.
It is seen in reference to
As shown in
Further in reference to
Light energy exciter 10 can emit excitation light 101 (
Examples herein recognize that if light energy exciter 10 emits light in a fluorescence emission band (fluorescence range) such emitted light can be undesirably be sensed as emissions signal light by light sensors 202. Examples herein include features to reduce the emission of fluorescence range wavelengths by light energy exciter 10.
As noted, light energy exciter 10 can include short pass filter 122. Short pass filter 122 permits transmission of excitation light rays in the emission energy band of light source bank 102 but which blocks light at a fluorescence range within flow cell 282 attributable to autofluorescing components within light energy exciter 110. Short pass filter 122 can be disposed at a distal end of light energy exciter 10 so that-short pass filter 122 can reject autofluorescence range wavelengths attributable to autofluorescing materials within light energy exciter 10. To facilitate filtering of autofluorescence range radiation radiating from lens 112 and from components disposed before lens 114 in the direction of light propagation short pass filter 122 can be disposed after lens 114 in a light propagation direction at a distal end of light energy exciter 10. Short pass filter 122 according to one example can include a substrate having deposited thereon alternating layers of materials having higher and lower indices of refraction. Higher index of refraction material can include e.g. titanium dioxide (TiO2) or tantalum pentoxide (Ta2O5) and lower index of refraction material can include e.g. silicon dioxide (SiO2). Material layers can be hard coated e.g. using ion beam sputtering, according to one example.
To further reduce fluorescence range light, materials of light energy exciter 10 can be selected for reduced autofluorescence. Examples herein recognize that silicate glass autofluoresces less than polycarbonate materials commonly used in optical systems. According to one example one or more optical components of light energy exciter 10 can be selected to be formed of silicate glass. Examples herein recognize that silicate glass can produce reduced autofluorescence relative to an alternative material for optical components and accordingly in accordance with one example one or more of light pipe 110, lens 114, short pass filter 122 (substrate thereof), and window 126 can be selected to be formed of silicate glass for reduction of autofluorescence. According to one example one or more of light pipe 110, lens 114, short pass filter 122 (substrate thereof), and window 126 is selected to be formed of homogeneous silicate glass for reduction of autofluorescence. According to one example each of light pipe 110, lens 114, short pass filter 122 (substrate thereof), and window 126 is selected to be formed of homogeneous silicate glass for reduction of autofluorescence.
In
Configuring light energy exciter 10 to project a light pattern 107 (
In the example described with reference to
According to one example, light energy exciter 10 can be configured so that light pipe 110 has a rectilinear light exit surface 111, an image of which can be projected by lens 114 onto detector surface 206 for supporting a sample which can have a rectilinear shaped perimeter corresponding to a shape of light exit surface 111.
A specification for components of light energy exciter 10 according to one example are set forth
In another example, light pipe 110 can be shaped so that a light exit surface 111 of light pipe 110 can have a shape other than a rectilinear shape, e.g. can have a circular cross section taken along 6-6 transverse to optical axis 106). Such an example can be advantageous where sample supporting detector surface 206 has a perimeter that is of a shape other than a rectilinear shape and corresponds to the shape of light exit surface 111.
A design for light energy exciter 10 can be readily be modified for optimization with different detectors according to detector 200 having different detector surfaces 206 with different shapes. For example, a first detector according to detector 200 can have a rectangular shaped (from a top view along Z axis) detector surface 206, a second detector according to detector 200 can have a square shaped detector surface 206, and a third detector according to detector 200 can have a circle shaped detector surface 206. Because lens 114 is configured to image object plane 112 coinciding with light exit surface 111 onto detector surface 206, light energy exciter 10 can be optimized for use with any of the differently shaped detectors simply by changing light pipe 110 to be a different configuration. According to one example, as indicated by dashed line 132 of
In the example of
There is set forth herein a light energy exciter 10, having a light source 102A and a second light source 102B, wherein the light pipe 110 receives excitation light from the light source 102A, and wherein the exciter comprises a second light pipe 110B housed in a common housing 134 with the light pipe 110, wherein the second light pipe 110B receive the excitation light from the second light source 102B, wherein the light pipe 110 and the second light pipe 110B propagate the excitation light emitted from the first light source 102A and the second light source 102B, respectively, and wherein the light energy exciter 10 shapes the excitation light propagating, respectively, through the light pipe 110 and the second light pipe 110B to define first and second separate illumination areas 107 and 107B.
The configuration as shown in
According to one example, light pipe 110 and light pipe 110B for defining first and second illumination channels can be included in a set of interchangeable modules 133 as set forth herein that can be interchangeably installed into a defined holder of housing 134 of light energy exciter 10 indicated by dashed line 132 described in connection with
Alternative examples of light energy exciter 10 are described with reference to
In the illustrated example shown in
The flow cell 282 can include a height H1. By way of example only, the height H1 can be between about 50 µm to about 400 µm or, more particularly, about 80 µm to about 200 µm. The flow cover 288 can include a material that is light transmissive to excitation light 101 propagating from an exterior of the detector assembly 20 into the flow cell 282.
Also shown, the flow cover 288 can define inlet portal 289 and outlet portal 290 that are configured to fluidically engage other ports (not shown). For example, the other portals can be from a cartridge (not shown) or a workstation (not shown).
Detector 200 can include a sensor array 201 of light sensors 202, a guide array 213 of light guides 214, and a reaction array 209 of reaction recesses 210. In certain examples, the components are arranged such that each light sensor 202 aligns with a single light guide 214 and a single reaction recess 210. However, in other examples, a single light sensor 202 can receive photons through more than one light guide 214. In some examples there can be provided more than one light guide and/or reaction recess for each light sensor of a light sensor array.
In some examples there can be provided more than one light guide and/or light sensors aligned to a reaction recess of a reaction recess array. The term “array” does not necessarily include each and every item of a certain type that the detector 200 can have. For example, the sensor array 201 of light sensors 202 may not include each and every light sensor of detector 200. As another example, the guide array 213 may not include each and every light guide 214 of detector 200. As another example, the reaction array 209 may not include each and every reaction recess 210 of detector 200. As such, unless explicitly recited otherwise, the term “array” may or may not include all such items of detector 200.
Detector 200 has a detector surface 206 that can be functionalized (e.g., chemically or physically modified in a suitable manner for conducting designated reactions). For example, the detector surface 206 can be functionalized and can include a plurality of reaction sites having one or more biomolecules immobilized thereto. The detector surface 206 can have a reaction array 209 of reaction recesses 210. Each of the reaction recesses 210 can include one or more of the reaction sites. The reaction recesses 210 can be defined by, for example, an indent or change in depth along the detector surface 206. In other examples, the detector surface 206 can be substantially planar.
The circuitry 246 can include interconnected conductive elements (e.g., conductors, traces, vias, interconnects, etc.) that are capable of conducting electrical current, such as the transmission of data signals that are based on detected photons. Detector 200 comprises an integrated circuit having a planar array of the light sensors 202. The circuitry 246 formed within detector 200 can be configured for at least one of read out signals from light sensors 202 exposed during an exposure period (integration period) in which charge accumulates on light sensors 202 in dependence on emission signal light 501 received by light sensors 202, signal amplification, digitization, storage, and processing. The circuitry 246 can collect and analyze the detected emissions signal light 501 and generate data signals for communicating detection data to a bioassay system. The circuitry 246 can also perform additional analog and/or digital signal processing in detector 200. Light sensors 202 can be electrically coupled to circuitry 246 through gates 241-243.
Detector 200 according to one example can be provided by a solid-state integrated circuit detector such as a CMOS integrated circuit detector or a CCD integrated circuit detector. Detector 200 according to one example can be an integrated circuit chip manufactured using integrated circuit manufacturing processes such as complementary metal oxide semiconductor (CMOS) fabrication processes.
The resolution of the sensor array 201 defined by light sensors 202 can be greater than about 0.5 megapixels (Mpixels). In more specific examples, the resolution can be greater than about 5 Mpixels and, more particularly, greater than about 14 Mpixels.
Detector 200 can include a plurality of stacked layers 231-237 including a sensor layer 231 which sensor layer 231 can be a silicon layer. The stacked layers can include a plurality of dielectric layers 232-237. In the illustrated example, each of the dielectric layers 232-237 includes metallic elements (e.g., W (tungsten), Cu (copper), or Al (aluminum)) and dielectric material, e.g. SiO2. Various metallic elements and dielectric material can be used, such as those suitable for integrated circuit manufacturing. However, in other examples, one or more of the dielectric layers 232-237 can include only dielectric material, such as one or more layers of SiO2.
With respect to the specific example of
In some examples, detector 200 can include a shield structure 250 having one or more layers that extends throughout an area above metallization layer M5. In the illustrated example, the shield structure 250 can include a material that is configured to block the light signals that are propagating from the flow cell 282. The light signals can be the excitation light 101 and/or emissions signal light 501. By way of example only, the shield structure 250 can comprise tungsten (W). By way of specific example only, the excitation light may have a peak wavelength of about 523 nm (green light) or 456 nm (blue light) and emissions signal light 501 can include wavelengths of about 570 nm and longer (
As shown in
Structure 260 can define a solid surface (i.e., the detector surface 206) that permits biomolecules or other analytes-of-interest to be immobilized thereon. For example, each of the reaction sites of a reaction recess 210 can include a cluster of biomolecules that are immobilized to the detector surface 206 of the passivation layer 258. Thus, the passivation layer 258 can be formed from a material that permits the reaction sites of reaction recesses 210 to be immobilized thereto. The passivation layer 258 can also comprise a material that is at least transparent to a desired fluorescent light. Passivation layer 258 can be physically or chemically modified to facilitate immobilizing the biomolecules and/or to facilitate detection of the emissions signal light 501.
In the illustrated example, a portion of the passivation layer 256 extends along the shield structure 250 and a portion of the passivation layer 256 extends directly along filter material defining light guide 214. The reaction recess 210 can be aligned with and formed directly over light guide 214. According to one example each of reaction recess 210 and light guide 214 can have cross sectional geometric centers centered on longitudinal axis 268. Filter material can be deposited in a cavity defined by sidewalls 254 formed in a dielectric stack having stacked layers 232-237.
The light guide 214 can be configured relative to surrounding material of the dielectric stack defined by dielectric layers 231-237 to form a light-guiding structure. For example, the light guide 214 can have a refractive index of at least about 1.6 according to one example so that light energy propagating through light guide 214 is substantially reflected at an interface at sidewalls 254 between light guide 214 and the surrounding dielectric stack defined by dielectric layers 231-237. In certain examples, the light guide 214 can be configured such that the optical density (OD) or absorbance of the excitation light is at least about 4 OD. More specifically, the filter material can be selected and the light guide 214 can be dimensioned to achieve at least 4 OD. In more particular examples, the light guide 214 can be configured to achieve at least about 5 OD or at least about 6 OD. In more particular examples, the light guide 214 can be configured to achieve at least about 7 OD or at least about 8 OD. Other features of the detector 200 can be configured to reduce electrical and optical crosstalk.
In reference to
A DNA sequencing process facilitated by light energy exciter 10 is described with reference to
Spectral profile 1702 shown in
Spectral profile 1706 is the partial spectral profile of emissions signal light 501 attributable to the first fluorophore fluorescing when excited by green light having spectral profile 1702. Spectral profile 1716 is the partial spectral profile of emissions signal light 501 attributable to the second fluorophore fluorescing when excited by blue light having spectral profile 1712. Spectral profile 1708 is the partial spectral profile of emissions signal light 501 attributable to the third fluorophore fluorescing when excited by green light having spectral profile 1702. Spectral profile 1709 is the partial spectral profile of emissions signal light 501 attributable to the third fluorophore fluorescing when excited by blue light having spectral profile 1712.
Spectral profile 1730 is the transmission spectral profile of light sensors 202 defining light sensor array 201 indicating the detection band of light sensor array 201.
Examples herein recognize in reference to the spectral profile coordination diagram of
Process control system 310 can run a process in support of DNA sequence reconstruction in a plurality of cycles. In each cycle, a different portion of a DNA fragment can be subject to sequencing processing to determine a nucleotide type, e.g. A, C, T, or G, associated to the fragment, e.g. using a decision data structure such as a decision data structure as set forth in Table 2. Aspects of a process which can be run by process control system 310 for use in performing DNA sequence reconstruction using light energy exciter 10 is described in the flowchart of
At block 1802 process control system 310 can clear flow cell 282, meaning process control system 310 can remove fluid from flow cell 282 used during a prior cycle. At block 1804, process control system 310 can input into flow cell 282 fluid having multiple fluorophores, e.g. first and second fluorophores, or first, second and third fluorophores. The first and second fluorophores can include, e.g. the absorption characteristics described with reference to absorption band spectral profile 1704 and absorption band spectral profile 1714 respectively as described in reference to the spectral profile diagram of
At block 1806, process control system 310 can read out signals from light sensors 202 exposed with a first wavelength range excitation active. At block 1806, process control system 310 can control light energy exciter 10 so that during an exposure period of light sensors 202 light energy exciter 10 emits excitation light restricted excitation by one or more green light sources. At block 1806, process control system 310 can during an exposure period of light sensors 202 energize each one or more green emitting light sources of light source bank 102, e.g. light sources 102A-102G as set forth in
At block 1808, process control system 310 can read out signals from light sensors 202 exposed with a second wavelength range excitation active. At block 1808, process control system 310 can control light energy exciter 10 so that during an exposure period of light sensors 202 light energy exciter 10 emits excitation light restricted to excitation by one or more blue light sources of light energy exciter 10. At block 1808, process control system 310 can during an exposure period of light sensors 202 energize each of one or more blue emitting light sources of light source bank 102, e.g. light sources 102H-102J as set forth in
At block 1810 process control system 310 for the current cycle can process the first signals read out at block 1806 and the second signals read out at block 1808 to determine a nucleotide type of the DNA fragment being subject to testing during the current cycle, e.g. using a decision data structure as set forth in Table 2 according to one example. Process control system 310 can perform the described nucleotide identification process described with reference to the flowchart of
Process control system 310 can be configured to perform a wide range of tests for testing operation of the system 100. Process control system 310 can perform a calibration test in which operation of light energy exciter 10 and detector 200 is tested. In such an example process control system 310 can be configured to selectively energize different lights sources during exposure periods of sensor array 201 and can examine signals read out of sensor array 201 during the exposure periods. A method can include selectively energizing a first light source (e.g. green emitting) during a first exposure period of the light sensors with second (blue emitting) and third (e.g. red emitting) light sources maintained in a deenergized state, selectively energizing the second light source during a second exposure period of the light sensors with the first and third light sources maintained in a deenergized state, and selectively energizing the third light source during a third exposure period of the light sensors with the first and second light sources maintained in a deenergized state.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the subject matter disclosed herein. In particular, all combinations of claims subject matter appearing at the end of this disclosure are contemplated as being part of the subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
This written description uses examples to disclose the subject matter, and also to enable any person skilled in the art to practice the subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described examples (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various examples without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various examples, they are by no means limiting and are merely exemplary. Many other examples will be apparent to those of skill in the art upon reviewing the above description. The scope of the various examples should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Forms of term “based on” herein encompass relationships where an element is partially based on as well as relationships where an element is entirely based on. Forms of the term “defined” encompass relationships where an element is partially defined as well as relationships where an element is entirely defined. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure. It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular example. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While the subject matter has been described in detail in connection with only a limited number of examples, it should be readily understood that the subject matter is not limited to such disclosed examples. Rather, the subject matter can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the subject matter. Additionally, while various examples of the subject matter have been described, it is to be understood that aspects of the disclosure may include only some of the described examples. Also, while some examples are described as having a certain number of elements it will be understood that the subject matter can be practiced with less than or greater than the certain number of elements. Accordingly, the subject matter is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2020636 | Mar 2018 | NL | national |
This application is a continuation of U.S. Pat. Application No. 16/206,574, filed Nov. 30, 2018, entitled, “LIGHT ENERGY FLUORESCENCE EXCITATION,” which is incorporated herein by reference in its entirety, which U.S. Pat. Application No. 16/206,574 claims priority to U.S. Pat. Application No. 62/611,448, filed Dec. 28, 2017, entitled, “LIGHT ENERGY FLUORESCENCE EXCITATION,” which is incorporated herein by reference in its entirety, which U.S. Pat. Application No. 16/206,574 also claims priority to U.S. Pat. Application No. 62/644,805, filed Mar. 19, 2018, entitled, “LIGHT ENERGY FLUORESCENCE EXCITATION,” which is incorporated herein by reference in its entirety, which U.S. Pat. Application No. 16/206,574 also claims priority to Dutch Patent Application No. 2020636, filed Mar. 20, 2018, entitled, “LIGHT ENERGY FLUORESCENCE EXCITATION,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62611448 | Dec 2017 | US | |
62644805 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16206574 | Nov 2018 | US |
Child | 18156846 | US |