This patent application is a U.S. National Stage of International Patent Application No. PCT/EP2017/058374 filed on Apr. 7, 2017, which claims priority from German Patent Application No. 102016206316.2 filed on Apr. 14, 2016. Each of these patent applications is herein incorporated by reference in its entirety.
The present invention relates to a light fixture with at least one LED. Light fixtures with LEDs are characterized by a long service life and a high degree of efficiency. In order to operate them even in conventional sockets, so-called retrofit lamps can be obtained on the market which, in terms of their appearance, are similar to a common incandescent lamp however LEDs are used as light fixtures.
Since the introduction of LEDs in the production of retrofit lamps, great improvements have been achieved with regard to efficiency, color rendering, and service life. However, this is currently only possible with relatively high production costs. In particular when, for example, an entire building is to be changed over from incandescent lamps to retrofit lamps, considerable costs are involved. So either the conversion of only some of the light fixtures takes place or it does not take place at all. In this way, not only in relation to an individual building, but also worldwide, a considerable amount of energy is wasted. The resources required to provide this energy could be better used in other ways. Existing solutions require electronic drivers, which convert the mains alternating current voltage to a direct current voltage adapted to the respective LED. In most cases a switching power supply is used for this, for example a buck converter. Retrofit lamp are obtainable, in particular, as A-lamps, B-lamps, P-lamps, and G-lamps.
The object of the present invention, therefore, is to provide an aforementioned light fixture, in particular a retrofit lamp, which is characterized by lower production costs than the known solutions.
This object is achieved by a light fixture with the features of claim 1.
The present invention is based on the finding that a retrofit lamp can be produced particularly advantageously if it functions without electronic drivers. In order to dispense with these drivers, an alternative device should be provided which is as cost-effective as possible in order to regulate the current through the at least one LED. According to the invention this function is performed by at least one filament which is serially connected to the at least one LED. Within the context of the present invention a filament is understood to be a conventional glow wire.
The invention makes use of the fact that as the temperature rises the electrical resistance of the filament likewise rises. In this way the current flow is reduced, so that the temperature falls. A falling temperature leads to a reduction in the electrical resistance, so that the current flow increases again, etc. In this way, on the one hand, the current supplied to the at least one LED is regulated and, on the other hand, a part of the current flowing through the regulating device in the form of the filament is likewise converted into light energy, as required in a light fixture. As a result, a light fixture can be provided which is characterized by a high degree of efficiency and a high proportion of LED light. The production costs are low, since no electronic driver circuit is required for the operation of the LEDs.
It is particularly advantageous that during the operation of a light fixture, according to the invention, a largely flicker-free operation can be achieved because the filament contributes a constant basic brightness to the radiation emitted by a light fixture, according to the invention, in the visible wavelength range. A further advantage can be seen in the fact that existing production concepts of incandescent lamps can be employed in the production.
A preferred variant of the present invention is characterized in that the light fixture comprises a glass bulb in which the at least one filament is arranged, wherein the glass bulb is filled with a protective gas. This protective gas preferably comprises a mixture of 93% argon and 7% nitrogen and in particular no halogen. Therefore the mixture is like that of commercially available incandescent lamps. The at least one LED and the at least one filament are preferably both arranged inside the glass bulb.
In another variant of the present invention, the light fixture comprises a glass bulb in which the at least one filament is arranged, wherein the glass bulb is filled with a gas which comprises at least one halogen, in particular bromine. As a result, a halogen bulb is obtained, wherein a glass bulb can be provided that comprises an arrangement of the filament and the at least one LED. Accordingly, in this variant the at least one LED and the at least one filament are exposed to different atmospheric boundary conditions.
The light fixture preferably has a first and a second connector for coupling to a supply voltage, in particular an alternating current supply voltage. In this connection it can be provided that the light fixture comprises at least one first LED and one second LED which are connected to one another in an antiparallel arrangement. In this way both partial waves of the alternating current supply voltage can be used. In this way possible flickering can be further reduced.
In another embodiment the light fixture can comprise a rectifier which is coupled to the first and the second connector. In particular in this variant the light fixture can comprise at least one first LED and one second LED which are connected to one another in parallel. This likewise results in reduced flickering.
However, two LEDs connected to one another in parallel can also be used in a variant without a rectifier if, for example, at least two LEDs are connected to one another in parallel and at least two further LEDs are connected to the first parallel connection in an antiparallel arrangement.
Furthermore, it may be provided that the light fixture comprises at least one first LED and one second LED which are connected to one another in series. In this case the LEDs form a so-called LED string. This may be the case both in the variant with a rectifier and in the variant without a rectifier. Thus, the entire voltage occurring over the LED string can be increased and thus the working point of the LED string can be optimized.
According to a further embodiment at least one first LED and one second LED can have a different forward voltage. This results in the advantage that the half-wave of the supplying alternating current voltage can be used particularly efficiently.
Furthermore, it may be provided that the light fixture comprises at least two LEDs which emit in different wavelength ranges. In this way the color point of the light emitted by a light fixture according to the invention can be set.
It has proved particularly advantageous if the at least one LED and the at least one filament are designed in such a way that between 15% and 30%, preferably between 20% and 25%, of the voltage drop occurs on the at least one LED. Due to such design, a maximum brightness of the radiation emitted by the light fixture can be achieved at a given supply voltage. Such design therefore results in a particularly high degree of efficiency of the light fixture.
In an alternative embodiment it can be provided that the at least one LED and the at least one filament are designed in such a way that between 70% and 90%, preferably between 75% and 85%, in particular 80%, of the optical power is produced by the at least one LED. The design rules proposed as advantageous in the last two paragraphs apply both for implementation of the filament in a protective gas and also inside a halogen bulb.
With such design a particularly high degree of efficiency and thus a particularly great optical performance can also be achieved at a predetermined supply voltage.
In an advantageous further embodiment, the light fixture comprises a glass bulb as well as a thermal shield, wherein the at least one LED and the at least one filament are arranged in the glass bulb, wherein the thermal shield is arranged between the at least one LED and the at least one filament. The thermal shield may be a metallic reflector which is mounted between the at least one LED and the filament.
Further advantageous embodiments are disclosed by the subordinate claims.
Exemplary embodiments of the present invention are described in greater detail below with reference to the appended drawings. In the drawings:
The same references are used below for elements which are the same and equivalent.
As can be seen, the filament GF is not arranged on the printed circuit board 10. The outline 12 shown by a broken line should indicate that the filament GF can be operated in the same atmosphere as the LEDs, for example in a protective gas known from conventional incandescent lamps, which preferably comprises a mixture of 93% argon and 7% nitrogen, but no halogen. Alternatively, the filament GF can be operated in a different atmosphere as the LEDs (LED1, LED2) in order to produce a halogen bulb by means of the filament GF. In this case the filament GF is operated in a separate glass bulb which is filled with a gas which comprises at least one halogen, in particular bromine.
The exemplary embodiment illustrated in
In the exemplary embodiment of a light fixture according to the invention which is illustrated in
The resistance of the filament GF defines the current also flowing through the at least one LED. The ratio of the light from the at least one LED and from the filament GF can be set, as mentioned, by means of a suitable choice of the resistance of the filament GF. The light of the two light sources is mixed, so that an efficient and, at the same time, largely flicker-free light is generated.
In the exemplary embodiment illustrated in
Accordingly, the working point is fixed by means of the number of LEDs connected in series, i.e. in particular the forward voltages thereof, as well as the resistance of the filament GF. As can be seen, the optical performance Popt emitted by the filament GF is greater the lower the voltage ULED is across the at least one LED. In the case of the proportion of the optical performance Popt supplied by the at least one LED, a maximum is obtained at a voltage of ULED=80 V. For the sum of the two optical partial powers, i.e. the power of the filament GF as well as the power of the at least one LED, a maximum is obtained at a voltage of ULED=54 V. At this working point the entire system would achieve an efficiency greater than 20%. If it is assumed that an incandescent lamp usually has an efficiency between 2% and 5% this results in a significant increase in the efficiency relative to an incandescent lamp alone. If LEDs are operated alone, an efficiency between 25% and 30% could be achieved, but at the expense of a costly electronic driver. This electronic driver can be omitted in a light fixture according to the invention. In this respect it should be noted that a maximum degree of efficiency can be achieved if the at least one LED and the at least one filament are designed in such a way that between 20% and 25% of the voltage drop occurs on the at least one LED. Conversely, from the representation of
Number | Date | Country | Kind |
---|---|---|---|
102016206316.2 | Apr 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/058374 | 4/7/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/178361 | 10/19/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3771018 | Medendorp et al. | Nov 1973 | A |
4074168 | T'Jampens | Feb 1978 | A |
4963798 | McDermott | Oct 1990 | A |
5343122 | Sugimori | Aug 1994 | A |
6853150 | Clauberg | Feb 2005 | B2 |
7160012 | Hilscher | Jan 2007 | B2 |
7166968 | Janning | Jan 2007 | B2 |
RE42161 | Hochstein | Feb 2011 | E |
8228002 | Newman, Jr. | Jul 2012 | B2 |
20050168156 | Li | Aug 2005 | A1 |
20070076426 | Kling | Apr 2007 | A1 |
20080265801 | Lee | Oct 2008 | A1 |
20100178204 | Yin et al. | Jul 2010 | A1 |
20100328946 | Borkar | Dec 2010 | A1 |
20110163675 | Lin | Jul 2011 | A1 |
20110175540 | Hsu | Jul 2011 | A1 |
20110181190 | Lin | Jul 2011 | A1 |
20120162965 | Takeuchi | Jun 2012 | A1 |
20130058080 | Ge | Mar 2013 | A1 |
20140361692 | Huang | Dec 2014 | A1 |
20150043212 | Coffey | Feb 2015 | A1 |
20160099141 | Reisman | Apr 2016 | A1 |
20170276298 | Liu | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
WO-0101385 | Jan 2001 | WO |
03059012 | Jul 2003 | WO |
2010030336 | Mar 2010 | WO |
WO-2010030336 | Mar 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20190174602 A1 | Jun 2019 | US |