Light for a power tool and method of illuminating a workpiece

Information

  • Patent Grant
  • 8328381
  • Patent Number
    8,328,381
  • Date Filed
    Wednesday, February 25, 2009
    15 years ago
  • Date Issued
    Tuesday, December 11, 2012
    12 years ago
Abstract
A power tool including a end effector rotatable with respect to the housing, a collar rotatable with respect to the housing, a printed circuit board (PCB) rotatably fixed with respect to the housing, and a light element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool. A method of providing light for a workpiece being machined by a power tool including locating lighting elements around a spindle of a power tool, aligning the lighting elements to shine light on a workpiece being machined by the power tool, operatively connecting the lighting elements to a PCB, containing and supporting the PCB with a guide, supporting wires configured to provide power to the PCB with the guide, locating the lighting elements, PCB and guide in a rotatable collar, and preventing the lighting elements, PCB and guide from rotating when the collar rotates.
Description
FIELD OF THE INVENTION

The present application relates generally to handheld power tools. More particularly, the present application relates to handheld power tools having a light configured to shine onto a workpiece machined by the power tool.


BACKGROUND OF THE INVENTION

Power tools are often used in a variety of conditions ranging from well-lit indoor work spaces to outside construction sites or other areas that are not always well-lit. Accordingly, it is desirable to provide a method or apparatus that permits a power tool to have a lighting feature that will illuminate the workpiece that is being machined or worked on by the power tool. Such a lighting feature will assist a user to be able to adequately see the workpiece or work area that is being worked on or machined by the power tool even in substandard light conditions.


Because power tools may be used in adverse environmental conditions, it is desirable to protect such a lighting feature from the adverse environmental conditions.


SUMMARY OF THE INVENTION

The foregoing needs are met, to a great extent, by the present invention, wherein in one aspect an apparatus is provided that in some embodiments provides a power tool having lighting features that will illuminate a workpiece being machined by the power tool. In some embodiments in accordance with the invention, the lighting feature is protected from the environment in which the power tool operates.


In accordance with one embodiment of the present invention, a power tool is provided. The power tool includes a housing, a end effector rotatable with respect to the housing, a collar rotatable with respect to the housing, a printed circuit board (PCB) rotatably fixed with respect to the housing, and a lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool.


In accordance with another embodiment of the present invention, a power tool is provided. The power tool includes a rotatable end effector, a rotatable collar, a printed circuit board (PCB), lighting elements operatively connected to the PCB and adjacent to the end effector and located to illuminate a workpiece machined by the power tool, and a guide supporting the PCB and wires configured to provide power to the PCB for illuminating the lighting elements, wherein the PCB and a portion of the guide are generally circular in shape, the lighting elements are annularly arranged on the PCB and portion of the end effector extends through a hole in the defined by the guide and PCB and the guide defines a groove and the PCB is located in the groove.


In accordance with yet another embodiment of the present invention, a method of providing light for a workpiece being machined by a power tool is provided. The method includes locating lighting elements around a spindle of a power tool, aligning the lighting elements to shine light on a workpiece being machined by the power tool, operatively connecting the lighting elements to a PCB, containing and supporting the PCB with a guide, supporting wires configured to provide power to the PCB with the guide, locating the lighting elements, PCB and guide in a rotatable collar, and preventing the lighting elements, PCB and guide from rotating when the collar rotates.


There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.


In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.


As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view illustrating a power tool in accordance with an embodiment of the invention.



FIG. 2 is a perspective view illustrating a front portion of a power tool in accordance with an embodiment of the invention.



FIG. 3 is a perspective close-up view of the power tool of FIG. 2 with the end effector removed in order to more distinctly show surrounding elements.



FIG. 4 is a perspective view similar to that shown in FIG. 3 with a retaining ring removed in order to more clearly show surrounding elements.



FIG. 5 is a perspective view of a wire guide and printed circuit board (PCB) having light emitting diode (LED) elements.



FIG. 6 is a partial perspective view of a bottom portion of the wire guide and PCB.



FIG. 7 is a perspective view of the PCB and wires with the wire guide removed.



FIG. 8 is a partial perspective rear view of the wire guide, PCB, and wires.



FIG. 9 is a partial exploded perspective view of the wire guide and a power tool having some elements removed to better show other elements.



FIG. 10 is a partial perspective view of a wire guide, clutch adjusting nut, clutch spring, and clutch washer mounted on the wire guide.



FIG. 11 is a partial perspective view of a power tool and clutch collar where the clutch collar is shown in a forward position to illustrate the clutch adjusting nut, clutch spring, and clutch washer mounted to the nose cone.



FIG. 12 is a partial rear perspective view of the wire guide mounted on the clutch collar.



FIG. 13 is a partial perspective view of the wire guide mounted onto the nose cone.



FIG. 14 is a partial cutaway perspective view of a nose cone as well as other elements mounted to the nose cone. The end effector and power transmission elements are removed for clarity.



FIG. 15 is a perspective rear view of a holder in accordance with another embodiment of the invention.



FIG. 16 is a partial perspective view of a power tool equipped with a holder similar to that shown in FIG. 15.



FIG. 17 is a partial perspective view with part of the housing removed of a power tool equipped with a holder similar to that shown in FIG. 15.



FIG. 18 is a partial perspective view of a power tool with part of the housing removed to expose interior components.



FIG. 19 is a partial perspective cut-away view of a power tool equipped with a holder similar to that shown in FIG. 15. The cut-away view illustrates some of the internal components of the power tool.





DETAILED DESCRIPTION

The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. An embodiment in accordance with the present invention provides a power tool having a light ring configured to shine light onto a workpiece being machined by the power tool.


According to some embodiments of the invention, light emitting elements, such as light emitting diodes (LEDs), are placed in an annular or ring shape around part of the end effector and are configured to shine forward to illuminate the tool or accessory held by the end effector and the workpiece being machined by the tool. The end effector may be a tool or accessory holder mounted to an output spindle of the tool. Examples of end effectors that may be used in accordance with the invention may be the 7000 Series chuck manufactured and marketed by the Jacobs Chuck Manufacturing Company of Clemson, S.C. and quick change chucks similar to that which is found on products such as a DC825KA Impact Driver and a DC815KA Impact Driver that are manufactured and marketed by the DeWalt Industrial Tool Company of Baltimore, Md.


While several different types of lighting elements can be used in accordance with the invention, such as light bulbs (for example, xenon bulbs) or other lighting elements, LED lights are discussed here as an example and do not limit embodiments in accordance with the invention to tools using LEDs. The LED lights, or other lighting elements, and associated parts are locked to the housing of the tool and do not rotate when the power tool is operated. The lights may be powered by the same power source that provides power to the power tool's motor. In the case of most cordless power tools, it is a battery that powers the power tool and in the case of corded tools it is AC current provided from source voltage through a cord. This AC current may be modified according to the needs of the lighting device being employed. In the case of LED lights, a rectifier may be employed to convert AC current to DC.


An embodiment in accordance with the invention is illustrated in FIG. 1. FIG. 1 shows a power driver 20. The power driver 20 has a housing 22. The housing may be of a clam shell type or any other suitable type housing. The power driver 20 may have a nose cone 23 located at the front portion of the power driver 20. A handle 24 projects downwardly from the housing 22 and is terminated with a battery 26. The battery 26 provides the power to turn the end effector 28.


The end effector 28 may be configured to hold an accessory or tool such as a drill bit or a driving type accessory such as a Philips or standard screwdriver. Other types of tools or accessories may be held and used in the end effector 28 as can appreciated by one skilled in the art. The movement of the end effector 28 may be controlled by the trigger 30. The trigger 30 may selectively provide power from the battery 26 to the motor 32 located within the housing 22. In some embodiments of the invention, the more the trigger or switch 30 is depressed the more power may be applied to the motor 32 which may cause the end effector 28 to spin faster.


The power driver 20 may be equipped with a clutch collar 34. Other embodiments in accordance with the invention may not have a rotating clutch collar, but rather a different rotating collar mechanism. The rotating collar mechanism may be a drill/hammer mode selector, a gear shifter, an on/off switch, a tool variable speed control or other rotating collar control mechanism. However, this specification will refer to a clutch collar as an example but does not limit embodiments in accordance with the invention to tools having clutch collars. The clutch collar 34 can provide protection for interior portions of the power driver 20, particularly the transmission and other internal components of the power driver 20 that may be mounted on the nose cone 23. The clutch collar 34 may be rotated to adjust the transmission. An example of a clutch and transmission that may work in accordance with the invention is shown in U.S. Pat. No. 7,066,691 which is incorporated by reference in its entirety. Of course, most any type of clutch and transmission may be used in accordance with the invention. Different angular positions of the clutch collar 34 may provide different amounts of torque and/or speed to the end effector 28 for a given trigger 30 position. A numbered scale 36 may appear on the clutch collar 34 in order to provide a user an indication of the setting of the clutch collar 34. In some embodiments the user may turn the clutch collar 34 to a desired position by hand.


A light ring 38 is located on a front portion of the power tool 20 just behind the end effector 28 in a recess 39 in the clutch collar 34.


In FIG. 2, a partial perspective view of a front portion of the power driver 20 is shown. An indicator 37 may be located on the nose cone 23. The indicator 37 may provide a reference for the user for determining the angular position of the clutch collar 34 and a reference point for comparing the numbers on the numbered scale 36. The light ring 38 is located within a recess 39 of the clutch collar 34. The light ring 38 may include a lens cover 40. The lens cover 40 may protect interior components of the tool from moisture or other contaminants. The lens cover 40 may include blisters 42 located on the lens cover 40 as to be directly over the LEDs 58 (as shown in FIG. 5). The blisters 42 may be translucent or clear in order to permit light generated by the LEDs 58 to pass through. In some embodiments the blisters 42 may direct or focus the light. The blisters 42 may be round, rectangular, square or any other shape. In some embodiments the blisters 42 are shaped to correspond with the shape of the lighting elements 58. In other embodiments the light may simply pass through the blisters 42. The remainder of the lens cover 40 may be a dark color. Other color schemes may be used in accordance with the invention.


The lens cover 40 is held axially in place from moving in a forward direction toward the end effector 28 by retaining ring 44. The retaining ring 44 is mounted on a retainer 46 which is part of the nose cone 37 as better illustrated in FIGS. 13 and 14 and described in more detail later below.



FIG. 3 is a similar view to that shown in FIG. 2, however, the end effector 28 is removed to better illustrate certain features associated with the retaining ring 44 and the retainer 46. FIG. 3 shows portions 48 of the retaining ring 44 exposed in gap 50 that would fit within the groove 52 if it were not in the gap 50. The retaining ring 44 fits within a groove 52 in the retainer 46. When the retaining ring 44 is placed in the groove 52 the retaining ring 44 is secured in place. The retaining ring 44 prevents the lens cover 40 from axially moving forward toward the end effector 28.



FIG. 4 is a similar view as that shown in FIG. 3, however, the retaining ring 44 has been removed as well as the end effector 28 to better illustrate features of the lens cover 40 and the retainer 46. The lens cover 40 includes tabs 56 which are located within the gaps 50 of the retainer 46. The tab 56 and gap 50 combination keep the lens cover 40 aligned and from rotating around the retainer 46. The groove 52 is also illustrated in FIG. 4 in which the retaining ring 44 is located as shown in FIG. 3.



FIG. 5 illustrates other aspects of the light ring 38 which are normally contained within the clutch collar 34 and located behind the lens cover 40. As part of the light ring 38, light emitting diodes or LEDs 58 are located at various points around the light ring 38. In some embodiments in accordance with the invention, the LEDs 58 emit white light although in other embodiments the LEDs 58 might emit other colors of light. In some embodiments different LEDs on the same tool could emit different colors of light. While the embodiment shown in FIG. 5 illustrates three LEDs 58 any number of LEDs may be used in accordance with the invention including one or more.


The LEDs 58 are mounted to a ring-shaped printed circuit board or PCB 60. The PCB 60 and LEDs 58 are fit into a trench 61 in the wire way 62. The wire way 62 and trench 61 may allow for potting of the PCB if necessary. The wire way 62 provides protection and structural strength for the PCB so that undue mechanical loads are not placed upon the PCB 60. Such support is desirable as a PCB 60 may be fragile and subject to breaking or malfunctioning. The wire way 62 may include snap-in features 64 which allow the PCB 60 to be pushed into the wire way 62 and then the snap-in features 64 snap out once the PCB 60 is located within the wire way 62. The snap-in features 64 prevent the PCB 60 from coming out of the wire way 62.


The wire way 62 may include grooves 66. Tabs 68 located on the PCB 62 may fit within the grooves 66 within the wire way 62. The tabs 68 and grooves 66 combination help the PCB 60 and the wire way 62 be aligned and may prevent or resist the PCB 60 from rotating with respect to the wire way 62.


The wire way 62 may include a PCB holding portion 70 which is generally circular in shape and a wire supporting portion 72. The wire supporting portion 72 may include a channel 74 which is sized and located to contain wires 76. The wires 76 may provide power to the PCB 60 which in turns provides power to illuminate the LEDs 58. The wire supporting portion 72 of the wire way 62 provides a structure for the wires 76 to be supported in and provides protection for the wires 76. The wires 76 may terminate with a plug 78. The plug 78 may fit into plug supporting structure 80 located within the wire supporting portion 72 so that the plug 78, which is made of a more rigid material than the wires 76, is held securely to the wire way 62 via the plug supporting structure 80. In some embodiments, the plug 78 may be press fit into the wire supporting portion 72 of the wire way 62. The circuit to which the PCB 60 is connected may also include an electromagnetic surge suppression circuit (such as a zener diode) for static and over-voltage protection. The circuit may also include a resistor or resistors to drop the voltage from the battery pack voltage to an appropriate level for the LEDs.


Some embodiments do not have a separate PCB, wire guide, wires and connector. For example, plated plastics can be used whereby the wire guide could be first molded into a shape similar to the wire guide 62 as shown. Secondly, tracks (like on a standard PCB) could be created on this plastic piece, and could include all of the pads to mount LEDs and other components, the tracks, or “wires,” from the front of the tool back to the connector area, and could even include the male end of the connector. The components (diodes, resistors, etc.) could then be soldered to this one piece, and would be electrically connected back to the place where the wires would connect it to the switch. This would greatly simplify the assembly.



FIG. 6 is a partial perspective view of a bottom portion of the wire way 62. The wire way 62 may be equipped with a collar stopping tab 82 which will be explained in more detail below as FIG. 12 is discussed.



FIG. 7 is a perspective view similar to that shown in FIG. 5, however, the wire way 62 has been removed in order to better illustrate some of the features shown in FIG. 7. The LEDs 58 are mounted onto the PCB 60. The PCB 60 shows the tabs 68. While the embodiments shown in the figures show five tabs 68, one skilled in the art can appreciate that other numbers of tabs or other features may be employed in order to help keep the PCB aligned and/or rotationally locked to the wire way 68.


The wires 76 are attached to a rear portion of the PCB 60. The plug 78 includes the plug stopping structure 84 which butts against a portion of the wire way 68 to prevent the plug 78 from being inserted too far into the wire way 62.



FIG. 8 illustrates the plug stopping structure 84 located on the plug 78 butted against the wire supporting portion 72 of the wire way 62. The wires 76 are located within the channel 74. In some embodiments, the plug 78 snaps into the wire supporting portion 72 and the wires 76 may be pressed into the channel 74 in a press fit manner to secure the wires 76 into the channel 74. A rear portion of the collar stopping tab 82 is also illustrated in FIG. 8.



FIG. 9 illustrates the housing 22 and the wire way 62. The nose cone 23 has been removed in order to better illustrate how the plug 78 attaches to a receiving plug 86. The plug 78 is slid into the receiving plug 76. The plug stopping structure 84 slides into slots 87 located on the receiving plug 86. Once the plug 78 and the receiving plug 86 have been mated together, power from the wires 88 is communicated to the wire 76. The joint made of the plug 78 and the receiving plug 86 provide a rigid support for the connection of the wires 76 and 88. The wires 88 may receive power from the battery 26 as controlled by the trigger 30. In some embodiments the wires 88 extend out of a switch body associated with the trigger 30. In other embodiments, a switch body could have connectors to which the wires 88 are soldered or otherwise connected. The trigger switch may include electronics for variable speed control. The wires 88 may be soldered to a PCB located inside the switch body.


In accordance with some embodiments of the invention, when the trigger 30, as shown in FIG. 1, is depressed, power is sent to the wires 88 and in turn 76 to illuminate the LEDs.



FIG. 10 is a partial perspective view of the guide 62 showing several additional elements on the guide 62. A clutch adjusting nut 90 is butted against the guide 62. The stop tab 82 is fit into a notch 92 in the clutch adjusting nut 90. The notch 92 in the clutch adjusting nut 90 aligns to the stopping tab 82 on the guide 62 to assist in providing proper assembly of the threads between the adjusting nut 90 and the nose cone 23 during assembly. In some embodiments and as shown in FIG. 10, the notch 92 and the clutch adjusting nut 90 may have chamfered edges 96 to the notch walls 94. The chamfered edges 96 may assist in the stopping tab 82 to be seated in the notch 92 and the clutch adjusting nut 90.


According to some embodiments, a combination of the notch 92 and the clutch adjusting nut 70 and the stopping tab 82 in combination with the other tabs and notch combinations 50, 56, 66, 68 can assure that the lens cover 40, the nose cone 23, the wire way 62, the PCB 60, and the clutch adjusting nut 90 are aligned with respect to each other.


The clutch adjusting nut 90 includes a ridge 100. As shown in FIG. 10 a clutch spring 102 urges at one end against the ridge 100 and at the opposite end of the clutch spring 102, the clutch spring 102 urges against a clutch washer 104. The clutch spring 102 exerts a force on the ridge 100 of the clutch adjusting nut 90 which in turn urges the wire way 62 against the lens cover 40 and ultimately against the retaining ring 44. The force exerted by the clutch spring 102 keeps the light ring assembly 38 in axial position. As shown in FIG. 11 the clutch washer 104 urges against the nose cone 23.



FIG. 11 illustrates the clutch washer 104, clutch spring 102, and the clutch adjusting nut 90 mounted to the nose cone 23. The clutch collar 34 is shown in a forward axial position and not yet installed on the power tool 20 in order to expose the clutch washer 104, the clutch spring 102 and the clutch adjusting nut 90.


To provide ease in the assembly of the power tool 20, a tab 98 on the clutch adjusting nut 90 is scored with marks or notches 106 on one of the adjustment tabs 98. The scoring 106 provides a visual aid when assembling the collar 34 to properly align the clutch collar 34. The adjustment tab 98 on the clutch adjusting nut 90 is aligned with a desired notch 108 in the clutch collar 34. Once the desired notch 108 is aligned with the desired adjustment tab 98, the clutch collar 34 can be fitted onto the power tool 20. In some embodiments, the indicator 34 and the numbered scale 36 may also provide assistance in aligning the clutch collar 34 to provide proper assembly of the clutch collar 34 onto the nose cone 23.



FIG. 12 is a partial perspective view of the clutch collar 34 installed onto the guide 62. Other elements have been omitted from FIG. 12 in order to better show the interaction between the guide 62 and the clutch collar 34. The clutch collar 34, in some embodiments in accordance with the invention, is rotatable. The clutch collar 34 is rotatable on the power tool 20 in order to provide different torque and/or speed settings for the end effector 28. It may be desirable to limit the rotation of the clutch collar 34 in both directions to establish a maximum setting for turning the clutch collar clockwise and a maximum setting when turning the clutch collar counterclockwise as shown in FIG. 12. Making maximum and minimum settings is, in some embodiments, accomplished by using the collar stopping tab 82 which butts against the stop 110 on the clutch collar 34. The wall 112 on the stop 110 butts against a wall 114 on the collar stopping tab 82 to provide a limit to clutch collar 34 rotation in a clockwise direction as viewed in FIG. 12. The same stop 110 and collar stopping tab 82 provide a stop for rotating the clutch collar 34 in the opposite direction (i.e., counterclockwise as viewed in FIG. 12). This is accomplished when the clutch collar 34 is rotated so that the opposite wall 116 on the stop 110 butts against the opposite wall 118 on the tab 82.



FIG. 12 also illustrates additional notches 108 in the clutch collar 34 for providing detents when the clutch collar 34 is rotated to various settings with respect to the nose cone 23.



FIG. 13 is a partial perspective view of the guide 62 mounted onto a stem portion 120 of the nose cone 23. A lock portion 124 of the guide 62 fits into a groove 122 of the stem portion 120 of the nose cone 23. The groove 122 is sized and dimensioned so that the lock portion 124 of the wire supporting portion 72 of the guide 62 fits within the groove 122 and locks the guide 62 to be angularly fixed with respect to the nose cone 23. The locks 124 located on the wire supporting portion 72 of the guide 62 are wider than the rest of the wire supporting portion 72 and aid in permitting the guide 62 to be securely seated in the groove 122 of the stem portion 120 of the nose cone 23.


A second groove 126 is in the nose cone 23 for allowing the wire supporting portion 72 of the guide 62 to fit within the groove 126 of the nose cone 23. The retainer 46 on the nose cone 23 and the groove 52 of the nose cone 23 are also shown forward of the guide 62. The above described features also help align the guide 62 with respect to the nose cone 23.


According to some embodiments, the retainer 46 is integral with the stem 120 and the nose cone 23. In other embodiments of the inventions, they may be separable parts.



FIG. 14 is a partial cutaway perspective view of the nose cone 23 and additional parts described below. FIG. 14 shows how the parts described herein are assembled together according to some embodiments of the invention. The transmission, spindle, and other parts associated with turning the end effector have been omitted to more clearly show the parts described herein. The retaining ring 44 is seated within the groove 52 of the retainer 46. The retaining ring 44 provides a limit of forward axial movement of the lens cover 40, the guide 62, and the clutch adjusting nut 90. The clutch spring 102 presses against the clutch washer 104 to urge the clutch adjusting nut 90 to urge the guide 62, PCB 60, and lens cover 40 against the retaining ring 44. The wires 76 are located in a channel 74 defined by the guide 62 and the nose cone 23. The wires 76 are protected from the spinning parts of the end effector mechanism.


Although an example of the light ring 38 is shown on a power driver 20, it will be appreciated that the light ring 38 can be used on other rotary power tools such as impact drivers, drills, hammer drills, routers.


An example embodiment in accordance with the invention where a light ring 38 is mounted on a different power tool than shown in the previous FIGS. is shown in FIGS. 15 through 19. FIG. 15 illustrates a perspective rear view of a holder 140 that is used on a power tool that is not equipped with a collar as described in the embodiments above. The holder 140 holds the light ring 38. The light ring 38 includes the PCB 60 similar to that described above. The PCB 60 and the holder 140 may include snap-in features 64 similar to that described above so that the PCB 60 snaps into and is secured in the holder 140.


A circular lens cover 40 may be mounted to the holder 140 in front of the PCB 60 similar to embodiments described above. The lens cover 40 may include snap-in elements that correspond with snap-in elements on the holder 140. In other embodiments in accordance with the invention, the lens 40 may be secured in place with a retaining ring system similar to that described above.


The holder 140 may attach to the nose cone 23 with snap-in elements located on both the holder 140 and the nose ring 23 similar to the snap-in features 64 described in the embodiments above. In other embodiments in accordance with the invention, the light ring holder 140 may be secured in place in a variety of ways including, but not limited to, a retaining ring system similar to the embodiments described above.


As shown in FIG. 15, the holder 140 includes a housing portion 142, a chin shroud 144, and a wire way portion 146. Wires 76 connect the PCB 60 (which contains light emitting elements similar to those described above) with a plug 78. In contrast to the wire way 62 described in the embodiments above, the holder 140 does not fully support the wires 76 along the full length of the wires 76 all the way to the plug 78. Rather, the wire way portion 146 stops at some point along the length of the wires 76, leaving the wires 76 and the plug 78 to be not supported by the holder 140.



FIG. 16 is a partial perspective view of a power tool 147 that does not have a rotatable clutch collar but rather is equipped with the holder 140. The lens cover 40 is shown mounted in a recess in the holder 140. The holder 140 is mounted to the nose cone 23 which is supported by the housing 22. A fastener hole 148 is shown in the housing 22. The fastener hole 148 provides a place for a fastener such as a screw or bolt to connect the two halves of the clam shell type housing 22 together. While the fastener is not shown in FIG. 16, it will be appreciated that when the power tool 147 is fully constructed that a fastener will be located in the fastener hole 148 to connect the two halves of the clam shell housing 22 together. Other embodiments of the invention may connect the clamshells of the housing 22 in other ways. Some embodiments of the invention may include one piece housings or other types of housings than the clam shell housing shown in FIG. 16. The chin shroud 144 is located on the holder 140 and provides a housing for a portion of the wires 76 so that the wires 76 are not exposed outside of the power tool 147.



FIGS. 17 and 18 show the power tool 147 with part of the housing 22 removed. The housing 22 is a clam shell type housing and one of the clam shells is removed exposing the clam shell housing 22 located on the far side of the power tool 147. The holder 140 is shown mounted to the nose cone 23. A fastener hole tube 150 located in the fastener hole 148 is shown. The wires 76 are routed around the hole tube 150 and are located in the interior 152 of the housing 22. The wires 76 are terminated with a plug 78 also located in the interior 152 of the housing 22.


The interior 152 of the housing defines a space or pathway for the wires 76 and the plug 78. The chin shroud 144 defines a wire way portion 146 through which the wires 76 are strung. The chin shroud 144 also includes retaining structure 154 which is set in a retaining area 156 defined by the housing 22. When the two clam shells of the clam shell housing 22 are mounted together and fastened together with a fastener located in the fastener hole 148 and fastener hole tube 150, the retaining structure 154 on the chin shroud 144 is trapped in the retaining area 156 thereby holding the chin shroud 144 and holder 140 in place on the power tool 147. Operation of the light ring 38 is similar to that described in the embodiments above.



FIG. 19 is a partial perspective cut-away view showing the end effector 28 associated with the power tool 147 extending through the lens cover 40 located in front of the PCB 60. As described above, LEDs (not shown in FIG. 19) are located on the PCB 60 and configured to light the tool or workpiece being worked on by the power tool 147. The wires 76 provide power between the PCB 60 and a power source connected via the plug 78 to power source. The wires 76 are located in the wire way portion 146 of the chin shroud 144 and the interior 152 of the housing 22. The chin shroud 144 has the retaining structure 154 located in the retaining area 156 defined by the housing 22.


The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Claims
  • 1. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing to select at least one of a clutch setting, a drive setting, a drill setting, and a hammer setting of the power tool, the collar having a rear end and a front end adjacent the end effector;a printed circuit board (PCB) rotatably fixed with respect to the housing; anda lighting element operatively connected to the PCB and adjacent to the front end of the collar and to the end effector and in a recess of the collar, and located to illuminate a workpiece machined by the power tool.
  • 2. The power tool of claim 1, further comprising a guide supporting the PCB and wires configured to provide power to the PCB.
  • 3. The power tool of claim 2, further comprising additional lighting elements, wherein the lighting elements are light emitting diodes (LEDs) located on the PCB and the PCB and a portion of the guide are generally circular in shape, the LEDs are annularly arranged on the PCB and portion of the end effector extends through a hole in the defined by the guide and PCB.
  • 4. The power tool of claim 2, wherein the guide defines a groove and the PCB is located in the groove.
  • 5. The power tool of claim 4, further comprising snap-in features on the guide configured to allow the PCB to be snapped into the groove in the guide and held in place in the guide.
  • 6. The power tool of claim 2, further including a channel defined by the guide, the channel providing a protective case for the wires.
  • 7. The power tool of claim 6, further comprising a plug terminating the wires and plug holding structure on the guide for securing the plug in place on the guide.
  • 8. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing;a printed circuit board (PCB) rotatably fixed with respect to the housing;a lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool;a guide supporting the PCB and wires configured to provide power to the PCB; anda collar stop on the guide to define a limit of rotation of the collar.
  • 9. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing;a printed circuit board (PCB) rotatably fixed with respect to the housing;a lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool;a guide supporting the PCB and wires configured to provide power to the PCB; andan alignment tab on the guide for aligning the guide to a desired position.
  • 10. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing;a printed circuit board (PCB) rotatably fixed with respect to the housing;a lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool;a guide supporting the PCB and wires configured to provide power to the PCB; andalignment tabs on the PCB and alignment grooves on the guide, the alignment tabs on the PCB and the alignment grooves on the guide are dimensioned and located so that the alignment tabs on the PCB fit into and are retained in the alignment grooves on the guide to keep the PCB and the guide aligned.
  • 11. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing;a printed circuit board (PCB) rotatably fixed with respect to the housing;a lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool;a guide supporting the PCB and wires configured to provide power to the PCB; andengaging structure on the guide configured to butt against corresponding engaging structure on a nose cone to lock the guide from rotating with respect to the nose cone.
  • 12. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing;a printed circuit board (PCB) rotatably fixed with respect to the housing;a lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the collar and located to illuminate a workpiece machined by the power tool;a guide supporting the PCB and wires configured to provide power to the PCB; anda lens cover covering the lighting element and the PCB so that the lighting element and the PCB are entrapped by the guide and the lens cover.
  • 13. The power tool of claim 12, further comprising a raised blister on the lens cover located to cover the lighting element and configured so that light emitted from the lighting element passes through the blister.
  • 14. The power tool of claim 12, wherein the lens cover, except a portion covering the lighting element, is a dark color.
  • 15. The power tool of claim 12, further comprising a retaining ring, wherein the lens cover is axially retained by the retaining ring attached to a nose cone.
  • 16. The power tool of claim 15, further comprising a groove on the nose cone wherein the retaining ring resides in the groove.
  • 17. The power tool of claim 15, wherein the collar is axially locked at least in part by the retaining ring.
  • 18. A power tool comprising: a rotatable chuck;a rotatable collar rotatable to select at least one of a clutch setting, a drive setting, a drill setting, and a hammer setting of the power tool;a printed circuit board (PCB);light elements operatively connected to the PCB and adjacent to the end effector and located to illuminate a workpiece machined by the power tool; anda guide supporting the PCB and wires configured to provide power to the PCB for illumination the lighting elements, wherein the PCB and a portion of the guide are generally circular in shape, the lighting elements are annularly arranged on the PCB and portion of the end effector extends through a hole defined by the guide and PCB and the guide defines a groove and the PCB is located in the groove.
  • 19. The power tool of claim 18, further comprising snap-in features on the guide configured to allow the PCB to be snapped into the groove in the guide and held in place in the guide.
  • 20. A power tool comprising: a housing;a handle extending downward from the housing;a trigger switch coupled to the handle;a chin region just above the trigger switch and just below the housing;an end effector rotatable with respect to the housing;a front housing portion;a printed circuit board (PCB) rotatably fixed with respect to the housing; anda lighting element operatively connected to the PCB and adjacent to the end effector and in a recess of the front housing portion and located to illuminate a workpiece machined by the power tool; anda chin shroud in the chin region housing wires running from the PCB to a power source.
  • 21. A power tool comprising: a housing;an end effector rotatable with respect to the housing;a collar rotatable with respect to the housing to select at least one of a clutch setting, a drive setting, a drill setting, and a hammer setting of the power tool, the collar having a rear end and a front end adjacent the end effector; anda generally ring-shaped printed circuit board (PCB) rotatably fixed with respect to the housing and disposed within the collar, anda plurality of lighting elements mounted to the PCB and adjacent to the front end of the collar and to the end effector to illuminate a workpiece machined by the power tool.
  • 22. The power tool of claim 21 wherein the collar is generally opaque.
  • 23. The power tool of claim 21, further comprising a generally ring-shaped lens cover in front of the lighting elements, the lens cover disposed inside of the collar and rotatably fixed with respect to the housing.
  • 24. The power tool of claim 21, further comprising a guide supporting the PCB and wires configured to provide power to the PCB.
  • 25. The power tool of claim 24, wherein the guide defines a groove and the PCB is located in the groove.
  • 26. The power tool of claim 24, further including a channel defined by the guide, the channel providing a protective case for the wires.
  • 27. The power tool of claim 24, further comprising alignment tabs on the PCB and alignment grooves on the guide, the alignment tabs on the PCB and the alignment grooves on the guide are dimensioned and located so that the alignment tabs on the PCB fit into and are retained in the alignment grooves on the guide to keep the PCB and the guide aligned.
  • 28. The power tool of claim 24, further comprising engaging structure on the guide configured to butt against corresponding engaging structure on a nose cone to lock the guide from rotating with respect to the nose cone.
US Referenced Citations (243)
Number Name Date Kind
1565566 Hartley Dec 1925 A
2038911 Stuz et al. Apr 1936 A
2310166 Way Feb 1943 A
2517882 Johnson Aug 1950 A
2525588 Cameron et al. Oct 1950 A
2773974 Markett Dec 1956 A
2806492 Becker Sep 1957 A
2852051 Bickner Sep 1958 A
2855675 Kolthoff et al. Oct 1958 A
2855679 Gibble Oct 1958 A
3393309 Leach et al. Jul 1968 A
3499226 Hopkins Mar 1970 A
3561462 Jugler Feb 1971 A
3595132 Thacker Jul 1971 A
3603782 Wortmann Sep 1971 A
3681627 Murry et al. Aug 1972 A
3729658 Voitov Apr 1973 A
3919541 Chao Nov 1975 A
3977278 Jackson Aug 1976 A
4078869 Honeycutt Mar 1978 A
4089031 Stevens May 1978 A
4246506 Vartanian et al. Jan 1981 A
4399226 Danielson et al. Aug 1983 A
4429463 Angell Feb 1984 A
4480295 Shuster Oct 1984 A
4480301 Pfaff et al. Oct 1984 A
4536000 Rohm Aug 1985 A
4540318 Hornung et al. Sep 1985 A
4648610 Hegyi Mar 1987 A
4678922 Leininger Jul 1987 A
4809426 Takeuchi et al. Mar 1989 A
4833782 Smith May 1989 A
4839777 Janko et al. Jun 1989 A
5003434 Gonser et al. Mar 1991 A
5061885 Fukuhara Oct 1991 A
5068652 Kobayashi Nov 1991 A
5158354 Simonin Oct 1992 A
5166225 Asanuma et al. Nov 1992 A
5169225 Palm Dec 1992 A
5267129 Anderson Nov 1993 A
5276595 Patrie Jan 1994 A
5313527 Guberman et al. May 1994 A
5406300 Tokimoto Apr 1995 A
5412546 Huang May 1995 A
5427002 Edman Jun 1995 A
5473519 McCallops et al. Dec 1995 A
5525842 Leininger Jun 1996 A
5543679 Morino et al. Aug 1996 A
5637973 Hirai et al. Jun 1997 A
D380952 Kim Jul 1997 S
5713656 Lin Feb 1998 A
5720542 Birge, Jr. et al. Feb 1998 A
5770936 Hirai et al. Jun 1998 A
5793130 Anderson Aug 1998 A
5797670 Snoke Aug 1998 A
5798622 Hirai et al. Aug 1998 A
5801454 Leininger Sep 1998 A
5818188 Hirai et al. Oct 1998 A
5845986 Breen Dec 1998 A
5873647 Kurtz et al. Feb 1999 A
5913596 Lin Jun 1999 A
5970616 Wahl et al. Oct 1999 A
5982059 Anderson Nov 1999 A
6022121 Lin Feb 2000 A
6033082 Lin Mar 2000 A
6033087 Shozo et al. Mar 2000 A
6036332 Antal Mar 2000 A
6050759 Bone Apr 2000 A
6067714 Taylor et al. May 2000 A
6086217 Jau Jul 2000 A
6095659 Hsu Aug 2000 A
RE36917 Leininger Oct 2000 E
6126295 Hillinger Oct 2000 A
6161256 Quiring et al. Dec 2000 A
6168287 Liu Jan 2001 B1
6168301 Martinez Jan 2001 B1
6178081 Armond et al. Jan 2001 B1
6179433 Shiao Jan 2001 B1
6183103 Hillinger Feb 2001 B1
6206538 Lemoine Mar 2001 B1
6213620 Huang Apr 2001 B1
6224229 Lin May 2001 B1
6238058 Lin May 2001 B1
6243240 Ozue et al. Jun 2001 B1
6257077 Patterson Jul 2001 B1
6260979 Lin Jul 2001 B1
6283607 Lin Sep 2001 B1
6318874 Matsunaga Nov 2001 B1
6364033 Hung et al. Apr 2002 B1
6443675 Kopras et al. Sep 2002 B1
6454429 Liao Sep 2002 B1
6478442 Chen Nov 2002 B2
6494590 Paganini et al. Dec 2002 B1
6497494 Lin Dec 2002 B1
6501199 Hung Dec 2002 B2
6502947 Matsumoto et al. Jan 2003 B2
6502949 Horiyama et al. Jan 2003 B1
6511200 Matsunaga Jan 2003 B2
6511201 Elrod Jan 2003 B1
6565227 Davis May 2003 B1
6575590 Wadsworth Jun 2003 B1
6616295 Sako et al. Sep 2003 B2
6622537 Rodriguez Sep 2003 B2
6644825 Lin Nov 2003 B2
6663260 Tieszen Dec 2003 B1
6694631 Bone et al. Feb 2004 B2
6713905 Hirschburger et al. Mar 2004 B2
6725945 Sugimoto et al. Apr 2004 B2
6729743 Gillette May 2004 B2
6803683 Bone et al. Oct 2004 B2
6810596 Fung et al. Nov 2004 B2
6814461 Minalga Nov 2004 B2
6857756 Reiff Feb 2005 B2
6863544 Haehn et al. Mar 2005 B2
RE38729 Liu Apr 2005 E
6886961 Hara et al. May 2005 B2
6890135 Kopras et al. May 2005 B2
6905221 Hsu Jun 2005 B2
6916106 Xingguo Jul 2005 B2
6918331 Okouchi Jul 2005 B2
6921235 Chen Jul 2005 B2
6939022 Brooks Sep 2005 B2
6960867 Dupont et al. Nov 2005 B2
6961190 Tamaoki et al. Nov 2005 B1
6964545 Languasco Nov 2005 B1
6979100 Reiff et al. Dec 2005 B2
6979104 Brass Dec 2005 B2
7007762 Yamamoto Mar 2006 B2
7025485 Henry Apr 2006 B2
7029142 Chen et al. Apr 2006 B2
7053325 Yuasa et al. May 2006 B2
7069662 Fung et al. Jul 2006 B2
7080964 Riley et al. Jul 2006 B2
7090372 Liao et al. Aug 2006 B2
7093951 Tsuruta et al. Aug 2006 B2
7094011 Kopras et al. Aug 2006 B2
7095142 Leininger Aug 2006 B2
7101058 Prell et al. Sep 2006 B2
7137761 Hara et al. Nov 2006 B2
7152329 Kondo et al. Dec 2006 B2
7185998 Oomori et al. Mar 2007 B2
7188966 Lin Mar 2007 B1
7197113 Katcha et al. Mar 2007 B1
7200516 Cowley Apr 2007 B1
7204606 Brass et al. Apr 2007 B2
7249862 Shirane Jul 2007 B2
7253541 Kovarik et al. Aug 2007 B2
7278751 Chang et al. Oct 2007 B2
7282818 Kovarik Oct 2007 B2
7296905 Etter et al. Nov 2007 B2
7303007 Konschuh Dec 2007 B2
7307230 Chen Dec 2007 B2
7318485 Greese et al. Jan 2008 B2
7331685 Shen et al. Feb 2008 B2
7357526 Zeiler Apr 2008 B2
7395876 Walker Jul 2008 B1
7404696 Campbell Jul 2008 B2
7498526 Lohr et al. Mar 2009 B2
7510296 Nevin Mar 2009 B2
7568288 Baker Aug 2009 B2
7568816 Brass et al. Aug 2009 B2
7600885 Canino et al. Oct 2009 B2
7654178 Hall et al. Feb 2010 B2
7677752 Tadokoro et al. Mar 2010 B2
7682035 Wuesch et al. Mar 2010 B2
7682036 Reiff Mar 2010 B2
7705482 Leininger Apr 2010 B2
7717619 Katcha et al. May 2010 B2
7728464 Leininger Jun 2010 B2
7740369 Gabriel et al. Jun 2010 B2
7815356 Lutz et al. Oct 2010 B2
7824136 Campbell Nov 2010 B2
7850325 Wall et al. Dec 2010 B2
7866839 Chien Jan 2011 B2
7926187 Uehlein-Proctor et al. Apr 2011 B2
7934847 Oomori et al. May 2011 B2
8016048 Ueda et al. Sep 2011 B2
20020054491 Casas May 2002 A1
20020131267 Van Osenbruggen Sep 2002 A1
20020154499 Hsieh Oct 2002 A1
20020172035 Hara et al. Nov 2002 A1
20020197123 Kopras et al. Dec 2002 A1
20030194283 Kovarik et al. Oct 2003 A1
20030202851 Kovarik Oct 2003 A1
20040156190 Tsuruta et al. Aug 2004 A1
20050047878 Riley et al. Mar 2005 A1
20050085124 Kristen et al. Apr 2005 A1
20050111214 Zeiler May 2005 A1
20050152131 Shirane Jul 2005 A1
20050157260 Graham Jul 2005 A1
20050157489 Oomori et al. Jul 2005 A1
20050157849 Radley et al. Jul 2005 A1
20050188550 Uehlein-Proctor et al. Sep 2005 A1
20050261870 Cramer et al. Nov 2005 A1
20060104085 Walker et al. May 2006 A1
20060157260 Greese et al. Jul 2006 A1
20060176682 Wu et al. Aug 2006 A1
20060180327 Nagasaka et al. Aug 2006 A1
20060243105 Delfini et al. Nov 2006 A1
20060262519 Hirschburger Nov 2006 A1
20060289595 Shen et al. Dec 2006 A1
20070046110 Liu Mar 2007 A1
20070159812 Oomori et al. Jul 2007 A1
20070193039 Onose Aug 2007 A1
20080025017 Tadokoro et al. Jan 2008 A1
20080068827 Chang Mar 2008 A1
20080074865 Lutz et al. Mar 2008 A1
20080144309 Nagata et al. Jun 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080244910 Patel Oct 2008 A1
20080264212 Leupert Oct 2008 A1
20080266841 Gabriel et al. Oct 2008 A1
20080271906 Walker Nov 2008 A1
20090077814 Gibbons Mar 2009 A1
20090077816 Gibbons Mar 2009 A1
20090077817 Gibbons Mar 2009 A1
20090080987 Canino et al. Mar 2009 A1
20090123817 Stickel et al. May 2009 A1
20090128062 Watanabe et al. May 2009 A1
20090134710 Tyndall et al. May 2009 A1
20090159677 Yakimov et al. Jun 2009 A1
20090200961 Straub Aug 2009 A1
20090207035 Watanabe et al. Aug 2009 A1
20090256319 Seymour et al. Oct 2009 A1
20090313831 Patel Dec 2009 A1
20100000094 Lombardo Jan 2010 A1
20100002415 Munn et al. Jan 2010 A1
20100008079 Brass et al. Jan 2010 A1
20100043603 McRoberts et al. Feb 2010 A1
20100071921 Canino et al. Mar 2010 A1
20100072833 Canino Mar 2010 A1
20100074700 Canino Mar 2010 A1
20100089601 Fukinuki et al. Apr 2010 A1
20100149790 Leong Jun 2010 A1
20100214768 Dixon et al. Aug 2010 A1
20100242695 Xu et al. Sep 2010 A1
20100277897 Hecht et al. Nov 2010 A1
20100315804 Nishikimi et al. Dec 2010 A1
20100328929 Lutz Dec 2010 A1
20100328969 Meyer Dec 2010 A1
20110017473 Clarkson et al. Jan 2011 A1
20110170312 Parrinello Jul 2011 A1
20110197458 Karrar et al. Aug 2011 A1
Foreign Referenced Citations (58)
Number Date Country
1410234 May 1937 DE
2529668 Jan 1977 DE
30 03 703 Aug 1980 DE
8529779 Dec 1985 DE
35 25 352 Jan 1987 DE
3831344 Mar 1990 DE
8912224 Dec 1990 DE
4202223 Sep 1992 DE
4336730 May 1995 DE
4229282 May 1997 DE
29709437 Sep 1997 DE
29719020 Dec 1997 DE
29807070 Jun 1998 DE
201 08 917 Nov 2002 DE
202 15 382 Mar 2003 DE
20310541 Sep 2003 DE
10315980 Nov 2003 DE
10246772 Apr 2004 DE
202004019853 Feb 2005 DE
10340178 Apr 2005 DE
102004011575 Sep 2005 DE
20 2008 003787 Jun 2008 DE
1 068 934 Jan 2001 EP
1 072 842 Jan 2001 EP
1 125 698 Aug 2001 EP
1287948 Mar 2003 EP
1 477 282 Nov 2004 EP
1 690 649 Aug 2006 EP
1 693 162 Aug 2006 EP
667849 Oct 1929 FR
2 041 798 Feb 1980 GB
2305128 Apr 1997 GB
2407058 Apr 2005 GB
3079279 Apr 1991 JP
3138168 Jun 1991 JP
5-309508 Nov 1993 JP
06-246645 Sep 1994 JP
8-252778 Oct 1996 JP
9-239672 Sep 1997 JP
10-034564 Feb 1998 JP
10-034565 Feb 1998 JP
10-034566 Feb 1998 JP
11-111002 Apr 1999 JP
2002-166374 Jun 2002 JP
2002-307325 Oct 2002 JP
2002307330 Oct 2002 JP
2002307330 Oct 2002 JP
2003-033901 Feb 2003 JP
2003033901 Feb 2003 JP
2003-211374 Jul 2003 JP
2004-174667 Jun 2004 JP
2006-218583 Aug 2006 JP
WO 9902310 Jan 1999 WO
WO 03061915 Jul 2003 WO
WO 2006015909 Feb 2006 WO
2008133339 Nov 2008 WO
WO2009138269 Nov 2009 WO
2010034566 Apr 2010 WO
Related Publications (1)
Number Date Country
20100214768 A1 Aug 2010 US