The present invention relates in general to a light-generating device comprising at least one high-power LED light source.
The use of high-power light-emitting diodes (LEDs), especially but not exclusively white light LEDs, for illumination purposes is well known. It is also well known that heat sinking is an important issue in such devices. To this end, it is already known to mount a LED structure on a metal core printed circuit board (MCPCB), which has an aluminium core electrically insulated from the printed circuit of the board. The LED structure is mounted in a heat-transferring relationship with the aluminium core, so that this core can act as heat sink.
An object of the present invention is to improve this design in order to enhance the heat sinking properties.
In general, LEDs are bright, high-intensity, point-like light sources, which is not always desirable in illumination situations where a more diffuse light output would be more desirable. A further object of the present invention is therefore to improve the design of light-generating devices of the above type such as to provide a more diffuse and homogenous light output.
Further, LEDs are relatively vulnerable. The MCPCB on which a LED is mounted provides mechanical protection at the back of the LED, but the front side, where the light emanates, is not so protected. A further object of the present invention is therefore to improve the design of light-generating devices of the above type such as to provide a better mechanical protection of the LED.
Specifically, the present invention aims to attain the above objectives in one and the same device.
According to the present invention, a body of open-cell foam aluminium is arranged in front of the LED and attached to the MCPCB.
A first important effect is that the MCPCB will transfer heat to the foam aluminium. Air flowing in the foam will have a cooling effect. In view of the open cell structure, air can freely flow through the foam, and in view of the large surface area of the cells the transfer of heat from the foam to the air is very good. Thus, the foam aluminium contributes substantially to the heat sinking and cooling of the device.
A second important effect is that the foam aluminium will effectively cause the output light to be diffused and become more homogenous.
A third important effect is that the foam aluminium is rigid and provides a mechanical protection for the front side of the LED.
It is noted that British patent GB-1.311.409 discloses the use of a light-transmissive plastic foam to alter the appearance of a light source. A TL tube is placed in a mould, and plastic material is poured into the mould to become a foam. The foam makes the light from the lamp diffuse and homogenous. However, this foam also operates as a thermal insulator increasing the temperature of the lamp, so that the publication even suggests to add cooling means. The publication also mentions foam aluminium, but only as an optically dense material for blocking light transmission.
It is further noted that international patent publication WO 2005/106926 discloses a light-generating device comprising at least one light-emitting die on a MCPCB, which acts as a heat sink. Opposite the MCPCB, a light-transmissive glass dome extends over the dice, the dome being provided with a phosphor material on its inner surface. For the observer outside the dome, it appears that the dome is a source of diffuse light. However, the dome does not contribute to heat sinking.
It is further noted that international patent publication WO 2005/011350 discloses the use of a body of metal foam as a heat sink in a light-generating device comprising a light-emitting die mounted on a heat spreader. However, the body of metal foam is attached to the backside of the heat spreader, i.e. opposite the die, so it does not profit from the air freely flowing in front of the LED.
These and other aspects, features and advantages of the present invention will be further explained by the following description with reference to the drawings, in which same reference numerals indicate same or similar parts, and in which:
A screen-printed prepreg 3 is mounted onto a front surface 7 of an MCPCB 2. Since screen-printed prepregs and MCPCBs are known per se, while also methods for mounting a prepreg onto an MCPCB are known per se, while further the prior art methods for manufacturing prepregs and MCPCBs can be used in implementing the present invention, this will not be explained in more detail here. It suffices to say that the size of the prepreg 3 is smaller than the size of the MCPCB 2, and that the prepreg 3 is mounted on a central portion of the MCPCB 2, so that around the prepreg 3 an annular portion 9 of the front surface 7 of the MCPCB 2 remains free.
A high-power LED light source device 4 is mounted onto the prepreg 3. Since such LED devices are known per se, while also methods for mounting a LED onto a prepreg are known per se, while further the prior art LEDs and the prior art methods for mounting a LED onto a prepreg can be used in implementing the present invention, this will not be explained in more detail here.
A body 5 of open-cell metal foam has a chamber 6 recessed in its back surface 8. Since open-cell metal foam is known per se, while prior art metal foam can be used in implementing the present invention, it is not necessary here to explain metal foam in more detail. It is further noted that methods for machining metal foam such as to make a recessed chamber are also known per se, so this also does not need to be explained in more detail here.
The metal foam body 5 is placed on the MCPCB 2, so that its back surface 8 contacts the free annular portion 9 of the front surface 7 of the MCPCB 2, while the LED 4 is located in the chamber 6 of the foam body 5. The size of the chamber 6 is preferably chosen such that the LED does not contact the body 5.
Then, the metal foam body 5 is attached to the MCPCB 2, in such a way that a good thermal contact as well as a robust mechanical contact is achieved. Although attachment by gluing is not to be excluded, preferred processes are soldering, brazing, or welding. In order to facilitate these processes, it is preferred that the material of the metal foam is the same as the metal of the core of the PCB, the preferred material being aluminium.
In
In
The light-generating device 1 of
As regards mounting of the device 1 or 11, it is noted that the metal foam 5 has mechanical strength so it may be used as structural element in mounting the device 1 or 11. This is also illustrated in
In the particular embodiment of
In all cases, according to the present invention, the metal foam 5 contributes substantially to the heat sinking and cooling of the device 1 or 11, effectively causes the output light to be diffused and become more homogenous, and provides a mechanical protection for the front side of the LED or LEDs.
In an experimental setup, a metal foam body was used having a porosity of 40 ppi (pores per inch) and a density of about 7%. A satisfying result was obtained when the foam body had a thickness of 5 mm. It is noted that the qualification “satisfying” depends partly on the taste of the experimentator, and on the expected properties. If the foam body has larger pores or more pores per unit volume, the thickness should be increased to maintain the same result. Further, it should be clear that if the foam is very dense or very thick, the light output may be inadequate.
It should be clear to a person skilled in the art that the present invention is not limited to the exemplary embodiments discussed above, but that several variations and modifications are possible within the protective scope of the invention as defined in the appending claims.
Number | Date | Country | Kind |
---|---|---|---|
06115880.4 | Jun 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB07/52339 | 6/19/2007 | WO | 00 | 12/4/2008 |