1. Technical Field
The present disclosure relates to light guides and, particularly, to a light guide and an illumination device using the light guide.
2. Description of Related Art
Light guides which are a quarter of a cylinder in shape are used in illumination devices to allow the illumination devices to be compactly installed into an intersectional corner between two orthogonal surfaces, e.g., a corner between a sidewall and a ceiling. Such a light guide typically includes two orthogonal planar surfaces and a cylindrical surface connecting the planar surfaces. In use, a light source is placed in front of one of the planar surfaces (referred to as the incident surface) and illuminates the light guide, which directs light rays to emit out from the cylindrical surface (referred to as the emitting surface). One of the challenges of utilizing such a light guide in an illumination device is: light rays entering the light guide at a point far away from the planar surface without the light source (referred to as the connecting surface) may experience total internal reflection on the emitting surface and are either gathered to emit out from a zone of the emitting surface near the connecting surface or absorbed by the connecting surface, decreasing light uniformity of the emitting surface and light usage efficiency of the illumination device.
Therefore, it is desirable to provide a light guide and an illumination device having the same, which can overcome the above-mentioned problems.
Referring to
Also referring to
−0.58αi+59°<θi1<−0.54αi+65°; and
5°≦θi2<25°,
where the five grooves 310 are ordered from the connecting surface 230, θi1 is an acute included angle between the first surface 311 of the i-th order groove 310 and the connecting surface 230, θi2 is an acute included angle between the second surface 312 of the i-th order groove 310 and the connecting surface 230, and αi is an acute included angle between the emitting surface 220 and a plane passing through an intersection 313 between the first surface 311 and the second surface 312 of the i-th order groove 310 and parallel to the connecting surface 230.
The light guide 200 can be made from plastic such as polymethyl methacrylate (PMMA), polycarbonate (PC), or silicone. In other embodiments, the light guide 200 can be made from glass.
The light source 300 is placed in front of the incident surface 210, and is typically a Lambertian source such as a light emitting diode (LED) panel. Thereby, the light source 300 can emit parallel light rays to the incident surface 200. In other embodiments, the light source 300 can be a light tube.
To provide better understanding of the light guide 200, a detailed example of the light guide 200 is given below, but it should be noted that the light guide 200 is not limited by the example. Listed below are the symbols used in the detailed example:
Table shows values of the light guide 200 of the example.
By satisfying the Table, emergence angles of parallel light rays entering the i-th groove 310 and passing the light guide 200 are 7°, 2.5°, 2.5°, 2.5°, and 4°, which would be 5°, 10°, 17°, 30°, and 70° correspondingly if no grooves were defined in the incident surface 210. That is, light rays are guided to emit out from the emitting surface 220 in a more uniform manner.
To prove that light uniformity is improved by the light guide 200, light intensity distribution of the light guide 200 and the light guide discussed in the background were simulated. As illustrated in
While the disclosure has been described by way of example and in terms of preferred embodiment, it is to be understood that the disclosure is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
| Number | Date | Country | Kind |
|---|---|---|---|
| 200810305293.9 | Oct 2008 | CN | national |