The disclosure relates to a light guide-based deadfront article for a display, and more particularly to vehicle interior systems including a light guide-based deadfront article for a display and methods for forming the same.
In various applications involving displays, it is desirable to have a display surface or functional surface having a deadfront appearance. In general, a deadfront appearance is a way of hiding a display or functional surface such that there is a seamless transition between a display and a non-display area, or between the deadfronted area of an article and non-deadfronted area or other surface. For example, in a typical display having a glass or plastic cover surface, it is possible to see the edge of the display (or the transition from display area to non-display area) even when the display is turned off. However, it is often desirable from an aesthetic or design standpoint to have a deadfronted appearance such that, when the display is off, the display and non-display areas present as indistinguishable from each other and the cover surface presents a unified appearance. One application where a deadfront appearance is desirable is in automotive interiors, including in-vehicle displays or touch interfaces, as well as other applications in consumer mobile or home electronics, including mobile devices and home appliances. However, it is difficult to achieve both a good deadfront appearance and, when a display is on, a high-quality display.
One embodiment of the disclosure relates to a deadfront article for a display. The deadfront article includes a cover structure. The cover structure includes an inner surface, an outer surface opposite the inner surface, a glass layer located between the inner surface and the outer surface and a first layer of light transmitting ink or pigment located between the inner surface of the cover structure and the glass layer. The deadfront article includes a light guide layer that includes an inner surface and an outer surface facing toward the inner surface of the cover structure. The deadfront article includes a light extraction layer located on at least one of the inner surfaces and the outer surface of the light guide layer.
Another embodiment of the disclosure relates to a vehicle interior system. The vehicle interior system includes a cover glass layer, a glass light guide layer located below the cover glass layer and a light extraction layer located on a surface of the glass light guide layer. The light extraction layer forms a pattern corresponding to a display graphic. The vehicle interior system includes a first light source optically coupled to the glass light guide layer such that light from the first light source is carried within the glass light guide layer via total internal reflection. When the first light source is activated, the light within the glass light guide layer is extracted out by the light extraction layer in the shape of the display graphic which is visible through the cover glass layer.
Another embodiment of the disclosure relates to a method of forming a curved deadfront for a display. The method includes supporting a deadfront article on a support having a curved surface. The deadfront article includes a cover glass layer, a light guide layer located below the cover glass layer and a light extraction layer located on a surface of the light guide layer. The light extraction layer forms a pattern corresponding to a display graphic. The method includes applying a force to the deadfront article while supported by the support causing the deadfront article to bend such that the deadfront article conforms to the curved shape of the curved surface of the support. During application of the force, a maximum temperature of the deadfront article is less than a glass transition temperature of the cover glass layer.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.
Referring generally to the figures, vehicle interior systems may include a variety of different curved surfaces that are designed to be transparent, such as curved display surfaces, and the present disclosure provides articles and methods for forming these curved surfaces from a glass material. Forming curved vehicle surfaces from a glass material may provide a number of advantages compared to the typical curved plastic panels that are conventionally found in vehicle interiors. For example, glass is typically considered to provide enhanced functionality and user experience for many curved cover material applications, such as display applications and touch screen applications, compared to plastic cover materials.
Further, it is considered desirable in many applications to equip displays, and particularly displays for vehicle interior systems, with a deadfront structure. In general, a deadfront is a structure used in a display that blocks visibility of display components, icons, graphics, etc. when the display is off, but allows display components to be easily viewed when the display is on. In addition, a deadfront layer on a display or other glass vehicle system component can be used to match the color or pattern of the glass component to adjacent non-glass components to eliminate the visibility of transitions from the glass article to the non-glass article. For example, a display with a glass deadfront having a wood grain pattern or a leather pattern can be used to match the appearance of the display with surrounding wood or leather components of a vehicle interior system (e.g., a wood or leather dashboard) in which the display is mounted.
In specific embodiments, the present disclosure relates to the formation of a curved glass-based deadfront article for display utilizing a cold-forming or cold-bending process. As discussed herein, curved glass-based deadfront articles and processes for making the same are provided that avoid the deficiencies of the typical glass hot-forming process. For example, hot-forming processes are energy intensive and increase the cost of forming a curved glass component, relative to the cold-bending processes discussed herein. In addition, hot-forming processes typically make application of glass coating layers, such as deadfront ink or pigment layers, more difficult. For example, many ink or pigment materials cannot be applied to a flat piece of glass material prior to the hot-forming process because the ink or pigment materials typically will not survive the high temperatures of the hot-forming process. Further, application of an ink or pigment material to surfaces of a curved glass article after hot-bending is substantially more difficult then application to a flat glass article.
The embodiments of the deadfront articles described herein can be used in any or all of vehicle interior systems 100, 200 and 300. While
Referring to
As will be discussed in more detail below, deadfront article 400 provides this differential icon display by utilizing one or more colored layers located between an outer glass layer and a light source. The optical properties of the colored layer are designed such that when the light source is turned off the borders of the icons or other display structures beneath the colored layer are not visible, but when the light source is on, icons 410 are visible. In various embodiments, the deadfront articles discussed herein are designed to provide a high quality deadfront, including high contrast icons with the light source on, combined with high contrast deadfront appearance when the light is off. Further, Applicant provides these various deadfront articles in a manner suitable for cold forming to curved shapes, including complex curved shapes, as discussed below.
Referring to
Glass layer 514 is located between outer surface 510 and inner surface 512, and ink layer 516 is located between inner surface 512 and glass layer 514. In one embodiment, ink layer 516 is a single layer of light transmitting ink or pigment applied to glass layer 514 to provide the deadfront functionality discussed herein. In various embodiments, such as shown in
In various embodiments, first layer 518 is coupled to, attached to or bonded to an inner surface of glass layer 514, and may be applied via processes such as ink jet printing. First layer 518 may be formed from an ink material, a pigment material or any suitable layer that provides both light transmission and light blocking as discussed herein. In general, first layer 518 is a layer with differential light transmission properties that acts to block the visibility of aspects of the display below first layer 518 when a light source is inactive, but when the light source is active, first layer 518 provides sufficient light transmission to allow various display components, graphics, etc. to be viewed through first layer 518. In a specific embodiment, the transmission of the first layer 518 is between 5% and 30% for light having wavelengths of 400-700 nm.
In addition to blocking visibility of display components/icons while the display light source is inactive, a user viewing deadfront article 500 from outside of outer surface 510 is able to see first layer 518. Thus, first layer 518 may be formed to provide a desired pattern or appearance to the display incorporating deadfront article 500 while also eliminating the visibility of various display components while the light source is inactive. In various embodiments, first layer 518 is formed, colored, applied, etc. in a manner that provides a desired appearance to the display incorporating deadfront article 500. In various embodiments, first layer 518 provides one or more of the following appearances: a wood-grain design, a leather-grain design, a fabric design, a brushed metal design, a graphic design, and a logo. In other embodiments, first layer 518 may provide a solid colored appearance, such as a flat consistent black appearance.
Second layer 520 is located below first layer 518 and may be applied or printed onto the lower surface of first layer 518. In the embodiment shown, second layer 520 is an image enhancing layer of light transmitting ink or pigment located between the first layer 516 and light extraction layer 508. In a specific embodiment, layer 520 is formed from a white colored, light transmitting material that increases contrast of various portions of deadfront article 500, such as the graphics of the display (discussed below) or a pattern, design, logo, etc. provided by layer 518.
Deadfront article 500 is equipped with a glass light guide layer 504 and a light extraction layer 508 located on a surface of glass light guide layer 504. In general, in this arrangement glass light guide layer 504 and light extraction layer 508 act together to form graphics, shown as graphics 530, 532 and 534 in
In specific embodiments, glass light guide layer 504 is a sheet of glass material having inner and outer major surfaces, and in the embodiment shown in
In general, the light sources are optically coupled to glass light guide layer 504 such that light from the light source(s) is carried within glass light guide layer 504 via total internal reflection. Light extraction layer 508 acts to extract out light from the glass light guide layer 504 in the shape of the graphics 530, 532 and 534, and because of the light transmission characteristics of ink layer 516, the shape of the extracted light is visible through cover glass stack 502 from outside of the display. This arrangement allows the user to view graphics 530, 532 and 534, when the light source(s) are activated. When the light source(s) are inactive, ink layer 516 provides the blocking function discussed herein and blocks the visibility of light extraction layer 508.
As can be seen from this description, the function of deadfront article 500 to provide visibility of graphics 530, 532 and 534 when the light sources are activated and to block visibility of display components, such as light extraction pattern that forms graphics 530, 532, and 534, stems from a balance of the light transmission properties of the various layers and materials that make up deadfront article 500. In general, light extraction layer 508 is formed from an ink material having an opacity, and the opacity of this ink material is less than a threshold that is related to a transmissivity of light through the cover glass stack 502.
In specific embodiments, the transmissivity of light through cover glass stack 502 is greater than 90% and the opacity of the ink material of light extraction layer 508 is less than 10%. In other specific embodiments, the transmissivity of light through cover glass stack 502 is between 20% and 40% and the opacity of the ink material of light extraction layer 508 is less than 75%. In other specific embodiments, the transmissivity of light through cover glass stack 502 is about 90% and the opacity of the ink material of light extraction layer 508 is about 10%. In other specific embodiments, the transmissivity of light through cover glass stack 502 is about 30% and the opacity of the ink material of light extraction layer 508 is about 75%.
In specific embodiments, the ink material of light extraction layer 508 is a white ink material having an average thickness in a range of 0.05 μm to 500 μm. In some such embodiments, the light extraction patterns of light extraction layer 508 are made of a white ink that has a reflectance that is substantially the same as the reflectance of the reflector 506. In various embodiments, light extraction layer 508 may be visible or non-visible to the eye.
In various embodiments, light extraction layer 508 is formed from clear ink material having an opacity that is nearly 0%. In this embodiment, light extraction patterns are invisible when the backlight is off, and they are visible when the backlight is on. In another embodiment, light extraction layer 508 is located on the bottom or inner surface of light guide layer 504 and light confining features are located on the top surface of light guide layer 504. In this embodiment, a first section of the graphics can be made visible in one color and a second section of the graphics can be made visible in a different color.
Suitable light extraction features can include a roughed surface on the glass sheet, produced either by roughening a surface of the glass sheet directly, or by coating the sheet with a suitable coating, for example a diffusion film. Light extraction features in some embodiments can be obtained, for example, by printing reflective (e.g., white dots) with a suitable ink, such as a UV-curable ink and drying and/or curing the ink. In some embodiments, combinations of the foregoing extraction features may be used.
In some embodiments, cover glass structure 502 has a light transmittance level less than 50%. In such embodiments, when a light source of the display is inactive, ink layer 516 is visible from outside of cover glass structure 502 and also blocks the visibility of the light extraction layer 508 from outside of cover glass structure 502. In a specific embodiment, a total level of light transmission through all layers of the cover glass stack 502 is between 5%-10% for light having wavelengths from 400 nm to 700 nm.
As shown best in
Referring to
By utilizing the glass light guide based as a light source for generating graphics 530, 532 and 534 as discussed above, Applicant believes that display 550 may provide a variety of advantages. In one exemplary embodiment (as shown best in
In some embodiments, the width and length dimensions of glass light guide layer 504 are substantially the same as the width and length dimensions of cover glass layer 514 such that glass light guide layer 504 provides a single light guide structure coextensive with the entire width and length of deadfront article 500. In other embodiments, glass light guide layer 504 has a width and/or length dimension that is less than the corresponding dimension of cover glass layer 514. In such embodiments, the glass light guide layer 504 may illuminate a sub-region of deadfront article 500.
In some such specific embodiments, deadfront article 500 may include multiple glass light guide layers 504 each illuminating a different spatially distinct region of deadfront article 500, represented by the different dashed line sections in
It should be understood that the glass materials or layers of deadfront article 500, such as glass layer 514 and glass light guide layer 504 may be formed from any of the glass materials discussed herein. Further, deadfront article 500 may be shaped to a curved shape via any of the shaping processes discussed herein. In various embodiments, cover structure 502 may include a functional surface layer 580, which may include at least one of a glare reduction coating, an anti-glare coating, a scratch resistance coating, an anti-reflection coating, a half-mirror coating, or easy-to-clean coating. Display 550 may also be equipped with touch sensor functionality.
Light Guide Deadfront Examples
A light guide plate was formed from Corning's trademarked Willow glass with a thickness of 200 μm. Light extraction patterns, corresponding to the desired graphics, were printed on the light guide plate with UVink LH-100 White ink available from Mimaki Global, using the Mimaki UJF7151 plus printer. The white ink was about 0.050 μm thick. Different levels of the opacity of the white ink were used.
When the opacity of the white ink was higher than a threshold, the light extraction patterns were visible even when the backlight was off. When the opacity of the white ink was lower than a threshold, the light extraction patterns were invisible when the backlight was off. The threshold of the acceptable opacity varies with the transmission of the cover stack 502. When the transmission of cover stack 502 was near 90%, the threshold of the acceptable opacity of the white ink of light extraction layer 508 was about 10%. When the transmission of cover stack 502 was about 30%, the threshold of the acceptable opacity of the white ink of light extraction layer 508 was about 75%. Further, when the white ink of light extraction layer 508 has opacity greater than the threshold, and the reflectance of the reflector 506 is substantially the same as the reflectance of the white ink of light extraction layer 508, the light extraction patterns are invisible when the backlight is off, and the light extraction patterns are visible when the backlight is on.
Curved Glass Deadfront and Cold-Forming
Referring to
As shown in
Curved deadfront article 2000 includes a deadfront colored layer 2020 (e.g., the ink/pigment layer(s), as discussed above) located along an inner, major surface of curved outer glass layer 2010. In general, deadfront colored layer 2020 is printed, colored, shaped, etc. to provide a wood-grain design, a leather-grain design, a fabric design, a brushed metal design, a graphic design, a solid color and/or a logo. Curved deadfront article 2000 also may include any of the additional layers 2030 (e.g., high optical density layers, light guide layers, reflector layers, display module(s), display stack layers, light sources, etc.) as discussed above or that otherwise may be associated with a display or vehicle interior system as discussed herein.
As will be discussed in more detail below, in various embodiments, curved deadfront article 2000 including glass layer 2010 and colored layer 2020 may be cold-formed together to a curved shape, as shown in
Referring to
As shown in
In one or more embodiments, outer glass layer 2010 has a thickness (t) that is in a range from 0.05 mm to 2 mm. In various embodiments, outer glass layer 2010 has a thickness (t) that is about 1.5 mm or less. For example, the thickness may be in a range from about 0.1 mm to about 1.5 mm, from about 0.15 mm to about 1.5 mm, from about 0.2 mm to about 1.5 mm, from about 0.25 mm to about 1.5 mm, from about 0.3 mm to about 1.5 mm, from about 0.35 mm to about 1.5 mm, from about 0.4 mm to about 1.5 mm, from about 0.45 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, from about 0.55 mm to about 1.5 mm, from about 0.6 mm to about 1.5 mm, from about 0.65 mm to about 1.5 mm, from about 0.7 mm to about 1.5 mm, from about 0.1 mm to about 1.4 mm, from about 0.1 mm to about 1.3 mm, from about 0.1 mm to about 1.2 mm, from about 0.1 mm to about 1.1 mm, from about 0.1 mm to about 1.05 mm, from about 0.1 mm to about 1 mm, from about 0.1 mm to about 0.95 mm, from about 0.1 mm to about 0.9 mm, from about 0.1 mm to about 0.85 mm, from about 0.1 mm to about 0.8 mm, from about 0.1 mm to about 0.75 mm, from about 0.1 mm to about 0.7 mm, from about 0.1 mm to about 0.65 mm, from about 0.1 mm to about 0.6 mm, from about 0.1 mm to about 0.55 mm, from about 0.1 mm to about 0.5 mm, from about 0.1 mm to about 0.4 mm, or from about 0.3 mm to about 0.7 mm.
In one or more embodiments, outer glass layer 2010 has a width (W) in a range from about 5 cm to about 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm.
In one or more embodiments, outer glass layer 2010 has a length (L) in a range from about 5 cm to about 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm.
As shown in
In specific embodiments, outer glass layer 2010 is shaped to the curved shape shown in
In some such embodiments in which outer glass layer 2010 is unstrengthened, the first major surface 2050 and the second major surface 2060 exhibit no appreciable compressive stress, prior to cold-forming. In some such embodiments in which outer glass layer 2010 is strengthened (as described herein), the first major surface 2050 and the second major surface 2060 exhibit substantially equal compressive stress with respect to one another, prior to cold-forming. In one or more embodiments, after cold-forming (shown, for example, in
Without being bound by theory, the cold-forming process increases the compressive stress of the glass article being shaped to compensate for tensile stresses imparted during bending and/or forming operations. In one or more embodiments, the cold-forming process causes the second major surface 2060 to experience compressive stresses, while the first major surface 2050 (e.g., the convex surface following bending) experiences tensile stresses. The tensile stress experienced by surface 2050 following bending results in a net decrease in surface compressive stress, such that the compressive stress in surface 2050 of a strengthened glass sheet following bending is less than the compressive stress in surface 2050 when the glass sheet is flat.
Further, when a strengthened glass sheet is utilized for outer glass layer 2010, the first major surface and the second major surface (2050, 2060) are already under compressive stress, and thus first major surface 2050 can experience greater tensile stress during bending without risking fracture. This allows for the strengthened embodiments of outer glass layer 2010 to conform to more tightly curved surfaces (e.g., shaped to have smaller R1 values).
In various embodiments, the thickness of outer glass layer 2010 is tailored to allow outer glass layer 2010 to be more flexible to achieve the desired radius of curvature. Moreover, a thinner outer glass layer 2010 may deform more readily, which could potentially compensate for shape mismatches and gaps that may be created by the shape of a support or frame (as discussed below). In one or more embodiments, a thin and strengthened outer glass layer 2010 exhibits greater flexibility especially during cold-forming. The greater flexibility of the glass articles discussed herein may allow for consistent bend formation without heating.
In various embodiments, outer glass layer 2010 (and consequently deadfront 2000) may have a compound curve including a major radius and a cross curvature. A complexly curved cold-formed outer glass layer 2010 may have a distinct radius of curvature in two independent directions. According to one or more embodiments, the complexly curved cold-formed outer glass layer 2010 may thus be characterized as having “cross curvature,” where the cold-formed outer glass layer 2010 is curved along an axis (i.e., a first axis) that is parallel to a given dimension and also curved along an axis (i.e., a second axis) that is perpendicular to the same dimension. The curvature of the cold-formed outer glass layer 2010 can be even more complex when a significant minimum radius is combined with a significant cross curvature, and/or depth of bend.
Referring to
In various embodiments, the systems and methods described herein allow for formation of deadfront structure 2000 to conform to a wide variety of curved shapes that frame 2110 may have. As shown in
In one or more embodiments, deadfront structure 2000 (and specifically outer glass layer 2010) is shaped to have a first radius of curvature, R1, of about 60 mm or greater. For example, R1 may be in a range from about 60 mm to about 1500 mm, from about 70 mm to about 1500 mm, from about 80 mm to about 1500 mm, from about 90 mm to about 1500 mm, from about 100 mm to about 1500 mm, from about 120 mm to about 1500 mm, from about 140 mm to about 1500 mm, from about 150 mm to about 1500 mm, from about 160 mm to about 1500 mm, from about 180 mm to about 1500 mm, from about 200 mm to about 1500 mm, from about 220 mm to about 1500 mm, from about 240 mm to about 1500 mm, from about 250 mm to about 1500 mm, from about 260 mm to about 1500 mm, from about 270 mm to about 1500 mm, from about 280 mm to about 1500 mm, from about 290 mm to about 1500 mm, from about 300 mm to about 1500 mm, from about 350 mm to about 1500 mm, from about 400 mm to about 1500 mm, from about 450 mm to about 1500 mm, from about 500 mm to about 1500 mm, from about 550 mm to about 1500 mm, from about 600 mm to about 1500 mm, from about 650 mm to about 1500 mm, from about 700 mm to about 1500 mm, from about 750 mm to about 1500 mm, from about 800 mm to about 1500 mm, from about 900 mm to about 1500 mm, from about 9500 mm to about 1500 mm, from about 1000 mm to about 1500 mm, from about 1250 mm to about 1500 mm, from about 60 mm to about 1400 mm, from about 60 mm to about 1300 mm, from about 60 mm to about 1200 mm, from about 60 mm to about 1100 mm, from about 60 mm to about 1000 mm, from about 60 mm to about 950 mm, from about 60 mm to about 900 mm, from about 60 mm to about 850 mm, from about 60 mm to about 800 mm, from about 60 mm to about 750 mm, from about 60 mm to about 700 mm, from about 60 mm to about 650 mm, from about 60 mm to about 600 mm, from about 60 mm to about 550 mm, from about 60 mm to about 500 mm, from about 60 mm to about 450 mm, from about 60 mm to about 400 mm, from about 60 mm to about 350 mm, from about 60 mm to about 300 mm, or from about 60 mm to about 250 mm.
In one or more embodiments, support surface 2130 has a second radius of curvature of about 60 mm or greater. For example, the second radius of curvature of support surface 2130 may be in a range from about 60 mm to about 1500 mm, from about 70 mm to about 1500 mm, from about 80 mm to about 1500 mm, from about 90 mm to about 1500 mm, from about 100 mm to about 1500 mm, from about 120 mm to about 1500 mm, from about 140 mm to about 1500 mm, from about 150 mm to about 1500 mm, from about 160 mm to about 1500 mm, from about 180 mm to about 1500 mm, from about 200 mm to about 1500 mm, from about 220 mm to about 1500 mm, from about 240 mm to about 1500 mm, from about 250 mm to about 1500 mm, from about 260 mm to about 1500 mm, from about 270 mm to about 1500 mm, from about 280 mm to about 1500 mm, from about 290 mm to about 1500 mm, from about 300 mm to about 1500 mm, from about 350 mm to about 1500 mm, from about 400 mm to about 1500 mm, from about 450 mm to about 1500 mm, from about 500 mm to about 1500 mm, from about 550 mm to about 1500 mm, from about 600 mm to about 1500 mm, from about 650 mm to about 1500 mm, from about 700 mm to about 1500 mm, from about 750 mm to about 1500 mm, from about 800 mm to about 1500 mm, from about 900 mm to about 1500 mm, from about 9500 mm to about 1500 mm, from about 1000 mm to about 1500 mm, from about 1250 mm to about 1500 mm, from about 60 mm to about 1400 mm, from about 60 mm to about 1300 mm, from about 60 mm to about 1200 mm, from about 60 mm to about 1100 mm, from about 60 mm to about 1000 mm, from about 60 mm to about 950 mm, from about 60 mm to about 900 mm, from about 60 mm to about 850 mm, from about 60 mm to about 800 mm, from about 60 mm to about 750 mm, from about 60 mm to about 700 mm, from about 60 mm to about 650 mm, from about 60 mm to about 600 mm, from about 60 mm to about 550 mm, from about 60 mm to about 500 mm, from about 60 mm to about 450 mm, from about 60 mm to about 400 mm, from about 60 mm to about 350 mm, from about 60 mm to about 300 mm, or from about 60 mm to about 250 mm.
In one or more embodiments, deadfront structure 2000 is cold-formed to exhibit a first radius curvature, R1, that is within 10% (e.g., about 10% or less, about 9% or less, about 8% or less, about 7% or less, about 6% or less, or about 5% or less) of the second radius of curvature of support surface 2130 of frame 2110. For example, support surface 2130 of frame 2110 exhibits a radius of curvature of 1000 mm, deadfront structure 2000 is cold-formed to have a radius of curvature in a range from about 900 mm to about 1100 mm.
In one or more embodiments, first major surface 2050 and/or second major surface 2060 of glass layer 2010 includes a surface treatment or a functional coating. The surface treatment may cover at least a portion of first major surface 2050 and/or second major surface 2060. Exemplary surface treatments include at least one of a glare reduction coating, an anti-glare coating, a scratch resistance coating, an anti-reflection coating, a half-mirror coating, or easy-to-clean coating.
Referring to
At step 2220, a force is applied to the deadfront structure while it is supported by the support causing the deadfront structure to bend into conformity with the curved shape of the support. In this manner, a curved deadfront structure 2000, as shown in
In some embodiments, the force applied in step 2220 may be air pressure applied via a vacuum fixture. In some other embodiments, the air pressure differential is formed by applying a vacuum to an airtight enclosure surrounding the frame and the deadfront structure. In specific embodiments, the airtight enclosure is a flexible polymer shell, such as a plastic bag or pouch. In other embodiments, the air pressure differential is formed by generating increased air pressure around the deadfront structure and the frame with an overpressure device, such as an autoclave. Applicant has further found that air pressure provides a consistent and highly uniform bending force (as compared to a contact-based bending method) which further leads to a robust manufacturing process. In various embodiments, the air pressure differential is between 0.5 and 1.5 atmospheres of pressure (atm), specifically between 0.7 and 1.1 atm, and more specifically is 0.8 to 1 atm.
At step 2230, the temperature of the deadfront structure is maintained below the glass transition temperature of the material of the outer glass layer during the bending. As such, method 2200 is a cold-forming or cold-bending process. In particular embodiments, the temperature of the deadfront structure is maintained below 500 degrees C., 400 degrees C., 300 degrees C., 200 degrees C. or 100 degrees C. In a particular embodiment, the deadfront structure is maintained at or below room temperature during bending. In a particular embodiment, the deadfront structure is not actively heated via a heating element, furnace, oven, etc. during bending, as is the case when hot-forming glass to a curved shape.
As noted above, in addition to providing processing advantages such as eliminating expensive and/or slow heating steps, the cold-forming processes discussed herein are believed to generate curved deadfront structures with a variety of properties that are believed to be superior to those achievable via hot-forming processes. For example, Applicant believes that, for at least some glass materials, heating during hot-forming processes decreases optical properties of curved glass sheets, and thus, the curved glass based deadfront articles formed utilizing the cold-bending processes/systems discussed herein provide for both curved glass shape along with improved optical qualities not believed achievable with hot-bending processes.
Further, many glass coating materials (e.g., anti-glare coatings, anti-reflective coatings, etc.) are applied via deposition processes, such as sputtering processes, that are typically ill-suited for coating on to a curved surface. In addition, many coating materials, such as the deadfront ink/pigment materials, also are not able to survive the high temperatures associated with hot-bending processes. Thus, in particular embodiments discussed herein, layer 2020 is applied to outer glass layer 2010 prior to cold-bending. Thus, Applicant believes that the processes and systems discussed herein allow for bending of glass after one or more coating material has been applied to the glass, in contrast to typical hot-forming processes.
At step 2240, the curved deadfront structure is attached or affixed to the curved support. In various embodiments, the attachment between the curved deadfront structure and the curved support may be accomplished via an adhesive material. Such adhesives may include any suitable optically clear adhesive for bonding the deadfront structure in place relative to the display assembly (e.g., to the frame of the display). In one example, the adhesive may include an optically clear adhesive available from 3M Corporation under the trade name 8215. The thickness of the adhesive may be in a range from about 200 μm to about 500 μm.
The adhesive material may be applied in a variety ways. In one embodiment, the adhesive is applied using an applicator gun and made uniform using a roller or a draw down die. In various embodiments, the adhesives discussed herein are structural adhesives. In particular embodiments, the structural adhesives may include an adhesive selected from one or more of the categories: (a) Toughened Epoxy (Masterbond EP21TDCHT-LO, 3M Scotch Weld Epoxy DP460 Off-white); (b) Flexible Epoxy (Masterbond EP21TDC-2LO, 3M Scotch Weld Epoxy 2216 B/A Gray); (c) Acrylic (LORD Adhesive 410/Accelerator 19 w/LORD AP 134 primer, LORD Adhesive 852/LORD Accelerator 25 GB, Loctite HF8000, Loctite AA4800); (d) Urethanes (3M Scotch Weld Urethane DP640 Brown); and (e) Silicones (Dow Corning 995). In some cases, structural glues available in sheet format (such as B-staged epoxy adhesives) may be utilized. Furthermore, pressure sensitive structural adhesives such as 3M VHB tapes may be utilized. In such embodiments, utilizing a pressure sensitive adhesive allows for the curved deadfront structure to be bonded to the frame without the need for a curing step.
In one or more embodiments, the method includes disposing or assembling the curved display in a vehicle interior system 100, 200, 300.
Referring to
Glass Materials
The various glass layer(s) of the deadfront structures discussed herein, such as outer glass layer 2010, may be formed from any suitable glass composition including soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass.
Unless otherwise specified, the glass compositions disclosed herein are described in mole percent (mol %) as analyzed on an oxide basis.
In one or more embodiments, the glass composition may include SiO2 in an amount in a range from about 66 mol % to about 80 mol %, from about 67 mol % to about 80 mol %, from about 68 mol % to about 80 mol %, from about 69 mol % to about 80 mol %, from about 70 mol % to about 80 mol %, from about 72 mol % to about 80 mol %, from about 65 mol % to about 78 mol %, from about 65 mol % to about 76 mol %, from about 65 mol % to about 75 mol %, from about 65 mol % to about 74 mol %, from about 65 mol % to about 72 mol %, or from about 65 mol % to about 70 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition includes Al2O3 in an amount greater than about 4 mol %, or greater than about 5 mol %. In one or more embodiments, the glass composition includes Al2O3 in a range from greater than about 7 mol % to about 15 mol %, from greater than about 7 mol % to about 14 mol %, from about 7 mol % to about 13 mol %, from about 4 mol % to about 12 mol %, from about 7 mol % to about 11 mol %, from about 8 mol % to about 15 mol %, from 9 mol % to about 15 mol %, from about 9 mol % to about 15 mol %, from about 10 mol % to about 15 mol %, from about 11 mol % to about 15 mol %, or from about 12 mol % to about 15 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the upper limit of Al2O3 may be about 14 mol %, 14.2 mol %, 14.4 mol %, 14.6 mol %, or 14.8 mol %.
In one or more embodiments, glass layer(s) herein are described as an aluminosilicate glass article or including an aluminosilicate glass composition. In such embodiments, the glass composition or article formed therefrom includes SiO2 and Al2O3 and is not a soda lime silicate glass. In this regard, the glass composition or article formed therefrom includes Al2O3 in an amount of about 2 mol % or greater, 2.25 mol % or greater, 2.5 mol % or greater, about 2.75 mol % or greater, about 3 mol % or greater.
In one or more embodiments, the glass composition comprises B2O3, about 1 mol % or greater). In one or more embodiments, the glass composition comprises B2O3 in an amount in a range from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 0.1 mol % to about 3 mol %, from about 0.1 mol % to about 2 mol %, from about 0.1 mol % to about 1 mol %, from about 0.1 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition is substantially free of B2O3.
As used herein, the phrase “substantially free” with respect to the components of the composition means that the component is not actively or intentionally added to the composition during initial batching, but may be present as an impurity in an amount less than about 0.001 mol %.
In one or more embodiments, the glass composition optionally comprises P2O5 (e.g., about 0.01 mol % or greater). In one or more embodiments, the glass composition comprises a non-zero amount of P2O5 up to and including 2 mol %, 1.5 mol %, 1 mol %, or 0.5 mol %. In one or more embodiments, the glass composition is substantially free of P2O5.
In one or more embodiments, the glass composition may include a total amount of R2O (which is the total amount of alkali metal oxide such as Li2O, Na2O, K2O, Rb2O, and Cs2O) that is greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In some embodiments, the glass composition includes a total amount of R2O in a range from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 13 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of Rb2O, Cs2O or both Rb2O and Cs2O. In one or more embodiments, the R2O may include the total amount of Li2O, Na2O and K2O only. In one or more embodiments, the glass composition may comprise at least one alkali metal oxide selected from Li2O, Na2O and K2O, wherein the alkali metal oxide is present in an amount greater than about 8 mol % or greater.
In one or more embodiments, the glass composition comprises Na2O in an amount greater than or equal to about 8 mol %, greater than or equal to about 10 mol %, or greater than or equal to about 12 mol %. In one or more embodiments, the composition includes Na2O in a range from about from about 8 mol % to about 20 mol %, from about 8 mol % to about 18 mol %, from about 8 mol % to about 16 mol %, from about 8 mol % to about 14 mol %, from about 8 mol % to about 12 mol %, from about 9 mol % to about 20 mol %, from about 10 mol % to about 20 mol %, from about 11 mol % to about 20 mol %, from about 12 mol % to about 20 mol %, from about 13 mol % to about 20 mol %, from about 10 mol % to about 14 mol %, or from 11 mol % to about 16 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition includes less than about 4 mol % K2O, less than about 3 mol % K2O, or less than about 1 mol % K2O. In some instances, the glass composition may include K2O in an amount in a range from about 0 mol % to about 4 mol %, from about 0 mol % to about 3.5 mol %, from about 0 mol % to about 3 mol %, from about 0 mol % to about 2.5 mol %, from about 0 mol % to about 2 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.5 mol %, from about 0 mol % to about 0.2 mol %, from about 0 mol % to about 0.1 mol %, from about 0.5 mol % to about 4 mol %, from about 0.5 mol % to about 3.5 mol %, from about 0.5 mol % to about 3 mol %, from about 0.5 mol % to about 2.5 mol %, from about 0.5 mol % to about 2 mol %, from about 0.5 mol % to about 1.5 mol %, or from about 0.5 mol % to about 1 mol %, and all ranges and sub-ranges therebetween. In one or more embodiments, the glass composition may be substantially free of K2O.
In one or more embodiments, the glass composition is substantially free of Li2O.
In one or more embodiments, the amount of Na2O in the composition may be greater than the amount of Li2O. In some instances, the amount of Na2O may be greater than the combined amount of Li2O and K2O. In one or more alternative embodiments, the amount of Li2O in the composition may be greater than the amount of Na2O or the combined amount of Na2O and K2O.
In one or more embodiments, the glass composition may include a total amount of RO (which is the total amount of alkaline earth metal oxide such as CaO, MgO, BaO, ZnO and SrO) in a range from about 0 mol % to about 2 mol %. In some embodiments, the glass composition includes a non-zero amount of RO up to about 2 mol %. In one or more embodiments, the glass composition comprises RO in an amount from about 0 mol % to about 1.8 mol %, from about 0 mol % to about 1.6 mol %, from about 0 mol % to about 1.5 mol %, from about 0 mol % to about 1.4 mol %, from about 0 mol % to about 1.2 mol %, from about 0 mol % to about 1 mol %, from about 0 mol % to about 0.8 mol %, from about 0 mol % to about 0.5 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition includes CaO in an amount less than about 1 mol %, less than about 0.8 mol %, or less than about 0.5 mol %. In one or more embodiments, the glass composition is substantially free of CaO.
In some embodiments, the glass composition comprises MgO in an amount from about 0 mol % to about 7 mol %, from about 0 mol % to about 6 mol %, from about 0 mol % to about 5 mol %, from about 0 mol % to about 4 mol %, from about 0.1 mol % to about 7 mol %, from about 0.1 mol % to about 6 mol %, from about 0.1 mol % to about 5 mol %, from about 0.1 mol % to about 4 mol %, from about 1 mol % to about 7 mol %, from about 2 mol % to about 6 mol %, or from about 3 mol % to about 6 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition comprises ZrO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises ZrO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition comprises SnO2 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises SnO2 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.
In one or more embodiments, the glass composition may include an oxide that imparts a color or tint to the glass articles. In some embodiments, the glass composition includes an oxide that prevents discoloration of the glass article when the glass article is exposed to ultraviolet radiation. Examples of such oxides include, without limitation oxides of: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ce, W, and Mo.
In one or more embodiments, the glass composition includes Fe expressed as Fe2O3, wherein Fe is present in an amount up to (and including) about 1 mol %. In some embodiments, the glass composition is substantially free of Fe. In one or more embodiments, the glass composition comprises Fe2O3 in an amount equal to or less than about 0.2 mol %, less than about 0.18 mol %, less than about 0.16 mol %, less than about 0.15 mol %, less than about 0.14 mol %, less than about 0.12 mol %. In one or more embodiments, the glass composition comprises Fe2O3 in a range from about 0.01 mol % to about 0.2 mol %, from about 0.01 mol % to about 0.18 mol %, from about 0.01 mol % to about 0.16 mol %, from about 0.01 mol % to about 0.15 mol %, from about 0.01 mol % to about 0.14 mol %, from about 0.01 mol % to about 0.12 mol %, or from about 0.01 mol % to about 0.10 mol %, and all ranges and sub-ranges therebetween.
Where the glass composition includes TiO2, TiO2 may be present in an amount of about 5 mol % or less, about 2.5 mol % or less, about 2 mol % or less or about 1 mol % or less. In one or more embodiments, the glass composition may be substantially free of TiO2.
An exemplary glass composition includes SiO2 in an amount in a range from about 65 mol % to about 75 mol %, Al2O3 in an amount in a range from about 8 mol % to about 14 mol %, Na2O in an amount in a range from about 12 mol % to about 17 mol %, K2O in an amount in a range of about 0 mol % to about 0.2 mol %, and MgO in an amount in a range from about 1.5 mol % to about 6 mol %. Optionally, SnO2 may be included in the amounts otherwise disclosed herein.
Strengthened Glass Properties
In one or more embodiments, outer glass layer 2010 or other glass layer of any of the deadfront article embodiments discussed herein may be formed from a strengthened glass sheet or article. In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures discussed herein may be strengthened to include compressive stress that extends from a surface to a depth of compression (DOC). The compressive stress regions are balanced by a central portion exhibiting a tensile stress. At the DOC, the stress crosses from a positive (compressive) stress to a negative (tensile) stress.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures discussed herein may be strengthened mechanically by utilizing a mismatch of the coefficient of thermal expansion between portions of the glass to create a compressive stress region and a central region exhibiting a tensile stress. In some embodiments, the glass article may be strengthened thermally by heating the glass to a temperature above the glass transition point and then rapidly quenching.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures discussed herein may be chemically strengthening by ion exchange. In the ion exchange process, ions at or near the surface of the glass article are replaced by—or exchanged with—larger ions having the same valence or oxidation state. In those embodiments in which the glass article comprises an alkali aluminosilicate glass, ions in the surface layer of the article and the larger ions are monovalent alkali metal cations, such as Li+, Na+, K+, Rb+, and Cs+. Alternatively, monovalent cations in the surface layer may be replaced with monovalent cations other than alkali metal cations, such as Ag+ or the like. In such embodiments, the monovalent ions (or cations) exchanged into the glass article generate a stress.
Ion exchange processes are typically carried out by immersing a glass article in a molten salt bath (or two or more molten salt baths) containing the larger ions to be exchanged with the smaller ions in the glass article. It should be noted that aqueous salt baths may also be utilized. In addition, the composition of the bath(s) may include more than one type of larger ion (e.g., Na+ and K+) or a single larger ion. It will be appreciated by those skilled in the art that parameters for the ion exchange process, including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the glass article in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the glass layer(s) of a deadfront structure (including the structure of the article and any crystalline phases present) and the desired DOC and CS of the glass layer(s) of a deadfront structure that results from strengthening.
Exemplary molten bath composition may include nitrates, sulfates, and chlorides of the larger alkali metal ion. Typical nitrates include KNO3, NaNO3, LiNO3, NaSO4 and combinations thereof. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 100 hours depending on the glass thickness, bath temperature and glass (or monovalent ion) diffusivity. However, temperatures and immersion times different from those described above may also be used.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures may be immersed in a molten salt bath of 100% NaNO3, 100% KNO3, or a combination of NaNO3 and KNO3 having a temperature from about 370° C. to about 480° C. In some embodiments, the glass layer(s) of a deadfront structure may be immersed in a molten mixed salt bath including from about 5% to about 90% KNO3 and from about 10% to about 95% NaNO3. In one or more embodiments, the glass article may be immersed in a second bath, after immersion in a first bath. The first and second baths may have different compositions and/or temperatures from one another. The immersion times in the first and second baths may vary. For example, immersion in the first bath may be longer than the immersion in the second bath.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures may be immersed in a molten, mixed salt bath including NaNO3 and KNO3 (e.g., 49%/51%, 50%/50%, 51%/49%) having a temperature less than about 420° C. (e.g., about 400° C. or about 380° C.). for less than about 5 hours, or even about 4 hours or less.
Ion exchange conditions can be tailored to provide a “spike” or to increase the slope of the stress profile at or near the surface of the resulting glass layer(s) of a deadfront structure. The spike may result in a greater surface CS value. This spike can be achieved by single bath or multiple baths, with the bath(s) having a single composition or mixed composition, due to the unique properties of the glass compositions used in the glass layer(s) of a deadfront structure described herein.
In one or more embodiments, where more than one monovalent ion is exchanged into the glass articles used to form the layer(s) of the deadfront structures, the different monovalent ions may exchange to different depths within the glass layer (and generate different magnitudes stresses within the glass article at different depths). The resulting relative depths of the stress-generating ions can be determined and cause different characteristics of the stress profile.
CS is measured using those means known in the art, such as by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Orihara Industrial Co., Ltd. (Japan). Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2013), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. As used herein CS may be the “maximum compressive stress” which is the highest compressive stress value measured within the compressive stress layer. In some embodiments, the maximum compressive stress is located at the surface of the glass article. In other embodiments, the maximum compressive stress may occur at a depth below the surface, giving the compressive profile the appearance of a “buried peak.”
DOC may be measured by FSM or by a scattered light polariscope (SCALP) (such as the SCALP-04 scattered light polariscope available from Glasstress Ltd., located in Tallinn Estonia), depending on the strengthening method and conditions. When the glass article is chemically strengthened by an ion exchange treatment, FSM or SCALP may be used depending on which ion is exchanged into the glass article. Where the stress in the glass article is generated by exchanging potassium ions into the glass article, FSM is used to measure DOC. Where the stress is generated by exchanging sodium ions into the glass article, SCALP is used to measure DOC. Where the stress in the glass article is generated by exchanging both potassium and sodium ions into the glass, the DOC is measured by SCALP, since it is believed the exchange depth of sodium indicates the DOC and the exchange depth of potassium ions indicates a change in the magnitude of the compressive stress (but not the change in stress from compressive to tensile); the exchange depth of potassium ions in such glass articles is measured by FSM. Central tension or CT is the maximum tensile stress and is measured by SCALP.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures maybe strengthened to exhibit a DOC that is described a fraction of the thickness t of the glass article (as described herein). For example, in one or more embodiments, the DOC may be equal to or greater than about 0.05 t, equal to or greater than about 0.1 t, equal to or greater than about 0.11 t, equal to or greater than about 0.12 t, equal to or greater than about 0.13 t, equal to or greater than about 0.14 t, equal to or greater than about 0.15 t, equal to or greater than about 0.16 t, equal to or greater than about 0.17 t, equal to or greater than about 0.18 t, equal to or greater than about 0.19 t, equal to or greater than about 0.2 t, equal to or greater than about 0.21 t. In some embodiments, The DOC may be in a range from about 0.08 t to about 0.25 t, from about 0.09 t to about 0.25 t, from about 0.18 t to about 0.25 t, from about 0.11 t to about 0.25 t, from about 0.12 t to about 0.25 t, from about 0.13 t to about 0.25 t, from about 0.14 t to about 0.25 t, from about 0.15 t to about 0.25 t, from about 0.08 t to about 0.24 t, from about 0.08 t to about 0.23 t, from about 0.08 t to about 0.22 t, from about 0.08 t to about 0.21 t, from about 0.08 t to about 0.2 t, from about 0.08 t to about 0.19 t, from about 0.08 t to about 0.18 t, from about 0.08 t to about 0.17 t, from about 0.08 t to about 0.16 t, or from about 0.08 t to about 0.15 t. In some instances, the DOC may be about 20 μm or less. In one or more embodiments, the DOC may be about 40 μm or greater (e.g., from about 40 μm to about 300 μm, from about 50 μm to about 300 μm, from about 60 μm to about 300 μm, from about 70 μm to about 300 μm, from about 80 μm to about 300 μm, from about 90 μm to about 300 μm, from about 100 μm to about 300 μm, from about 110 μm to about 300 μm, from about 120 μm to about 300 μm, from about 140 μm to about 300 μm, from about 150 μm to about 300 μm, from about 40 μm to about 290 μm, from about 40 μm to about 280 μm, from about 40 μm to about 260 μm, from about 40 μm to about 250 μm, from about 40 μm to about 240 μm, from about 40 μm to about 230 μm, from about 40 μm to about 220 μm, from about 40 μm to about 210 μm, from about 40 μm to about 200 μm, from about 40 μm to about 180 μm, from about 40 μm to about 160 μm, from about 40 μm to about 150 μm, from about 40 μm to about 140 μm, from about 40 μm to about 130 μm, from about 40 μm to about 120 μm, from about 40 μm to about 110 μm, or from about 40 μm to about 100 μm.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures may have a CS (which may be found at the surface or a depth within the glass article) of about 200 MPa or greater, 300 MPa or greater, 400 MPa or greater, about 500 MPa or greater, about 600 MPa or greater, about 700 MPa or greater, about 800 MPa or greater, about 900 MPa or greater, about 930 MPa or greater, about 1000 MPa or greater, or about 1050 MPa or greater.
In one or more embodiments, the glass articles used to form the layer(s) of the deadfront structures may have a maximum tensile stress or central tension (CT) of about 20 MPa or greater, about 30 MPa or greater, about 40 MPa or greater, about 45 MPa or greater, about 50 MPa or greater, about 60 MPa or greater, about 70 MPa or greater, about 75 MPa or greater, about 80 MPa or greater, or about 85 MPa or greater. In some embodiments, the maximum tensile stress or central tension (CT) may be in a range from about 40 MPa to about 100 MPa.
Aspect (1) of this disclosure pertains to a deadfront article for a display comprising: a cover structure comprising: an inner surface, an outer surface opposite the inner surface, a glass layer located between the inner surface and the outer surface, and a first layer of light transmitting ink or pigment located between the inner surface of the cover structure and the glass layer; a light guide layer comprising: an inner surface, and an outer surface facing toward the inner surface of the cover structure; and a light extraction layer located on at least one of the inner surface and the outer surface of the light guide layer.
Aspect (2) of this disclosure pertains to the deadfront article of Aspect (1), wherein the light extraction layer forms a pattern corresponding to a display graphic.
Aspect (3) of this disclosure pertains to the deadfront article of Aspect (1) or (2), wherein the light extraction layer is formed from an ink material having an opacity, where the opacity of the ink material is less than a threshold that is related to a transmissivity of light through the cover structure layer.
Aspect (4) of this disclosure pertains to the deadfront article of Aspect (3), wherein the transmissivity of light through the cover structure is greater than 90% and the opacity of the ink material of the light extraction layer is less than 10%.
Aspect (5) of this disclosure pertains to the deadfront article of Aspect (3), wherein the transmissivity of light through the cover structure is about 90% and the opacity of the ink material of the light extraction layer is about 10%.
Aspect (6) of this disclosure pertains to the deadfront article of Aspect (3), wherein the transmissivity of the cover structure is between 20% and 40% and the opacity of the ink material of the light extraction layer is less than 75%.
Aspect (7) of this disclosure pertains to the deadfront article of Aspect (3), wherein the transmissivity of light through the cover structure is about 30% and the opacity of the ink material of the light extraction layer is about 75%.
Aspect (8) of this disclosure pertains to the deadfront article of Aspect (3), wherein the ink material is a white ink material having an average thickness in a range of 0.05 μm to 500 μm.
Aspect (9) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (8), wherein the cover structure has a light transmittance level less than 50% such that when a light source of the display is inactive the first layer of light transmitting ink or pigment is visible from outside of the cover structure and blocks the visibility of the light extraction layer from outside of the cover structure.
Aspect (10) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (9), wherein the first layer of light transmitting ink or pigment comprises any one of a wood-grain design, a leather-grain design, a fabric design, a brushed metal design, a graphic design, and a logo.
Aspect (11) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (10), wherein the cover structure further comprises an image enhancing layer of light transmitting ink or pigment located between the first layer of light transmitting ink or pigment and the light extraction layer.
Aspect (12) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (11), wherein a total level of light transmission through all layers of the cover glass layer is between 5%-10% for light having wavelengths from 400 nm to 700 nm.
Aspect (13) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (12), wherein the glass layer of the cover structure comprises an average thickness between the inner and outer surfaces in a range from 0.05 mm to 2 mm.
Aspect (14) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (13), wherein an average thickness between the inner and outer surfaces of the light guide layer is less than an average thickness of the glass layer of the cover structure.
Aspect (15) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (14), wherein the glass layer of the cover structure is formed from a strengthened glass material, and the light guide layer is formed from at least one of a glass material and a polymer material.
Aspect (16) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (15), wherein the cover structure is curved comprising a first radius of curvature.
Aspect (17) of this disclosure pertains to the deadfront article of Aspect (16), wherein the first radius of curvature is in a range from about 60 mm to about 1500 mm.
Aspect (18) of this disclosure pertains to the deadfront article of Aspects (16) or (17), wherein the cover structure comprises a second radius of curvature different from the first radius of curvature.
Aspect (19) of this disclosure pertains to the deadfront article of Aspect (18), wherein the first radius of curvature and the second radius of curvature have different axes of curvature.
Aspect (20) of this disclosure pertains to the deadfront article of any one of Aspects (16) through (19), wherein the cover structure is cold-formed to the curved shape.
Aspect (21) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (20), wherein a maximum thickness of the glass layer of the cover structure is less than or equal to 1.5 mm.
Aspect (22) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (21), wherein a maximum thickness of the glass layer of the cover structure is 0.3 mm to 0.7 mm.
Aspect (23) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (22), wherein the cover structure has a width and a length, wherein the width is in a range from about 5 cm to about 250 cm, and the length is from about 5 cm to about 250 cm.
Aspect (24) of this disclosure pertains to the deadfront article of any one of Aspects (1) through (23), further comprising a reflector positioned such that the light guide layer is located between the reflector and the cover structure.
Aspect (25) of this disclosure pertains to a vehicle interior system comprising: a cover glass layer; a glass light guide layer located below the cover glass layer; a light extraction layer located on a surface of the glass light guide layer, wherein the light extraction layer forms a pattern corresponding to a display graphic; and a first light source optically coupled to the glass light guide layer such that light from the first light source is carried within the glass light guide layer via total internal reflection; wherein, when the first light source is activated, the light within the glass light guide layer is extracted out by the light extraction layer in the shape of the display graphic which is visible through the cover glass layer.
Aspect (26) of this disclosure pertains to the vehicle interior system of Aspect (25), wherein the pattern formed by the light extraction layer is not visible through the cover glass layer when the first light source is inactive.
Aspect (27) of this disclosure pertains to the vehicle interior system of Aspects (25) or (26), wherein the glass light guide layer comprises: an inner major surface; an outer major surface; and an edge surface extending between outer perimeters of the inner major surface and the outer major surface; wherein the first light source is optically coupled to the edge surface of the glass light guide layer.
Aspect (28) of this disclosure pertains to the vehicle interior system of any one of Aspects (25) through (27), further comprising a second light source optically coupled to the glass light guide layer such that light from the second light source is carried within the glass light guide layer via total internal reflection, wherein the first light source has a first color and the second light source has a second color different from the first color.
Aspect (29) of this disclosure pertains to the vehicle interior system of any one of Aspects (25) through (28), further comprising a plurality of additional light sources optically coupled to the glass light guide layer, each of the plurality of additional light sources having a distinct color, wherein the glass light guide layer is configured to display each of the distinct colors at a spatially distinct region of the cover glass layer.
Aspect (30) of this disclosure pertains to the vehicle interior system of any one of Aspects (25) through (29), wherein the cover glass layer comprises a first layer of light transmitting ink or pigment located between the cover glass layer and the glass light guide layer.
Aspect (31) of this disclosure pertains to the vehicle interior system of Aspect (30), wherein the first layer of light transmitting ink or pigment has a light transmittance level less than 50% such that when the first light source is inactive the first layer of light transmitting ink or pigment is visible from outside of the cover glass layer and blocks the visibility of the light extraction layer from outside of the cover glass layer.
Aspect (32) of this disclosure pertains to the vehicle interior system of Aspect (30) or (31), wherein the first layer of light transmitting ink or pigment comprises any one of a wood-grain design, a leather-grain design, a fabric design, a brushed metal design, a graphic design, and a logo.
Aspect (33) of this disclosure pertains to the vehicle interior system of any one of Aspects (25) through (32), wherein the cover glass layer is formed from a strengthened glass material and comprises an average thickness between inner and outer major surfaces in a range from 0.05 mm to 2 mm.
Aspect (34) of this disclosure pertains to the vehicle interior system of any one of Aspects (25) through (33), wherein the cover glass layer comprises a radius of curvature of between 60 mm and 1500 mm along at least one of the inner surface and the outer surface.
Aspect (35) of this disclosure pertains to the vehicle interior system of any one of Aspects (25) through (34), further comprising a reflector positioned such that the glass light guide layer is located between the reflector and the cover glass layer;
Aspect (36) of this disclosure pertains to a method of forming a curved deadfront for a display comprising: supporting a deadfront article on a support having a curved surface, wherein the deadfront article comprises: a cover glass layer, a light guide layer located below the cover glass layer, and a light extraction layer located on a surface of the light guide layer, wherein the light extraction layer forms a pattern corresponding to a display graphic; and applying a force to the deadfront article while supported by the support causing the deadfront article to bend such that the deadfront article conforms to the curved shape of the curved surface of the support; wherein during application of the force, a maximum temperature of the deadfront article is less than a glass transition temperature of the cover glass layer.
Aspect (37) of this disclosure pertains to the method of Aspect (36), further comprising: applying an adhesive between the curved surface of the support and a surface of the deadfront article; and bonding the deadfront article to the support surface of the frame with the adhesive during application of the force.
Aspect (38) of this disclosure pertains to the method of Aspect (36) or (37), wherein the cover glass layer is at least one of chemically strengthened and thermally strengthened, and the light guide layer is formed from at least one of a glass material and a polymer material.
Aspect (39) of this disclosure pertains to the method of any one of Aspects (36) through (38), wherein the cover glass layer comprises first and second opposing major surfaces, wherein a maximum thickness of the cover glass layer measured between the first and second major surfaces is less than or equal to 1.5 mm.
Aspect (40) of this disclosure pertains to the method of any one of Aspects (36) through (39), wherein during application of the force, a maximum temperature of the deadfront article is less than 200 degrees C.
Aspect (41) of this disclosure pertains to the method of any one of Aspects (36) through (40), further comprising a reflector positioned such that the light guide layer is located between the reflector and the glass layer;
Aspect (42) of this disclosure pertains to the method of any one of Aspect (36) through (41), further comprising optically coupling a light source to the light guide layer.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is in no way intended that any particular order be inferred. In addition, as used herein, the article “a” is intended to include one or more than one component or element, and is not intended to be construed as meaning only one.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosed embodiments. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the embodiments may occur to persons skilled in the art, the disclosed embodiments should be construed to include everything within the scope of the appended claims and their equivalents.
This application is a 371 of PCT Application No.: PCT/US2018/050562 filed on Sep. 12, 2018, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/557,987 filed on Sep. 13, 2017, the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/050562 | 9/12/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/055453 | 3/21/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2068030 | Lieser | Jan 1937 | A |
2608030 | Jendrisak | Aug 1952 | A |
3197903 | Walley | Aug 1965 | A |
3338696 | Dockerty | Aug 1967 | A |
3582456 | Stolki | Jun 1971 | A |
3682609 | Dockerty | Aug 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3778335 | Boyd | Dec 1973 | A |
3790430 | Mochel | Feb 1974 | A |
3799817 | Laethem | Mar 1974 | A |
4147527 | Bystrov et al. | Apr 1979 | A |
4238265 | Deminet | Dec 1980 | A |
4445953 | Hawk | May 1984 | A |
4455338 | Henne | Jun 1984 | A |
4859636 | Aratani et al. | Aug 1989 | A |
4899507 | Mairlot | Feb 1990 | A |
4969966 | Norman | Nov 1990 | A |
4985099 | Mertens et al. | Jan 1991 | A |
5108480 | Sugiyama | Apr 1992 | A |
5154117 | Didelot et al. | Oct 1992 | A |
5173102 | Weber et al. | Dec 1992 | A |
5245468 | Demiryont et al. | Sep 1993 | A |
5250146 | Horvath | Oct 1993 | A |
5264058 | Hoagland et al. | Nov 1993 | A |
5300184 | Masunaga | Apr 1994 | A |
5711119 | Cornils et al. | Jan 1998 | A |
5897937 | Cornils et al. | Apr 1999 | A |
6044662 | Morin | Apr 2000 | A |
6086983 | Yoshizawa | Jul 2000 | A |
6101748 | Cass et al. | Aug 2000 | A |
6242931 | Hembree et al. | Jun 2001 | B1 |
6265054 | Bravet et al. | Jul 2001 | B1 |
6270605 | Doerfler | Aug 2001 | B1 |
6274219 | Schuster et al. | Aug 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6302985 | Takahashi et al. | Oct 2001 | B1 |
6332690 | Murofushi | Dec 2001 | B1 |
6387515 | Joret et al. | May 2002 | B1 |
6420800 | Levesque et al. | Jul 2002 | B1 |
6426138 | Narushima et al. | Jul 2002 | B1 |
6582799 | Brown et al. | Jun 2003 | B1 |
6620365 | Odoi et al. | Sep 2003 | B1 |
6816225 | Colgan et al. | Nov 2004 | B2 |
6903871 | Page | Jun 2005 | B2 |
7297040 | Chang et al. | Nov 2007 | B2 |
7375782 | Yamazaki et al. | May 2008 | B2 |
7478930 | Choi | Jan 2009 | B2 |
7489303 | Pryor | Feb 2009 | B1 |
7542302 | Curnalia et al. | Jun 2009 | B1 |
7750821 | Taborisskiy et al. | Jul 2010 | B1 |
7955470 | Kapp et al. | Jun 2011 | B2 |
8298431 | Chwu et al. | Oct 2012 | B2 |
8344369 | Yamazaki et al. | Jan 2013 | B2 |
8521955 | Arulambalam et al. | Aug 2013 | B2 |
8549885 | Dannoux et al. | Oct 2013 | B2 |
8586492 | Barefoot et al. | Nov 2013 | B2 |
8652978 | Dejneka et al. | Feb 2014 | B2 |
8692787 | Imazeki | Apr 2014 | B2 |
8702253 | Lu et al. | Apr 2014 | B2 |
8765262 | Gross | Jul 2014 | B2 |
8814372 | Vandal et al. | Aug 2014 | B2 |
8833106 | Dannoux et al. | Sep 2014 | B2 |
8912447 | Leong et al. | Dec 2014 | B2 |
8923693 | Yeates | Dec 2014 | B2 |
8962084 | Brackley et al. | Feb 2015 | B2 |
8967834 | Timmerman et al. | Mar 2015 | B2 |
8969226 | Dejneka et al. | Mar 2015 | B2 |
8978418 | Balduin et al. | Mar 2015 | B2 |
9007226 | Chang | Apr 2015 | B2 |
9061934 | Bisson et al. | Jun 2015 | B2 |
9090501 | Okahata et al. | Jul 2015 | B2 |
9109881 | Roussev et al. | Aug 2015 | B2 |
9140543 | Allan et al. | Sep 2015 | B1 |
9156724 | Gross | Oct 2015 | B2 |
9223162 | Deforest et al. | Dec 2015 | B2 |
9240437 | Shieh et al. | Jan 2016 | B2 |
9278500 | Filipp | Mar 2016 | B2 |
9278655 | Jones et al. | Mar 2016 | B2 |
9290413 | Dejneka et al. | Mar 2016 | B2 |
9346703 | Bookbinder et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9357638 | Lee et al. | May 2016 | B2 |
9442028 | Roussev et al. | Sep 2016 | B2 |
9446723 | Stepanski | Sep 2016 | B2 |
9469561 | Kladias et al. | Oct 2016 | B2 |
9517967 | Dejneka et al. | Dec 2016 | B2 |
9573843 | Keegan et al. | Feb 2017 | B2 |
9593042 | Hu et al. | Mar 2017 | B2 |
9595960 | Wilford | Mar 2017 | B2 |
9606625 | Levesque et al. | Mar 2017 | B2 |
9617180 | Bookbinder et al. | Apr 2017 | B2 |
9663396 | Miyasaka et al. | May 2017 | B2 |
9694570 | Levasseur et al. | Jul 2017 | B2 |
9700985 | Kashima et al. | Jul 2017 | B2 |
9701564 | Bookbinder et al. | Jul 2017 | B2 |
9720450 | Choi et al. | Aug 2017 | B2 |
9724727 | Domey et al. | Aug 2017 | B2 |
9802485 | Masuda et al. | Oct 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9821509 | Kastell | Nov 2017 | B2 |
9895975 | Lee et al. | Feb 2018 | B2 |
9902640 | Dannoux et al. | Feb 2018 | B2 |
9931817 | Rickerl | Apr 2018 | B2 |
9933820 | Helot et al. | Apr 2018 | B2 |
9947882 | Zhang et al. | Apr 2018 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
9957190 | Finkeldey et al. | May 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
9972645 | Kim | May 2018 | B2 |
9975801 | Maschmeyer et al. | May 2018 | B2 |
9992888 | Moon et al. | Jun 2018 | B2 |
10005246 | Stepanski | Jun 2018 | B2 |
10017033 | Fisher et al. | Jul 2018 | B2 |
10042391 | Yun et al. | Aug 2018 | B2 |
10074824 | Han et al. | Sep 2018 | B2 |
10086762 | Uhm | Oct 2018 | B2 |
10131118 | Kang et al. | Nov 2018 | B2 |
10140018 | Kim et al. | Nov 2018 | B2 |
10153337 | Lee et al. | Dec 2018 | B2 |
10175802 | Boggs et al. | Jan 2019 | B2 |
10211416 | Jin et al. | Feb 2019 | B2 |
10222825 | Wang et al. | Mar 2019 | B2 |
10273184 | Garner et al. | Apr 2019 | B2 |
10303223 | Park et al. | May 2019 | B2 |
10303315 | Jeong et al. | May 2019 | B2 |
10326101 | Oh et al. | Jun 2019 | B2 |
10328865 | Jung | Jun 2019 | B2 |
10343377 | Levasseur et al. | Jul 2019 | B2 |
10347700 | Yang et al. | Jul 2019 | B2 |
10377656 | Dannoux et al. | Aug 2019 | B2 |
10421683 | Schillinger et al. | Sep 2019 | B2 |
10427383 | Levasseur et al. | Oct 2019 | B2 |
10444427 | Bookbinder et al. | Oct 2019 | B2 |
10483210 | Gross et al. | Nov 2019 | B2 |
10500958 | Cho et al. | Dec 2019 | B2 |
10606395 | Boggs et al. | Mar 2020 | B2 |
10649267 | Tuan et al. | May 2020 | B2 |
10788707 | Ai et al. | Sep 2020 | B2 |
10976607 | Huang et al. | Apr 2021 | B2 |
20020039229 | Hirose et al. | Apr 2002 | A1 |
20040026021 | Groh et al. | Feb 2004 | A1 |
20040069770 | Cary et al. | Apr 2004 | A1 |
20040107731 | Doehring et al. | Jun 2004 | A1 |
20040258929 | Glaubitt et al. | Dec 2004 | A1 |
20050178158 | Moulding et al. | Aug 2005 | A1 |
20060227125 | Wong et al. | Oct 2006 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070195419 | Tsuda et al. | Aug 2007 | A1 |
20070210621 | Barton et al. | Sep 2007 | A1 |
20070221313 | Franck et al. | Sep 2007 | A1 |
20070223121 | Franck et al. | Sep 2007 | A1 |
20070291384 | Wang | Dec 2007 | A1 |
20080031991 | Choi et al. | Feb 2008 | A1 |
20080093753 | Schuetz | Apr 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080303976 | Nishizawa et al. | Dec 2008 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090101208 | Vandal et al. | Apr 2009 | A1 |
20090117332 | Ellsworth et al. | May 2009 | A1 |
20090179840 | Tanaka et al. | Jul 2009 | A1 |
20090185127 | Tanaka et al. | Jul 2009 | A1 |
20090201443 | Sasaki et al. | Aug 2009 | A1 |
20090311497 | Aoki | Dec 2009 | A1 |
20100000259 | Ukrainczyk et al. | Jan 2010 | A1 |
20100031590 | Buchwald et al. | Feb 2010 | A1 |
20100065342 | Shaikh | Mar 2010 | A1 |
20100103138 | Huang et al. | Apr 2010 | A1 |
20100164860 | Misono | Jul 2010 | A1 |
20100182143 | Lynam | Jul 2010 | A1 |
20100245253 | Rhyu et al. | Sep 2010 | A1 |
20110057465 | Beau et al. | Mar 2011 | A1 |
20110148267 | McDaniel et al. | Jun 2011 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120111056 | Prest | May 2012 | A1 |
20120128952 | Miwa et al. | May 2012 | A1 |
20120134025 | Hart | May 2012 | A1 |
20120144866 | Liu et al. | Jun 2012 | A1 |
20120152897 | Cheng et al. | Jun 2012 | A1 |
20120196110 | Murata et al. | Aug 2012 | A1 |
20120202030 | Kondo et al. | Aug 2012 | A1 |
20120218640 | Gollier et al. | Aug 2012 | A1 |
20120263945 | Yoshikawa | Oct 2012 | A1 |
20120280368 | Garner et al. | Nov 2012 | A1 |
20120320509 | Kim et al. | Dec 2012 | A1 |
20130020007 | Niiyama et al. | Jan 2013 | A1 |
20130033885 | Oh et al. | Feb 2013 | A1 |
20130070340 | Shelestak et al. | Mar 2013 | A1 |
20130081428 | Liu et al. | Apr 2013 | A1 |
20130088441 | Chung et al. | Apr 2013 | A1 |
20130120850 | Lambert et al. | May 2013 | A1 |
20130186141 | Henry | Jul 2013 | A1 |
20130209824 | Sun et al. | Aug 2013 | A1 |
20130279188 | Entenmann et al. | Oct 2013 | A1 |
20130314642 | Timmerman et al. | Nov 2013 | A1 |
20130329346 | Dannoux et al. | Dec 2013 | A1 |
20130330495 | Maatta et al. | Dec 2013 | A1 |
20140014260 | Chowdhury et al. | Jan 2014 | A1 |
20140036428 | Seng et al. | Feb 2014 | A1 |
20140065374 | Tsuchiya et al. | Mar 2014 | A1 |
20140141206 | Gillard et al. | May 2014 | A1 |
20140146538 | Zenker et al. | May 2014 | A1 |
20140153234 | Knoche et al. | Jun 2014 | A1 |
20140153894 | Jenkins et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140168546 | Magnusson et al. | Jun 2014 | A1 |
20140234581 | Immerman et al. | Aug 2014 | A1 |
20140308464 | Levasseur et al. | Oct 2014 | A1 |
20140312518 | Levasseur et al. | Oct 2014 | A1 |
20140333848 | Chen | Nov 2014 | A1 |
20140340609 | Taylor et al. | Nov 2014 | A1 |
20150015807 | Franke et al. | Jan 2015 | A1 |
20150072129 | Okahata et al. | Mar 2015 | A1 |
20150077429 | Eguchi et al. | Mar 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150168768 | Nagatani | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150210588 | Chang et al. | Jul 2015 | A1 |
20150246424 | Venkatachalam et al. | Sep 2015 | A1 |
20150246507 | Brown et al. | Sep 2015 | A1 |
20150274585 | Rogers et al. | Oct 2015 | A1 |
20150322270 | Amin et al. | Nov 2015 | A1 |
20150336357 | Kang et al. | Nov 2015 | A1 |
20150351272 | Wildner et al. | Dec 2015 | A1 |
20150357387 | Lee et al. | Dec 2015 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160009068 | Garner | Jan 2016 | A1 |
20160016849 | Allan | Jan 2016 | A1 |
20160039705 | Kato et al. | Feb 2016 | A1 |
20160052241 | Zhang | Feb 2016 | A1 |
20160066463 | Yang et al. | Mar 2016 | A1 |
20160081204 | Park et al. | Mar 2016 | A1 |
20160083282 | Jouanno et al. | Mar 2016 | A1 |
20160083292 | Tabe et al. | Mar 2016 | A1 |
20160091645 | Birman et al. | Mar 2016 | A1 |
20160102015 | Yasuda et al. | Apr 2016 | A1 |
20160113135 | Kim et al. | Apr 2016 | A1 |
20160207290 | Cleary et al. | Jul 2016 | A1 |
20160214889 | Garner et al. | Jul 2016 | A1 |
20160216434 | Shih et al. | Jul 2016 | A1 |
20160250982 | Fisher et al. | Sep 2016 | A1 |
20160252656 | Waldschmidt et al. | Sep 2016 | A1 |
20160259365 | Wang et al. | Sep 2016 | A1 |
20160272529 | Hong et al. | Sep 2016 | A1 |
20160297176 | Rickerl | Oct 2016 | A1 |
20160306451 | Isoda et al. | Oct 2016 | A1 |
20160313494 | Hamilton et al. | Oct 2016 | A1 |
20160354996 | Alder et al. | Dec 2016 | A1 |
20160355091 | Lee et al. | Dec 2016 | A1 |
20160355901 | Isozaki et al. | Dec 2016 | A1 |
20160375808 | Etienne et al. | Dec 2016 | A1 |
20170008377 | Fisher et al. | Jan 2017 | A1 |
20170021661 | Pelucchi | Jan 2017 | A1 |
20170023830 | Yang et al. | Jan 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170081238 | Jones et al. | Mar 2017 | A1 |
20170088454 | Fukushima et al. | Mar 2017 | A1 |
20170090247 | Lee et al. | Mar 2017 | A1 |
20170094039 | Lu | Mar 2017 | A1 |
20170115518 | Shin | Apr 2017 | A1 |
20170115944 | Oh et al. | Apr 2017 | A1 |
20170158551 | Bookbinder et al. | Jun 2017 | A1 |
20170160434 | Hart et al. | Jun 2017 | A1 |
20170185289 | Kim et al. | Jun 2017 | A1 |
20170190152 | Notsu et al. | Jul 2017 | A1 |
20170197561 | McFarland | Jul 2017 | A1 |
20170213872 | Jinbo et al. | Jul 2017 | A1 |
20170217290 | Yoshizumi et al. | Aug 2017 | A1 |
20170217815 | Dannoux et al. | Aug 2017 | A1 |
20170240772 | Dohner et al. | Aug 2017 | A1 |
20170247291 | Hatano et al. | Aug 2017 | A1 |
20170262057 | Knittl et al. | Sep 2017 | A1 |
20170263690 | Lee et al. | Sep 2017 | A1 |
20170274627 | Chang et al. | Sep 2017 | A1 |
20170285227 | Chen et al. | Oct 2017 | A1 |
20170305786 | Roussev et al. | Oct 2017 | A1 |
20170327402 | Fujii et al. | Nov 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170349473 | Moriya et al. | Dec 2017 | A1 |
20180009197 | Gross et al. | Jan 2018 | A1 |
20180014420 | Amin et al. | Jan 2018 | A1 |
20180031743 | Wakatsuki et al. | Feb 2018 | A1 |
20180050948 | Faik et al. | Feb 2018 | A1 |
20180069053 | Bok | Mar 2018 | A1 |
20180072022 | Tsai et al. | Mar 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180111569 | Faik et al. | Apr 2018 | A1 |
20180122863 | Bok | May 2018 | A1 |
20180125228 | Porter et al. | May 2018 | A1 |
20180134232 | Helot | May 2018 | A1 |
20180141850 | Dejneka et al. | May 2018 | A1 |
20180147985 | Brown et al. | May 2018 | A1 |
20180149777 | Brown | May 2018 | A1 |
20180149907 | Gahagan et al. | May 2018 | A1 |
20180164850 | Sim et al. | Jun 2018 | A1 |
20180186674 | Kumar et al. | Jul 2018 | A1 |
20180188869 | Boggs et al. | Jul 2018 | A1 |
20180208131 | Mattelet et al. | Jul 2018 | A1 |
20180208494 | Mattelet et al. | Jul 2018 | A1 |
20180210118 | Gollier et al. | Jul 2018 | A1 |
20180215125 | Gahagan | Aug 2018 | A1 |
20180245125 | Tsai et al. | Aug 2018 | A1 |
20180304825 | Mattelet et al. | Oct 2018 | A1 |
20180324964 | Yoo et al. | Nov 2018 | A1 |
20180345644 | Kang et al. | Dec 2018 | A1 |
20180364760 | Ahn et al. | Dec 2018 | A1 |
20180374906 | Everaerts et al. | Dec 2018 | A1 |
20190034017 | Boggs et al. | Jan 2019 | A1 |
20190039352 | Zhao et al. | Feb 2019 | A1 |
20190039935 | Couillard et al. | Feb 2019 | A1 |
20190069451 | Myers et al. | Feb 2019 | A1 |
20190077337 | Gervelmeyer | Mar 2019 | A1 |
20190152831 | An et al. | May 2019 | A1 |
20190223309 | Amin et al. | Jul 2019 | A1 |
20190295494 | Wang et al. | Sep 2019 | A1 |
20190315648 | Kumar et al. | Oct 2019 | A1 |
20190329531 | Brennan et al. | Oct 2019 | A1 |
20200064535 | Haan et al. | Feb 2020 | A1 |
20200301192 | Huang et al. | Sep 2020 | A1 |
20210055599 | Chen et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
1587132 | Mar 2005 | CN |
1860081 | Nov 2006 | CN |
101600846 | Dec 2009 | CN |
101684032 | Mar 2010 | CN |
201989544 | Sep 2011 | CN |
102341356 | Feb 2012 | CN |
102464456 | May 2012 | CN |
103136490 | Jun 2013 | CN |
103587161 | Feb 2014 | CN |
203825589 | Sep 2014 | CN |
204111583 | Jan 2015 | CN |
102566841 | Apr 2015 | CN |
104656999 | May 2015 | CN |
104679341 | Jun 2015 | CN |
204463066 | Jul 2015 | CN |
104843976 | Aug 2015 | CN |
105118391 | Dec 2015 | CN |
105511127 | Apr 2016 | CN |
205239166 | May 2016 | CN |
105705330 | Jun 2016 | CN |
106256794 | Dec 2016 | CN |
205905907 | Jan 2017 | CN |
106458683 | Feb 2017 | CN |
206114596 | Apr 2017 | CN |
206114956 | Apr 2017 | CN |
107613809 | Jan 2018 | CN |
107757516 | Mar 2018 | CN |
108519831 | Sep 2018 | CN |
108550587 | Sep 2018 | CN |
108725350 | Nov 2018 | CN |
109135605 | Jan 2019 | CN |
109690662 | Apr 2019 | CN |
109743421 | May 2019 | CN |
4415787 | Nov 1995 | DE |
4415878 | Nov 1995 | DE |
69703490 | May 2001 | DE |
102004022008 | Dec 2004 | DE |
102004002208 | Aug 2005 | DE |
102009021938 | Nov 2010 | DE |
102010007204 | Aug 2011 | DE |
102013214108 | Feb 2015 | DE |
102014116798 | May 2016 | DE |
0076924 | Apr 1983 | EP |
0316224 | May 1989 | EP |
0347049 | Dec 1989 | EP |
0418700 | Mar 1991 | EP |
0423698 | Apr 1991 | EP |
0525970 | Feb 1993 | EP |
0664210 | Jul 1995 | EP |
1013622 | Jun 2000 | EP |
1031409 | Aug 2000 | EP |
1046493 | Oct 2000 | EP |
0910721 | Nov 2000 | EP |
1647663 | Apr 2006 | EP |
2236281 | Oct 2010 | EP |
2385630 | Nov 2011 | EP |
2521118 | Nov 2012 | EP |
2852502 | Apr 2015 | EP |
2933718 | Oct 2015 | EP |
3093181 | Nov 2016 | EP |
3100854 | Dec 2016 | EP |
3118174 | Jan 2017 | EP |
3118175 | Jan 2017 | EP |
3144141 | Mar 2017 | EP |
3156286 | Apr 2017 | EP |
3189965 | Jul 2017 | EP |
3288791 | Mar 2018 | EP |
3426614 | Jan 2019 | EP |
3532442 | Sep 2019 | EP |
2750075 | Dec 1997 | FR |
2918411 | Oct 2013 | FR |
3012073 | Apr 2015 | FR |
0805770 | Dec 1958 | GB |
0991867 | May 1965 | GB |
1319846 | Jun 1973 | GB |
2011316 | Jul 1979 | GB |
2281542 | Mar 1995 | GB |
55-154329 | Dec 1980 | JP |
57-048082 | Mar 1982 | JP |
58-073681 | May 1983 | JP |
58-194751 | Nov 1983 | JP |
59-076561 | May 1984 | JP |
63-089317 | Apr 1988 | JP |
63-190730 | Aug 1988 | JP |
3059337 | Jun 1991 | JP |
03-228840 | Oct 1991 | JP |
04-119931 | Apr 1992 | JP |
05-116972 | May 1993 | JP |
06-340029 | Dec 1994 | JP |
10-218630 | Aug 1998 | JP |
11-001349 | Jan 1999 | JP |
11-006029 | Jan 1999 | JP |
11-060293 | Mar 1999 | JP |
2000-260330 | Sep 2000 | JP |
2002-255574 | Sep 2002 | JP |
2003-500260 | Jan 2003 | JP |
2003-276571 | Oct 2003 | JP |
2003-321257 | Nov 2003 | JP |
2004-101712 | Apr 2004 | JP |
2004-284839 | Oct 2004 | JP |
2006-181936 | Jul 2006 | JP |
2007-188035 | Jul 2007 | JP |
2007-197288 | Aug 2007 | JP |
2010-145731 | Jul 2010 | JP |
2012-111661 | Jun 2012 | JP |
2013-084269 | May 2013 | JP |
2014-126564 | Jul 2014 | JP |
2015-502901 | Jan 2015 | JP |
2015092422 | May 2015 | JP |
5748082 | Jul 2015 | JP |
5796561 | Oct 2015 | JP |
2016-500458 | Jan 2016 | JP |
2016031696 | Mar 2016 | JP |
2016-517380 | Jun 2016 | JP |
2016-130810 | Jul 2016 | JP |
2016-144008 | Aug 2016 | JP |
05976561 | Aug 2016 | JP |
2016-530204 | Sep 2016 | JP |
2016173794 | Sep 2016 | JP |
2016-207200 | Dec 2016 | JP |
2016203609 | Dec 2016 | JP |
6281825 | Feb 2018 | JP |
6340029 | Jun 2018 | JP |
2002-0019045 | Mar 2002 | KR |
10-0479282 | Aug 2005 | KR |
10-2008-0023888 | Mar 2008 | KR |
10-2013-0005776 | Jan 2013 | KR |
10-2014-0111403 | Sep 2014 | KR |
10-2015-0026911 | Mar 2015 | KR |
10-2015-0033969 | Apr 2015 | KR |
10-2015-0051458 | May 2015 | KR |
10-1550833 | Sep 2015 | KR |
10-2015-0121101 | Oct 2015 | KR |
10-2016-0118746 | Oct 2016 | KR |
10-1674060 | Nov 2016 | KR |
10-2016-0144008 | Dec 2016 | KR |
10-2017-0000208 | Jan 2017 | KR |
10-2017-0106263 | Sep 2017 | KR |
10-2017-0107124 | Sep 2017 | KR |
10-2017-0113822 | Oct 2017 | KR |
10-2017-0121674 | Nov 2017 | KR |
10-2018-0028597 | Mar 2018 | KR |
10-2018-0049484 | May 2018 | KR |
10-2018-0049780 | May 2018 | KR |
10-2019-0001864 | Jan 2019 | KR |
10-2019-0081264 | Jul 2019 | KR |
200704268 | Jan 2007 | TW |
201438895 | Oct 2014 | TW |
201546006 | Dec 2015 | TW |
201636309 | Oct 2016 | TW |
201637857 | Nov 2016 | TW |
201730645 | Sep 2017 | TW |
58334 | Jul 2018 | VN |
9425272 | Nov 1994 | WO |
9739074 | Oct 1997 | WO |
9801649 | Jan 1998 | WO |
0073062 | Dec 2000 | WO |
2006095005 | Sep 2006 | WO |
2007108861 | Sep 2007 | WO |
2008042731 | Apr 2008 | WO |
2008153484 | Dec 2008 | WO |
2009072530 | Jun 2009 | WO |
2011029852 | Mar 2011 | WO |
2011144359 | Nov 2011 | WO |
2011155403 | Dec 2011 | WO |
2012005307 | Jan 2012 | WO |
2012058084 | May 2012 | WO |
2012166343 | Dec 2012 | WO |
2013072611 | May 2013 | WO |
2013072612 | May 2013 | WO |
2013174715 | Nov 2013 | WO |
2013175106 | Nov 2013 | WO |
2014085663 | Jun 2014 | WO |
2014107640 | Jul 2014 | WO |
2014172237 | Oct 2014 | WO |
2014175371 | Oct 2014 | WO |
2015031594 | Mar 2015 | WO |
2015055583 | Apr 2015 | WO |
2015057552 | Apr 2015 | WO |
2015084902 | Jun 2015 | WO |
2015085283 | Jun 2015 | WO |
2015141966 | Sep 2015 | WO |
2016007815 | Jan 2016 | WO |
2016007843 | Jan 2016 | WO |
2016010947 | Jan 2016 | WO |
2016010949 | Jan 2016 | WO |
2016044360 | Mar 2016 | WO |
2016069113 | May 2016 | WO |
2016070974 | May 2016 | WO |
2016115311 | Jul 2016 | WO |
2016125713 | Aug 2016 | WO |
2016136758 | Sep 2016 | WO |
2016173699 | Nov 2016 | WO |
2016183059 | Nov 2016 | WO |
2016195301 | Dec 2016 | WO |
2016202605 | Dec 2016 | WO |
2016196531 | Dec 2016 | WO |
2016196546 | Dec 2016 | WO |
2017015392 | Jan 2017 | WO |
2017019851 | Feb 2017 | WO |
2017023673 | Feb 2017 | WO |
2017106081 | Jun 2017 | WO |
2017146866 | Aug 2017 | WO |
2017158031 | Sep 2017 | WO |
2017155932 | Sep 2017 | WO |
2018015392 | Jan 2018 | WO |
2018005646 | Jan 2018 | WO |
2018009504 | Jan 2018 | WO |
2018075853 | Apr 2018 | WO |
2018081068 | May 2018 | WO |
2018102332 | Jun 2018 | WO |
2018125683 | Jul 2018 | WO |
2018160812 | Sep 2018 | WO |
2018200454 | Nov 2018 | WO |
2018200807 | Nov 2018 | WO |
2018213267 | Nov 2018 | WO |
2019055469 | Mar 2019 | WO |
2019055652 | Mar 2019 | WO |
2019074800 | Apr 2019 | WO |
2019075065 | Apr 2019 | WO |
2019151618 | Aug 2019 | WO |
Entry |
---|
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages. |
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation: C770-16, 2016. |
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages. |
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages. |
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages. |
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”. |
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages. |
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006. |
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages. |
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages. |
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI. |
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017]. |
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136. |
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84. |
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass” Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689. |
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2007 vol. 52, No. 1/2 Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146. |
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297. |
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office. |
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014). |
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469. |
Pambianchi et al; “Corning Incorporated: Designing a New Future With Glass and Optics” Chapter 1 In “Materials Research for Manufacturing: an Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016). |
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center Cnsole Work Premiere; Automotive World; Downloaded Jul. 12, 2017; 2 Pages. |
Photodon, “Screen Protectors for Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015). |
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Corning Incorporated, 2015, Rev: F_090315, 2 pages. |
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10. |
Stattler; “New Wave-Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages. |
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010). |
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550. |
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/050562; dated Jan. 8, 2019; 12 Pages; European Patent Office. |
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages. |
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages. |
Doyle et al; “Manual on Experimental Stress Analysis”; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages. |
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages. |
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages. |
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages. |
Fildhuth et al.; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages. |
Fildhuth et al.; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (eds) (2014); 9 Pages. |
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages. |
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015) 285-300. |
Galuppi et al; “Optical Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243. |
Millard; “Bending Glass in the Parametric Age”; ENCLOS; (2015); pp. 1-6 http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age. |
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass-New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 Pages. |
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International, Feb. 2004 pp. 95-97. |
Weijde; “Graduation Plan”; Jan. 2017; 30 Pages. |
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages. |
Taiwanese Patent Application No. 107131827, Office Action dated Oct. 4, 2022, 2 pages (English translation only), Taiwanese Patent Office. |
Number | Date | Country | |
---|---|---|---|
20200207207 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62557987 | Sep 2017 | US |