1. Technical Field
The present disclosure relates to a backlight module and a light guide plate used in the backlight module.
2. Description of Related Art
A backlight module is typically used for illuminating a liquid crystal panel. The backlight module includes a light source and a light guide plate adjacent to the light source for an even distribution of light emitted from the light source. However, a light usage ratio of the light guide plate is typically low.
Therefore, it is desirable to provide a light guide plate and a backlight module which can overcome the limitations described.
Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The sloped surface 56 defines a number of V-shaped grooves 58. Each V-shaped groove 58 includes a first surface 580 and a second surface 581 connected to the first surface 580. The first surface 580 is adjacent to the incident surface 55 relative to the second surface 581. The height of the light incident part 51 (the distance between the bottom surface 53 and the connecting surface 57) is about 0.7 millimeters (mm), the height of the panel 52 (the distance between the bottom surface 53 and the light surface 54) is about 0.5 mm. The included angle a between the first surface 580 and the second surface 581 is in the range from about 20° to about 60°, and the depth of the V-shaped groove 58 is in the range from about 20 μm to about 50 μm.
When in use, light emitted from the light sources 60 enters into the light guide plate 50 through the light incident surface 55. A first part of the light is directed to the sloped surface 56 and a second part of the light is directed to the bottom surface 53 and the panel 52. The V-shaped grooves 58 can enlarge the incident angle of the first part of the light reaching the sloped surface 56. When the incident angle is equal to or bigger than a total reflection angle of the light guide plate 50, the first part of the light will be totally reflected by the first surface 580 towards the bottom surface 53, and will not emit out of the light guide plate 50 through the first surface 580. Even if the incident angle is still smaller than the total reflection angle, yet, as the incident angle is enlarged, the refraction angle will be enlarged accordingly, that is, the light emitted out of the light guide plate 50 through the first surface 580 is more probably directed to the second surface 581 and enters the light guide plate 50 again through the second surface 581. In this way, light leaks from the sloped surface 56 is reduced or evenly emitted and a light usage ratio of the light guide plate 50 is enhanced.
It will be understood that the above particular embodiments are shown and described by way of illustration only. The principles and the features of the present disclosure may be employed in various and numerous embodiments thereof without departing from the scope of the disclosure. The above-described embodiments illustrate the scope of the disclosure but do not restrict the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
100126728 | Jul 2011 | TW | national |