The present invention relates to a waveguide used for an image display device such as a head mounted display.
In the image display device such as a head mounted display (HMD), a waveguide is used as an optical system for propagating image light emitted from a projector (image projection unit) to the eyes of a user. It is desirable that the waveguide used for the HMD be thin and have a wide field of view (FoV) through which an image can be seen. Although a half mirror can be used as the waveguide, it was difficult to reduce the thickness of the waveguide in order to secure the wide field of view.
As a background art related to this, Patent Documents 1 and 2 describe a special mirror or half mirror (called a “skew mirror” in the documents) in which a reflection axis has an inclination with respect to a surface normal by using a hologram technique. When the skew mirror is adopted for the waveguide, the same function as that of the half mirror inclined with respect to the surface of the waveguide is realized, and it is effective in reducing the thickness of the waveguide and improving the FoV.
Regarding this, in Patent Document 1, it is described that the skew mirror does not have a constraint that the reflection axis matches the surface normal, reflects light over a relatively wide wavelength range with respect to a certain reflection axis, and has a constant reflection axis over a relatively wide range of incident angles. Further, in Patent Document 2, it is described that the skew mirror has a reflection axis, that is, a skew axis that can be inclined with respect to the surface normal, and the reflected light ray by the skew mirror is emitted toward a specific “emission pupil portion”.
Since a volume hologram having a light diffraction function is thin and has characteristics such as wavelength selectivity and angle selectivity, the volume hologram can selectively diffract light, and by adopting the volume hologram for the waveguide of the HMD, it is possible to realize a thin waveguide having a wide FoV. Further, by effectively utilizing multiplex recording of the volume holograms, it is possible to display images with high image quality and high resolution having less color unevenness and brightness unevenness, and it is also possible to realize manufacturing cost reduction and stable mass productivity. However, the waveguide of the HMD using the volume hologram has a problem in optical efficiency as an image display device. This problem will be described below.
First, a relationship between the skew mirror and the waveguide described in Patent Documents 1 and 2 will be described. When light rays are incident on a surface of the waveguide including the skew mirror, a portion of the light rays is reflected by the skew mirror surface that is inclined by an angle θg from the surface of the waveguide. Here, when the light rays propagating in the waveguide at an incident angle equal to or greater than a total reflection angle θTIR (TIR: total internal reflection) is incident on the skew mirror, a portion of the light rays can be reflected by the skew mirror surface and emitted to the outside of the waveguide (emission coupler function). Further, it is also possible to make light rays incident from outside of the waveguide and propagate the light rays inside the waveguide by total reflection (incidence coupler function). As such, the skew mirror has the incidence coupler and emission coupler functions in the waveguide. The waveguide in which this skew mirror is realized by the volume hologram is called a volume hologram waveguide.
Here, a concept of the optical efficiency of the volume hologram waveguide will be described. Here, the optical efficiency of the waveguide is defined as “an input and output ratio of an integrated value of wavelength spectrum intensities of light guided through the waveguide”. That is, the optical efficiency of the waveguide is calculated using the integrated value of the wavelength spectrum intensities of all the light input (incident) on the waveguide as the denominator and the integrated value of the wavelength spectrum intensities of all the light output (emitted) from the waveguide as the numerator. Here, the integration of the wavelength spectrum intensities is performed in a range of about 400 nm to 700 nm which is a wavelength range of visible light. Further, when the light emitted from the emission coupler extends over a wide range, a light amount is integrated even in the emission coupler.
When the optical efficiency described above is applied to, for example, one half mirror, in a half mirror whose reflectance is almost constant in the wavelength range of visible light, in order to calculate the wavelength spectrum intensity to be output, the wavelength spectrum intensity to be input may be multiplied by the reflectance of the half mirror in all wavelength ranges. For that reason, the input and output ratio of the integrated value also matches the reflectance of the half mirror. Accordingly, the optical efficiency of the half mirror is reflectance itself of the half mirror.
On the other hand, in the hologram, diffraction efficiency of the hologram corresponds to the reflectance of the half mirror. However, unlike the case of the half mirror, the optical efficiency of the volume hologram waveguide does not match the diffraction efficiency of the hologram. This is because the volume hologram waveguide has “wavelength selectivity” that allows only a portion of the wavelengths of input light to be diffracted. Due to this wavelength selectivity, light to be output is limited to a portion of the wavelengths of the input light. For that reason, the optical efficiency is a product of a ratio (wavelength usage rate) of output (diffracted) wavelengths in an integration range of the wavelengths and substantial diffraction efficiency of the hologram (substantial diffraction efficiency). That is, “optical efficiency of volume hologram waveguide=substantial diffraction efficiency×wavelength usage rate”. With this, even if a hologram having the diffraction efficiency equivalent to the reflectance of the half mirror described above is used, the optical efficiency is decreased by the wavelength usage rate. Therefore, in order to improve the optical efficiency of the volume hologram waveguide, it is necessary to improve the substantial diffraction efficiency and the wavelength usage rate.
However, if the diffraction efficiency is improved, since the ratio of the light transmitted through the volume hologram to light being guided is reduced, there is a problem that light inside the waveguide is attenuated during light guide, and light intensity emitted from the emission coupler becomes uneven. In the waveguide for HMD, it is desirable that the emission coupler is wide and light is emitted substantially uniformly over the entire surface of the emission coupler. This is because, in the HMD, a region (eye-box) in which a user can visually recognize an image (virtual image) becomes wider, the user can be less likely to visually recognize an edge portion of the eye-box, which reduces stress, and also the influence of individual differences in the wearing condition and the position of the user's eyes can be reduced to obtain high sense of realism. For that reason, the diffraction efficiency needs to be suppressed to the extent that light intensities emitted from the emission coupler does not become non-uniform, and is about 15%, for example. In this case, the substantial diffraction efficiency of the entire emitted light is about 68%.
Further, in order to improve the wavelength usage rate, it is necessary to increase the number of multiplex recordings. However, when the number of multiplex recordings is increased, an angular interval of recorded holograms is narrowed, and there is a problem of image quality deterioration of a display image due to occurrence of crosstalk, noise grating, holographic scattering, and the like. For that reason, there is a limit to increase the number of multiplex recordings, and the wavelength usage rate is, for example, about 10%.
As described above, in order to improve the optical efficiency of the volume hologram waveguide, it is necessary to improve the diffraction efficiency of the hologram or the wavelength usage rate, but both the diffraction efficiency and the wavelength usage rate have limits and the optical efficiency is the product of the diffraction efficiency and the wavelength usage rate, and thus under the conditions described above, the optical efficiency is about 6.8%, and it is difficult to realize the optical efficiency higher than this. If the optical efficiency is low, an image to be displayed becomes dark and thus, for example, when an augmented reality (AR), which is one of applications of the HMD, is executed to show an image to the user by superimposing and displaying the image on the externals, the sense of realism is decreased. To compensate for this, it is necessary to increase an output light amount of the projector that emits an image, which causes problems such as an increase in power consumption, heat generation, and an increase in size of the HMD.
The present invention has been made in view of such problems, and an object thereof is to provide a waveguide having high optical efficiency by overcoming the problems described above, a method for manufacturing the waveguide, and an image display device using the waveguide.
In view of the background art and problems described above, the present invention provides, as an example, a waveguide that has a light diffraction unit that diffracts incident light by a multiplex-recorded hologram, in which the light diffraction unit has at least two regions, and the light diffraction unit diffracts light of different wavelengths by the respective regions when certain parallel light ray is incident.
According to the present invention, a waveguide which improves optical efficiency, a method for manufacturing the waveguide, and an image display device using the waveguide can be provided.
Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, a case where an image display device is a glasses-type head mounted display (HMD) will be described.
In
In
The image generated by the image projection unit 103 is emitted as a light ray group that projects a virtual image at a certain distance. This light ray group has wavelengths corresponding to at least three colors of red (R), green (G), and blue (B), and the user can see a color image. Further, this light ray group has a spread of approximately 60 degrees in the horizontal direction and approximately 30 degrees in the vertical direction, and an image with a wide field of view (FoV) of the projected virtual image can be seen.
The light ray group emitted from the image projection unit 103 is incident on a waveguide 200 via an incidence coupler 201. The incidence coupler 201 converts the direction of the light ray group incident on the waveguide into a direction in which the light ray can propagate in the waveguide 200 by total reflection. In this case, by converting the direction while maintaining a relative relationship of directions of respective light rays of the light ray group, it is possible to display a high-definition image without image distortion or blur.
The light ray group that is made incident on the waveguide 200 is propagated by repeating total reflection, and then is incident on an eye-box enlargement unit 202. The eye-box enlargement unit 202 has a function of enlarging an eye-box (a region in which a virtual image can be visually recognized) in which a user can see an image. If the eye-box is wide, stress is reduced because it is difficult for the user to see the edge of the eye-box, and also the influence of individual differences in the wearing condition and the user's eye position is reduced, thereby capable of obtaining a high sense of realism.
In the eye-box enlargement unit 202, the incident light ray group is duplicated while maintaining the relative relationship in the light ray direction and is emitted to an emission coupler 203. That is, the light ray group emitted from the image projection unit 103 is spatially expanded while maintaining the relative relationship in the light ray direction (angle).
The emission coupler 203 emits the incident light ray group to the outside of the waveguide 200 and delivers the light ray group to the eyes of the user 1. That is, the emission coupler 203, contrary to the incidence coupler 201, converts the direction of the incident light ray group into a direction in which the light ray can be emitted to the outside of the waveguide 200.
Further, the emission coupler 203 also has a function of enlarging the eye-box in a direction different from the direction in which the eye-box enlargement unit 202 expands. That is, the light ray group incident on the emission coupler 203 is duplicated while maintaining the relative relationship in the light ray direction, spatially expanded, and emitted to the outside of the waveguide 200.
The configuration described above is substantially common to the right-eye image display unit 104a and the left-eye image display unit 104b. With the configuration described above, the user 1 can see the images (virtual images) displayed on these two image display units 104a and 104b.
In the image display device 100 of
The incidence coupler 201 is composed of a prism and converts the direction of an incident light ray group 320 into a direction in which the waveguide 200 is guided by total reflection. The light ray group emitted from the incidence coupler 201 propagates to the eye-box enlargement unit 202 by internal reflection inside the waveguide 200.
The eye-box enlargement unit 202 reflects the light ray group propagating through the waveguide 200 by a mirror surface 330 and a beam splitter surface 340 and propagates the light ray group to the emission coupler 203. In this case, beam splitter surface 340 duplicates the light ray group while maintaining the relative relationship in the light ray direction, so that the eye-box in which the user sees the image is enlarged vertically. Here, the eye-box enlargement unit 202 has a structure sandwiched between the mirror surface 330 and the beam splitter surface 340, the mirror surface 330 is composed of a mirror having a reflectance of about 100%, and the beam splitter surface 340 is composed of a partial transmission mirror having a reflectance of about 70%. The mirror surface 330 and the beam splitter surface 340 are created by a dielectric multilayer film or metal vapor deposition, and are designed so as to be applicable to the light ray group 220 having a wavelength range corresponding to RGB light and an angle range corresponding to FoV at 60 degrees with horizontal×30 degrees with vertical.
The emission coupler 203 is composed of a volume hologram that is a light diffraction unit, converts the direction of the incident light ray group, and emits the light ray group to the outside of the waveguide 200. Since the volume hologram diffracts a part of light being guided, the rest of the light is guided as it is. By repeating this, a large number of emitting light ray groups 310 are duplicated in a plane and are emitted from the emission coupler 203, and are delivered to the eyes of the user 1. With this, the eye-box is enlarged laterally.
Here, the reflectance of the beam splitter surface 340 and the diffraction efficiency of the volume hologram configuring the emission coupler 203 need to be designed so that an amount of light (amount of light in the eye-box) emitted by the emission coupler 203 is substantially uniform. Therefore, reflectance distributions of the mirror surface 330 and the beam splitter surface 340 may be uniform or non-uniform. Further, by providing a gradation that is an uneven distribution in the vertical direction of the figure, the diffraction efficiency of the volume hologram configuring the emission coupler 203 can also be designed so that the amount of light in the eye-box is substantially uniform.
As illustrated by an arrow 530, the recording light beams 520A and 520B are rotated about the z-axis as the center of rotation to change an angle between the recording light beams to perform multiplex recording. Here, by making the recording light beams line-symmetric with respect to the x-axis at all times, the interference fringe plane can be made parallel to the xz-plane at all times. With this, the interference fringe plane (reflection surface) can be fixed while being inclined by θg from the recording medium surface, and holograms with different interference fringe pitches (grating intervals) can be multiplex-recorded.
Incidentally, the waveguide can be manufactured by using the volume hologram as a light diffraction unit and sandwiching both sides of the light diffraction unit with substrates.
When a reproduction light ray 550 inclined by θp (reproduction angle) from the y-axis direction is incident on the volume hologram (an incident angle to the medium is θin=θp+θg, which is called a reproduction incident angle), a diffracted light 560 is emitted at an angle inclined by θd from the y-axis when Bragg selectivity is satisfied. In a case where the reproduction light ray has a wide wavelength range corresponding to RGB light and a wide angle range corresponding to FoV of 60 degrees in the horizontal direction and 30 degrees in the vertical direction (in air), if the volume hologram can diffract light, the volume hologram can be used as an emission coupler of the waveguide. Further, since the wavelength of the light ray is integrated and recognized by the eyes of an observer by a color matching function, wavelength distribution of the emitted light rays from the volume hologram does not need to be the same as the wavelength distribution of the incident light rays, and it is sufficient that at least the wavelengths corresponding to the three colors of RGB are included in a well-balanced manner. Further, in this figure, power density of the emitted light ray with respect to power density of the incident light ray is called the diffraction efficiency. Here, the above θg, θw, θp, θd, and θin are all described as angles within the recording medium 510.
Here, Sin(λ) and Sout(λ) are wavelength spectrum distributions of incident light and emitted light, and are illustrated by graphs 600a and 600b in
A plurality of emitted light is generated in the volume hologram waveguide. Therefore, it is assumed here that N light rays are emitted. Further, the vertical duplication by the eye-box enlargement unit 202 is omitted for simplification of description, but can be expanded by the same idea.
In this case, optical efficiency HA11 of the volume hologram waveguide can be expressed by the following expression (2).
Here, hm is the optical efficiency of the m-th emitted light ray and can be expressed by the following expression (3).
Here, M is the number of multiplex recordings, and Mmax is the maximum number of multiplex recordings described later. ηm is the diffraction efficiency of the m-th emitted light ray. Accordingly, the optical efficiency HA11 of the volume hologram waveguide is given by the following expression (4).
In order to improve the optical efficiency HA11 of the volume hologram waveguide, it is sufficient to improve either or both of HM=M/Mmax and Hη=ΣηmΠ(1−ηi). Here, HM=M/Mmax is called “wavelength usage rate”, and Hη=ΣηmΠ(1−ηi) is called “substantial diffraction efficiency”. Hereinafter, these two items will be described.
The substantial diffraction efficiency Hη represents the efficiency with which incident light is emitted at a certain wavelength. The optical efficiency can be improved by improving the substantial diffraction efficiency, but this substantial diffraction efficiency has a trade-off relationship with uniformity of the intensity of emitted light ray.
For example, if N=7 and the diffraction efficiency of the hologram is set to 100% (ηi=1), the substantial diffraction efficiency will be 100%, but ηi=100%, η2=0%, η3=0% . . . , and it becomes difficult to duplicate the emitted light ray in the light guide direction. Further, if the diffraction efficiency of the hologram is set to 30%, although the substantial diffraction efficiency is decreased to 92%, ηi=30%, η2=21%, η3=15% . . . , which is non-uniform, it is possible to duplicate the emitted light ray in the light guide direction. Further, if the diffraction efficiency of the hologram is set to 2%, although the substantial diffraction efficiency is decreased to 13%, the uniformity can be kept high. As such, there is a trade-off relationship between the substantial diffraction efficiency and the uniformity of the intensity of emitted light ray.
In order to solve the relationship described above, a method of making the diffraction efficiency of the hologram non-uniform in the light guide direction can be considered. However, if this is done, there is a problem that external light transmittance is also non-uniform.
Therefore, it is difficult to increase the substantial diffraction efficiency while maintaining the uniformity of the intensity of emitted light ray, and practically, for example, when N=7, the limit is about 15%. In this case, the substantial diffraction efficiency is about 68% (Hη=68%).
The wavelength usage rate HM represents a ratio of the wavelengths utilized (reproduced) by the volume hologram. This is due to wavelength selectivity of the volume hologram. For example, since a half mirror to which an appropriate coating is applied has almost no wavelength selectivity, the wavelength usage rate is almost 100%. In the volume hologram, the optical efficiency can be improved by improving the wavelength usage rate, but for that purpose, it is necessary to increase the number of multiplex recordings.
The wavelength usage rate HM is determined by HM=M/Mmax. Here, M is the number of multiplex recordings of the hologram, and Mmax is the maximum number of multiplex recordings. The maximum number of multiplex recordings Mmax is defined as the number of multiplex recordings when the wavelength selectivity is lost, that is, when all the incident wavelengths are diffracted, when the multiplex recording is performed by narrowing the recording angle θw during multiplex recording.
Here, θg is an inclination angle of the interference fringe plane from the surface of the recording medium, and is a constant determined at the time of recording. Further, θin is an incident angle with respect to the surface of the recording medium during reproduction, θw is an angle from the y-axis in
When the recording wavelength λw and the reproduction wavelength λp are determined, the reproduction incident angle θin is determined by the recording angle θW during recording. Further, in this case, the diffraction direction θd of the reproduction light is given by the following expression (7).
From the relational expressions described above, the incident angle (θin) during reproduction and the angle (θd) of the emitted light can be calculated from the recording conditions (θw, λw).
Here, n (n=1, 2, is a subscript of the multiplex recording number. Further, nmedia and Lz are the refractive index and the thickness of the recording medium 510, respectively. It is assumed that the recording wavelength λw, the reproduction wavelength λp, the angle θg, the refractive index nmedia, and the thickness Lz do not change during recording.
Further,
As the interval of recording angle θW decreases, the θin_interval decreases accordingly.
By using the relational expressions as described above, it is possible to calculate the wavelength usage rate when recording is performed under a certain condition.
The wavelength usage rate is calculated by the following expression (12) using the maximum number of multiplex recordings Mmax.
Here, < > means an average value in all multiplex recordings (number n). Therefore, Mmax corresponds to the number of multiplex recordings when recording is performed so that there is no gap in wavelength selectivity. Further, Mmax also matches the number of multiplex recordings when recording is performed so that there is no gap in angle selectivity.
From the expression (12), it can be seen that the wavelength usage rate HM can be improved by filling the gap of wavelength selectivity, by performing recording with the gap of the multiplex recording angle θW of the hologram narrowed, that is, by making θin_interval small. That is, this is the same as increasing the number of multiplex recordings M. However, if the number of multiplex recordings M is increased, there are the following problems, for example.
From the description as above, the optical efficiency of the waveguide is limited to about HA11=Hη×HM=68%×10%=6.8%. Hereinafter, a method for improving the optical efficiency by overcoming this constraint will be described.
In
Here, although the peak positions of emission spectrum intensity differ depending on the angle of the light ray, the number of peaks and the wavelength usage rate, which is a ratio of missing teeth, do not change substantially, and the relationship described above can be established for light rays of all angles. Further, boundaries of respective divided regions may be formed with overlapping portions 1070, 1080, and 1090 to reduce the influence of the region boundary. Further, the numbers of multiplex recordings (number of peaks of reproduction wavelength spectrum intensity) in the respective divided regions do not necessarily have to match. Furthermore, by changing offset amounts (overall shift amount) of the recording angles in the respective divided regions, reproduction may be performed only in the minimum necessary angle range by the respective divided regions, and the dynamic range of the recording medium (for example, index called M# and the like) may be effectively utilized.
Next, the optical efficiency when the region division recording is performed will be described. In principle, if the region division is performed so that the sum 1060 of all diffracted wavelength spectrum intensities in each region illustrated in
A feature of this method is that it is possible to improve the optical efficiency while maintaining see-through performance (external transmittance). In order to improve the optical efficiency by using an array of elements having almost no wavelength selectivity such as a half mirror, the external transmittance has to be partially sacrificed. For example, in order to realize 100% optical efficiency, the end of the waveguide needs to be a mirror having 100% reflectivity. However, the external transmittance at that portion becomes 0%. On the other hand, in the volume hologram waveguide in which region division is performed, since each region has wavelength selectivity, for example, if a hologram having diffraction efficiency of 100% is recorded in each region and the relationship between the region division number K and the wavelength usage rate HM is K=1/HM, the optical efficiency HA11 is 100%, but the external transmittance does not become 0% in any region of the waveguide and becomes 1−HM. If it is possible to record the hologram having the diffraction efficiency of 100% by making the wavelength usage rate HM of each region sufficiently small (the region division number K is made sufficiently large), there is almost no decrease in the external transmittance, and there is a possibility that optical efficiency of 100% can be achieved, and it is possible to approach at least the optical efficiency of 100%.
As described above, according to this embodiment, it is possible to provide the waveguide that improves the optical efficiency while maintaining the high see-through performance, the method for manufacturing the waveguide, and the image display device using the same.
In
Incidentally, it is also possible to use the multi-layer structure of this embodiment and the region division recording of Embodiment 1 together, thereby capable of improving the optical efficiency.
Although the embodiments have been described above, the present invention is not limited to the embodiments described above and includes various modification examples. That is, the embodiments described above have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of a configuration of a certain embodiment can be replaced with a configuration of another embodiment, and the configuration of the other embodiment can be added to a configuration of a certain embodiment. Further, other configurations can be added, deleted, and substituted for a part of the configuration of each embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2018-165878 | Sep 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/026349 | 7/2/2019 | WO | 00 |