Vascular lesions within vessels in the body can be associated with an increased risk for major adverse events, such as myocardial infarction, embolism, deep vein thrombosis, stroke, and the like. Severe vascular lesions can be difficult to treat and achieve patency for a physician in a clinical setting.
Vascular lesions may be treated using interventions such as drug therapy, balloon angioplasty, atherectomy, stent placement, vascular graft bypass, to name a few. Such interventions may not always be ideal or may require subsequent treatment to address the lesion.
In a first aspect, a catheter system for imparting pressure to induce fractures in a vascular lesion within or adjacent a vessel wall includes a catheter and a first protection structure. The catheter includes an elongate shaft, a balloon and a first light guide. The balloon is coupled to the elongate shaft. The first light guide is disposed along the elongate shaft. The elongate shaft defines a first recess within the balloon. The balloon is configured to be filled with a balloon fluid. The first light guide is positioned at least partially within the balloon and is in optical communication with a light source and the balloon fluid. The first light guide includes a first portion that extends into the first recess. The first protection structure contacts the first portion of the first light guide. The light source selectively provides pulses of light through the first light guide to the balloon fluid so that plasma formation and rapid bubble formation in the balloon fluid occur, thereby imparting pressure waves upon the vascular lesion. The first protection structure is configured to provide structural protection from the pressure waves to the first portion of the first light guide.
In a second aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the first portion includes a distal tip of the first light guide, and the first protection structure is configured to provide structural protection to the distal tip of the first light guide.
In a third aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the first protection structure includes an end cap disposed about a distal portion of the first portion of the light guide and can be adhered to an outer surface of the distal portion of the first portion of the light guide with an adhesive, where the adhesive and the end cap are optically matched to the first light guide.
In a fourth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the first protection structure includes a potting material at least partially filling the first recess, where the potting material is optically matched to the first light guide.
In a fifth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the first protection structure includes a first component abutted against and fused to the distal tip of the first light guide, where the first component is optically matched to the first light guide.
In a sixth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the light guide further includes a diverting feature selected from a group can include at least one of a reflecting element, a refracting element, or a fiber diffuser.
In a seventh aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the diverting feature includes a fiber diffuser selected from a group including of a machined portion of the light guide, a laser-machined portion of the light guide, fiber Bragg gratings, a fused splicing forming at least one internal mirror, and a splicing of two or more diffuse regions.
In an eighth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, the diverting feature includes a fused splicing forming at least one internal mirror and the first light guide further includes a first light window in optical communication with the diverting feature.
In a ninth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the first light guide is an optical fiber and the light source is a laser.
In a tenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the elongate shaft defines an inflation lumen, and where the inflation lumen is in fluid communication with the balloon at a distal portion of the elongate shaft.
In an eleventh aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the first recess is a longitudinal recess along a longitudinal surface of the elongate shaft.
In a twelfth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the elongate shaft further defines a second recess within the balloon along a longitudinal surface of the elongate shaft; where a second portion of the first light guide extends into the second recess and the second portion defines a longitudinal light window disposed along a longitudinal length of the second portion and in optical communication with a first diverting feature; and where the catheter further includes a first longitudinal protection structure in contact with the second portion of the first light guide and configured to provide structural protection to the second portion in the presence of the pressure waves.
In a thirteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the first longitudinal protection structure includes a potting material at least partially disposed within the second recess, and where the potting material is optically matched to the first light guide.
In a fourteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the first longitudinal protection structure includes a sleeve disposed about the longitudinal light window and adhered to the longitudinal surface of the second portion of the first light guide with an adhesive, and where the adhesive and the sleeve are optically matched to the first light guide.
In a fifteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the first longitudinal protection structure includes a first component fused between a proximal tip of the second portion of the first light guide and a distal tip of a second light guide; where the second light guide extends in a distal direction into the second recess and includes a distal tip in the second recess; where the first light guide extends in a proximal direction into the second recess and includes a proximal tip; where the first component is abutted against and fused to the distal tip of the second light guide and the proximal tip of the second portion; and where the first component is optically matched to the first and second light guides.
In a sixteenth aspect, a catheter system for imparting pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall is included. The catheter systems can include a catheter configured to advance to the vascular lesion located within or adjacent a blood vessel, where the catheter can include an elongate shaft and a balloon coupled to the elongate shaft. The balloon can be configured to be filled with balloon fluid and configured to expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. The elongate shaft can define a first recess within the balloon. The catheter can include a first light guide disposed along the elongate shaft and within the balloon, where the first light guide can be configured to be placed in optical communication with a light source and a balloon fluid. The catheter can include a first portion of the first light guide that extends into the first recess and includes a distal tip of the first light guide. The catheter can include a first protection structure disposed within the first recess of the elongate shaft and in contact with the first portion of the light guide. The first protection structure can include a potting material filling the first recess. The light source can be configured to provide pulses of light to the balloon fluid, thereby initiating plasma formation in the balloon fluid, causing rapid bubble formation, and imparting pressure waves upon the vascular lesion. The first protection structure can be configured to provide structural protection to the first portion and distal tip of the first light guide in the presence of the pressure waves.
In a seventeenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the potting material at least partially fills the first recess and includes a potting material outer surface; and where the potting material is optically matched to the first light guide.
In an eighteenth aspect, a method for generating pressure waves to induce fractures in a vascular lesion within or adjacent a vessel wall includes the steps of: advancing a catheter to the vascular lesion, the catheter comprising an elongate shaft, a balloon coupled to the elongate shaft, and a first light guide disposed along the elongate shaft and positioned at least partially within the balloon, the first light guide being configured to be in optical communication with a light source and a balloon fluid, a first portion of the first light guide being disposed within a first recess that is defined by the elongate shaft, wherein the first portion of the first light guide is in contact with a first light guide protection structure of the catheter; expanding the balloon to a first expanded configuration; and activating a light source in optical communication with the first light guide to direct light from within the first light guide to initiate plasma formation and rapid bubble formation in the balloon, thereby imparting pressure waves upon the vascular lesion, wherein the first light guide protection structure is configured to provide structural protection from the pressure waves to the first portion of the first light guide.
In a nineteenth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, where the first portion includes a distal tip of the first light guide, and where the first protection structure is configured to provide structural protection to the distal tip of the first light guide.
In a twentieth aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, further can include, after activating the light source, further expanding the balloon from the first expanded configuration to a second further expanded configuration.
In a twenty-first aspect, in addition to one or more of the preceding or following aspects, or in the alternative to some aspects, a catheter system for imparting pressure to induce fractures in a vascular lesion within or adjacent a vessel wall includes a catheter and a first protection structure. The catheter includes an elongate shaft, a balloon and an optical fiber. The balloon is coupled to the elongate shaft. The optical fiber is disposed along the elongate shaft. The elongate shaft defines a first recess within the balloon. The balloon is configured to be filled with a balloon fluid. The optical fiber is positioned at least partially within the balloon and is in optical communication with a laser and the balloon fluid. The optical fiber includes a first portion that extends into the first recess, the first portion including a distal tip of the optical fiber. The first protection structure contacts the first portion of the optical fiber. The first protection structure can include a potting material that at least partially fills the first recess, the potting material being optically matched to the optical fiber. The laser selectively provides pulses of light through the optical fiber to the balloon fluid so that plasma formation and rapid bubble formation in the balloon fluid occur, thereby imparting pressure waves upon the vascular lesion. The first protection structure is configured to provide structural protection from the pressure waves to the distal tip of the first portion of the optical fiber.
This summary is an overview of some of the teachings of the present application and is not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details are found in the detailed description and appended claims. Other aspects will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which is not to be taken in a limiting sense. The scope herein is defined by the appended claims and their legal equivalents.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
While embodiments are susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example and drawings, and will be described in detail. It should be understood, however, that the scope herein is not limited to the particular aspects described. On the contrary, the intention is to cover modifications, equivalents, and alternatives falling within the spirit and scope herein.
Treatment of vascular lesions can reduce major adverse events or death in affected subjects. A major adverse event is one that can occur anywhere within the body due to the presence of a vascular lesion. Major adverse events can include, but are not limited to major adverse cardiac events, major adverse events in the peripheral or central vasculature, major adverse events in the brain, major adverse events in the musculature, or major adverse events in any of the internal organs.
The systems and methods disclosed herein describe the use of a catheter systems including any number of light guides for generating pressure waves within a balloon for disrupting intervascular lesions. The catheter systems herein utilize light energy to generate a plasma at or near a light guide disposed in a balloon located at a treatment site, where the treatment site can include a vascular lesion such as a calcified vascular lesion or a fibrous vascular lesion. The plasma formation can initiate a shockwave and can initiate the rapid formation of one or more bubbles that can rapidly expand to a maximum size and then dissipate through a cavitation event that can launch a shockwave upon collapse. The rapid expansion of the plasma-induced bubbles can generate one or more pressure waves within a balloon fluid and thereby impart pressure waves upon the treatment site. The pressure waves can transfer mechanical energy through an incompressible balloon fluid to a treatment site to impart a facture force on an intravascular lesion. Without wishing to be bound by any particular theory, it is believed that the rapid change in balloon fluid momentum upon a balloon wall that is in contact with an intravascular lesion is transferred to the intravascular lesion to induce fractures to the lesion.
The catheter systems herein are configured to impart pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall. The catheter systems can include a catheter configured to advance to the vascular lesion located within or adjacent a blood vessel, where the catheters include an elongate shaft. The catheters also include one or more light guides disposed along the elongate shaft and within a balloon. Each light guide can be configured to be placed in optical communication with a light source.
Light Directed Toward a Balloon Wall (
The light guides herein can be configured to include one or more diverting features configured to direct light to exit from the light guide toward a side surface portion of the light guide and toward the balloon wall. The diverting features direct light to exit in a direction away from the axis of the light guide, or in an off-axis direction. The light guides can each include one or more light windows disposed along the longitudinal or axial surfaces of each light guide and in optical communication with a diverting feature. The light windows can include a portion of the light guide that allows light to exit the light guide from within the light guide, such as a portion of the light guide lacking a cladding material on or about the light guide. The balloons herein can be coupled to the elongate shaft and can be inflated with a balloon fluid.
The balloons herein can include a balloon wall and can be configured to expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. The light source can be configured to provide sub-millisecond pulses of a light from the light source to one or more light windows, and thereby initiate plasma formation in a balloon fluid at or near the light windows to cause rapid bubble formation and to impart pressure waves upon the treatment site.
As used herein, the terms “intravascular lesion” and “vascular lesion” are used interchangeably unless otherwise noted.
It will be appreciated that the catheter systems herein can include many different forms. Referring now to
The catheter 101 can include an elongate shaft 102 and a balloon 122 coupled to the elongate shaft 102. The elongate shaft 102 can extend from a proximal portion 104 to a distal portion 106, and can also include a lumen 108. The catheter 101 can include a guidewire 126. In some embodiments, the catheter 101 includes a guidewire lumen. The elongate shaft 102 can further include an inflation lumen. Various lumen configurations and their uses will be discussed in more detail below. In some embodiments, the catheter 101 can have a distal end opening and can accommodate and be tracked over guidewire 126 to a treatment site. In some embodiments, the catheter 101 does not include a guidewire lumen. In embodiments where the elongate shaft 102 does not include a lumen to be accessed by a caregiver, the elongate shaft 102 can be configured to allow the catheter to be steered through a patient's vasculature.
The elongate shaft 102 of catheter 101 can be coupled to a first light guide 110 and a second light guide (not shown) in optical communication with a light source 116. The first light guide and second light guide can be disposed along the elongate shaft and within the balloon. It will be appreciated that the second light guide of catheter 101 can be offset from first light guide 110 by 180 degrees about the elongate shaft 102 such that it is obstructed by first light guide 110 in
The balloon 122 of catheter 101 can include a balloon wall and can expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. Expansion of the balloons herein to various expanded configurations will be discussed in more detail below. The light source 116 of catheter system 100 can be configured to provide sub-millisecond pulses of light from the light source through the at least first light window and second light window, thereby inducing plasma formation in a balloon fluid, causing rapid bubble formation, and imparting pressure waves upon the treatment site. Exemplary plasma-induced bubbles are shown as bubbles 130 in
The sub-millisecond pulses of light can be delivered to a treatment site at a frequency of from at least 1 hertz (Hz) to 5000 Hz. In some embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency from at least 30 Hz to 1000 Hz. In other embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency from at least 10 Hz to 100 Hz. In yet other embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency from at least 1 Hz to 30 Hz. In some embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency that can be greater than or equal to 1 Hz, 2 Hz, 3 Hz, 4 Hz, 5 Hz, 6 Hz, 7 Hz, 8 Hz, or 9 Hz, 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, 80 Hz, 90 Hz, 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 900 Hz, 1000 Hz, 1250 Hz, 1500 Hz, 1750 Hz, 2000 Hz, 2250 Hz, 2500 Hz, 2750 Hz, 3000 Hz, 3250 Hz, 3500 Hz, 3750 Hz, 4000 Hz, 4250 Hz, 4500 Hz, 4750 Hz, or 5000 Hz or can be an amount falling within a range between any of the foregoing.
It will be appreciated that the catheters herein can include any number of light guides in optical communication with the light source 116 at the proximal portion 104 and a balloon fluid 124 within balloon 122 at the distal portion 106. For example, in some embodiments, the catheters herein can include from one light guide to five light guides. In other embodiments, the catheters herein can include from five light guides to fifteen light guides. In yet other embodiments, the catheters herein can include from ten light guides to thirty light guides. The catheters herein can include one, two, three, four, five, six, seven, eight, nine, or ten light guides. The catheters can include 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 light guides. It will be appreciated that catheters herein can include any number of light guides that can fall within a range, wherein any of the forgoing numbers can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range. In some embodiments, the catheters herein can include more than 30 light guides. The catheter 101 can further include a manifold 114 at the proximal portion 104 that include one or more proximal end openings that can accommodate one or more light guides, such as first light guide 110, a guidewire 126, and/or an inflation conduit 112. The catheter system 100 can include an inflator 118 configured to provide inflation of the balloon 122. Suitable balloon inflation pressures for balloon 122 will be described in more detail elsewhere herein.
Catheter 101 can include a longitudinal length 128. The catheters herein will have a longitudinal axis along the elongate shaft and short axis about its circumference. The length of the catheters herein can include those having a length of from 50 cm to 175 cm. In some embodiments, the length of the catheters herein can include those having a length of from 100-160 cm. In some embodiments, the length of the catheters herein can include those having a length of 50 cm, 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 110 cm, 120 cm, 125 cm, 130 cm, 140 cm, 150 cm, 160 cm, 170 cm, or 175 cm. It will be appreciated that the catheters herein can have a usable length that can fall within a range, wherein any of the forgoing lengths can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range.
Examples of the catheters in accordance with the various embodiments herein include those having multiple light guides disposed about the elongate shaft at different positions around the circumference, as shown in
Referring now to
The light guides described herein can further include one or more diverting features (not shown in
In some embodiments herein, the light guides can include multiple diverting features. By way of example, each light guide herein can include a first diverting feature, a second diverting feature, a third diverting feature or a fourth diverting feature. In other embodiments, each light guide can include more than four diverting features. The diverting features can be configured to direct light to exit a light guide at a side surface portion thereof toward the balloon wall. In some examples, the diverting feature directs light toward the balloon surface closest to the diverting feature, so that the light does not cross the longitudinal axis of the catheter on its path to the balloon surface. It will be appreciated that the diverting features can be in optical communication with corresponding light window.
The diverting features herein can be configured to direct light in the light guide toward a side surface portion of the distal portion, where the side surface portion is in optical communication with a light window. It will be appreciated that the light guides herein can each include multiple diverting features and multiple light windows. Examples of the diverting features suitable for use herein include a reflecting element, a refracting element, and a fiber diffuser, and will be discussed in more detail below. In some embodiments, the diverting feature can be a reflecting element. In some embodiments, the diverting feature can be a refracting element. In some embodiments, the diverting feature can be a fiber diffuser. Diverting features will be discussed in more detail below and in reference to
Catheter Embodiments (
In some embodiments, the diverting features within the catheters herein can be included within the light guide at one or more regions of the distal portion. Referring now to
By way of example, light guide 600 includes a plurality of light windows including first, second, and third light windows 608, 610, and 612, respectively, positioned along the elongate shaft of the light guide 600. The first, second, and third light windows 608, 610, and 612, respectively, can be in optical communication with the first, second, and third fiber diffusers 602, 604, and 606, respectively, at a side surface portion 622 of light guide 600. Light 601 within each of the first, second, and third fiber diffusers 602, 604, and 606 is directed to exit the light guide 600 at a side surface portion 622 and out the light guides via the first, second, and third light windows 608, 610, and 612, respectively. The light windows 608, 610, and 612 of light guide 600 can be axially spaced apart with at least one intervening non-emitting portion 620 of the light guide 600 disposed between the plurality of light windows. The side surface portion 622 of the light guide 600 can be a cylindrical side surface portion.
The light can exit the light windows to provide sub-millisecond pulses of light from the light source through the at least the first, second, and third light windows 608, 610, and 612, thereby inducing plasma formation in a balloon fluid, causing rapid bubble formation, and imparting pressure waves upon the treatment site. Plasma and bubble formation is depicted in
The fiber diffusers and light windows shown in
It will be appreciated that multiple light guides, each having one or more diverting features, such as fiber diffusers, and one or more light windows can be used with the catheters herein. In some embodiments, the catheters can include a first light guide, a second light guide, a third light guide, and a fourth light guide. In other embodiments, the catheters can include more than four light guides. In an embodiment having four light guides, the distal portion of a first light guide can include a plurality of light windows including a first light window, and a plurality of fiber diffusers including a first fiber diffuser. The distal portion of a second light guide can include a plurality of light windows including a second light window, and a plurality of fiber diffusers including the second fiber diffuser. The distal portion of a third light guide can include a plurality of light windows including a third light window, and a plurality of fiber diffusers including a third fiber diffuser. The distal portion of a fourth light guide can include a plurality of light windows including a fourth light window, and a plurality of fiber diffusers including the fourth fiber diffuser. Each fiber diffuser can direct light from each light guide to exit the light guide at a side surface portion of the light guide toward the balloon wall.
The plurality of light windows can be spaced apart along the longitudinal axis of the light guides or axially along the short axis about the circumference of the light guides. In some embodiments, the plurality of light windows can be axially spaced apart with at least one intervening non-emitting portion of the light guide disposed between each of the plurality of light windows. In some embodiments, the plurality of light windows can be longitudinally spaced apart with at least one intervening non-emitting portion of the light guide disposed between each of the plurality of light windows. In yet other embodiments, the light window can span the length of the vascular lesion to be treated.
In some embodiments, the catheters herein can include diverting features, such as fiber diffusers, in combination with one or more focusing elements included within the light guide at one or more regions of the distal portion. Referring now to
The first fiber diffuser 702 can be in optical communication with a first light window 706, and the second fiber diffuser 704 can be in optical communication with a second light window 708. The light guide 700 can further include a refracting element 710 configured to focus the light 701 away from the distal tip of the light guide 700 such that the induced plasma formation occurs at a distance 712 away from the distal tip of the light guide 700 and within the balloon fluid, causing rapid bubble formation and imparting pressure waves at a treatment site. The light 701 within light guide 700 can exit the first light window 706 and the second light window 708 to deliver sub-millisecond pulses of light from the light source thereby inducing plasma formation in a volume of balloon fluid at or near the first light window 706 and second light window 708, causing rapid bubble formation, and imparting pressure waves upon the treatment site. Plasma and bubble formation is depicted in
The fiber diffusers and light windows shown in
The light guide 700 shown in
The light guides herein can include one or more diverting features disposed on one side portion of the distal portion to provide multiple selected regions within the light guide for the generation of pressure waves. A diverting feature can be included as a part of the light guide that diverts light away from its axial path through the light guide and to a side surface portion and toward a vessel wall. Referring now to
By way of example, light guide 800 includes a plurality of light windows including a first, second, and third light windows 808, 810, and 812 positioned along the elongate shaft of the light guide 800. The first, second, and third light windows 808, 810, and 812 can be in optical communication with the first, second, and third diverting features 802, 804, and 806, respectively, at a side surface portion 822 of light guide 800. Light within each of the first, second, and third diverting features 802, 804, and 806 is directed to exit the light guide 800 at a side surface portion 822 and pass through first, second, and third light windows 808, 810, and 812, respectively. The light can exit the light windows to provide sub-millisecond pulses of light from the light source through the at least first light window and second light window, thereby inducing plasma formation in a balloon fluid, causing rapid bubble formation, and imparting pressure waves upon the treatment site. Plasma and bubble formation is depicted in
In various examples, the light windows, diverting features, or both can vary in size and shape along the length of the catheter. In various examples, the light windows, diverting features, or both can be dome-shaped, square, triangular, circular, rectangular, and the like, and can increase in size moving toward the distal portion. In the example of
While the light windows and diverting features of light guide 800 are shown disposed on one side portion of light guide 800, it will be appreciated that the light windows and diverting features can be disposed in many different positions along the elongate shaft. In various examples, light windows and diverting features can be disposed opposite one another along the elongate shaft of the light guide. Referring now to
By way of example, light guide 900 includes a plurality of light windows including a first, second, third, and fourth light windows 910, 912, 916, and 918, respectively, positioned along the elongate shaft of the light guide 900. The first, second, third, and fourth light windows 910, 912, 916, and 918, respectively, can be in optical communication with the first, second, third, and fourth diverting features 902, 904, 906, and 908, respectively, at a plurality of side surface portion 922 of light guide 900. Light within each of the first, second, third, and fourth diverting features 902, 904, 906, and 908 is directed to exit the light guide 900 at a side surface portion 922 and exits through the first, second, third, and fourth light windows 910, 912, 916, and 918, respectively. Light energy can exit light windows 910, 912, 916, and 918 and induce plasma formation in a volume of balloon fluid at or near the light windows 910, 912, 916, and 918, causing rapid bubble formation, and imparting pressure waves upon the treatment site. Plasma and bubble formation is depicted in
The catheters described herein can be used in one or more methods for generating pressure waves to induce fractures in a vascular lesion within or adjacent a vessel wall of a blood vessel. Referring now to
The method 1000 includes expanding the balloon 122 from a collapsed configuration 1002 suitable for advancing the catheter 1010 through a patient's vasculature to a first expanded configuration 1004 suitable for anchoring the catheter in position relative to the treatment site 1014. The method 1000 includes, after expanding the balloon 122 to the first expanded configuration 1004, activating a light source in optical communication with each of the first light guide and the second light guide to provide sub-millisecond pulses of light from the light source to the at least first diverting feature and second diverting feature, thereby initiating plasma formation in a balloon fluid, causing rapid bubble formation, and imparting pressure waves 1016 upon the treatment site 1014.
In some embodiments, the method 1000 includes a first light guide having a first diverting feature configured to direct light to exit from the first light guide toward a side surface portion of the distal portion of the first light guide and toward the balloon wall, where the first light guide defines a first light window in optical communication with the first diverting feature.
In some embodiments, the method 1000 includes a second light guide having a second diverting feature configured to direct light to exit from the second light guide toward a side surface portion of the distal portion of the second light guide and toward the balloon wall, where the second light guide defines a second light window in optical communication with the second diverting feature.
In some embodiments, the method 1000 includes a third light guide having a third diverting feature configured to direct light to exit from the third light guide toward a side surface portion of the distal portion of the third light guide and toward the balloon wall, where the third light guide defines a third light window in optical communication with the third diverting feature.
In some embodiments, the method 1000 includes a fourth light guide having a fourth diverting feature configured to direct light to exit from the fourth light guide toward a side surface portion of the distal portion of the fourth light guide and toward the balloon wall, where the fourth light guide defines a fourth light window in optical communication with the fourth diverting feature. In some embodiments, the method 1000 includes more than four light guides.
The method 1000 can also include further expanding the balloon 122 from the first expanded configuration 1004 to a second further expanded configuration 1006. The method can include completely removing the catheter 1010 from the patient's vasculature at 1008.
The light guides and components associated therewith that are suitable to be used in the methods herein can be activated in various ways to provide a treatment to a treatment site. In some embodiments, each light guide can be activated simultaneously. In some embodiments, each light guide can be activated sequentially. By way of example, if two light guides are present, they can each be activated at the same time, they can be activated one after the other sequentially, or they can be activated in alternating pairs or another alternating fashion. The light guides can be activated once or multiple times during the course of a treatment. In an embodiment with four light guides, each of the four light guides can be activated at the same time, sequentially, in pairs, or in alternating pairs. By way of example, if four light guides are present, each with one light window, the first and third light guide and their respective light windows can form a pair that can be activated followed by activation of the second and fourth light guide and their respective light windows that can form a pair, either once each or in an ongoing alternating fashion. It will be appreciated that many configurations exist for activating multiple light guides and their respective light windows in accordance with the embodiments herein.
Vascular lesions can be present within or about a vessel wall of a blood vessel in various configurations, including surrounding the entire lumen of the vessel or surrounding a portion of the lumen of a vessel. Vascular lesions can also be present in various shapes and sizes. To provide targeted therapy to a vascular lesion, the light guides herein can be configured to be activated depending on the vascular lesion location, shape, and size. By way of example, if a vascular lesion is located partially about the circumference of a blood vessel, the light guides can be activated partially about the circumference of the catheter to match the location, size, and shape of the vascular lesion. In some embodiments, where the vascular lesion spans the entire circumference of the blood vessel, the light guides herein can be activated about the entire circumference of the blood vessel. In various embodiments, the light guides can additionally be activated to match the length and width of the vascular lesion.
The duration of the methods herein can vary according to the specific treatment site and size of a vascular lesion. In some embodiments, the total treatment time can be from one second to thirty seconds. In some embodiments, the total treatment time can be from five seconds to twenty seconds. In other embodiments, the total treatment time can be from five seconds to ten seconds.
The sub-millisecond pulses of light can be delivered to a treatment site at a frequency of from at least 1 hertz (Hz) to 5000 Hz. In some embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency from at least 30 Hz to 1000 Hz. In other embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency from at least 10 Hz to 100 Hz. In yet other embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency from at least 1 Hz to 30 Hz. In some embodiments, the sub-millisecond pulses of light can be delivered to a treatment site at a frequency that can be greater than or equal to 1 Hz, 2 Hz, 3 Hz, 4 Hz, 5 Hz, 6 Hz, 7 Hz, 8 Hz, or 9 Hz, 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, 80 Hz, 90 Hz, 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 900 Hz, 1000 Hz, 1250 Hz, 1500 Hz, 1750 Hz, 2000 Hz, 2250 Hz, 2500 Hz, 2750 Hz, 3000 Hz, 3250 Hz, 3500 Hz, 3750 Hz, 4000 Hz, 4250 Hz, 4500 Hz, 4750 Hz, or 5000 Hz or can be an amount falling within a range between any of the foregoing.
Optical Fiber Protection Configurations (
The catheter systems herein can include various configurations that include one or more protection structures configured to provide structural protection to one or more portions of the light guides herein when in the presence of the pressure waves. The catheter systems utilizing protection structures can be suitable for imparting pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall. Such catheter systems can include a catheter configured to advance to the vascular lesion located within or adjacent a blood vessel. In various configurations the catheters can include an elongate shaft and a balloon coupled to the elongate shaft. The balloon can be configured to be filled with balloon fluid and configured to expand from the collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. In the embodiments described herein, the elongate shaft can define a first recess. In some embodiments, the first recess can include a longitudinal recess along a longitudinal surface of the elongate shaft. In some embodiments, the first recess can include a distal tip recess along a longitudinal surface of the elongate shaft. Referring now to
The catheter 1100 can include a first light guide 1102 disposed along the elongate shaft 102 and within the balloon 122. The first light guide 1102 can be configured to be placed in optical communication with a light source and a balloon fluid. It will be appreciated that the first light guide 1102 can include an optical fiber and the light source can include a laser, both of which are described in more detail elsewhere herein. The light source in communication with the light guides herein can be configured to provide pulses of light 1112 to the balloon fluid, thereby initiating plasma formation in the balloon fluid, causing rapid bubble formation of bubble 1114, and imparting pressure waves upon the vascular lesion. The first light guide 1102 can include a longitudinal axis 1108.
A first portion 1104 of the first light guide 1102 can extend into the first recess 1106. In some embodiments, the first portion 1104 includes a distal tip 1116 of the first light guide 1102. The catheter 1100 can include a first protection structure 1110 disposed within the first recess 1106 of the elongate shaft 102 and in contact with the first portion 1104 of the light guide 1102. The first protection structure 1110 can be configured to provide structural protection to the first portion 1104 of the first light guide 1102. In some embodiments, the first protection structure 1110 can be configured to provide structural protection to the first portion 1104, when the first portion 1104 is a distal tip 1116 of a light guide. In other embodiments, the first protection structure 1110 can be configured to provide structural protection to the first portion 1104, when the first portion 1104 is a longitudinal portion of a light guide. The first protection structure 1110 can be configured to provide structural protection to the first portion 1104 of the first light guide 1102 in the presence of the pressure waves. In some examples, the first protection structure 1110 includes a potting material filling the first recess 1106, where the potting material is optically matched to the first light guide 1102. It will be appreciated that in some embodiments, the potting material filling the first recess 1106 is not optically matched and can serve as a diverting feature.
As the term is used herein, two materials are “optically matched” if those materials have indices of refraction that are the same when expressed to two decimal places. In other embodiments herein, two materials are not optically matched, or are “optically mismatched”, when the two materials that have indices of refraction that are different when expressed to two decimal places.
The light guide 1102 of catheter 1100 can further include a first diverting feature 1118 selected from the group including at least one of a reflecting element, a refracting element, or a fiber diffuser, as will be discussed elsewhere herein. In various embodiments, the diverting feature can include a fiber diffuser selected from a group including of a machined portion of the light guide, a laser-machined portion of the light guide, fiber Bragg gratings, a fused splicing forming at least one internal mirror, and a splicing of two or more diffuse regions. In some embodiments, diverting feature 1118 of catheter 1100 can include a fused splicing forming at least one internal mirror, where the first light guide can include a first longitudinal light window 1120 disposed along a longitudinal length of light guide and in optical communication with the first diverting feature 1118.
It will be appreciated that the first portion of the light guides herein that extend into the recess defined by the elongate shaft can include a part of the light guide that extends into the recess, the entire portion of the light guide that extends into recess, or any portion that overlaps with or is present within the recess. In some examples, multiple portions of the light guides herein can extend into more than one recess along the elongate shaft to form a second portion, a third portion, a fourth portion, and the like, of the light guide present within a second recess, a third recess, a fourth recess, and the like.
Multiple recesses defined along the longitudinal length of the catheters herein can be suitable for use with one or more light guides disposed along the length of the elongate shaft to provide multiple locations where light can be directed from the light guides. Referring now to
The second portion 1214 of the first light guide 1202 and the second portion 1218 of the second light guide 1204 each extend through the entire length of the respective second recesses 1206 and 1208. The first light guide 1202 and the second light guide 1204 each extend into multiple recesses. By way of example, the first portion 1216 of the first light guide 1202 and the first portion 1220 of the second light guide 1204 each extend partially into the recesses first 1210 and 1212 such that the first portion 1216 of the first light guide 1202 includes a distal tip of the first light guide 1202 and the first portion 1220 of the second light guide 1204 includes a distal tip of the second light guide 1204. It will be appreciated that the first light guide 1202 and the second light guide 1204 are depicted as being disposed 180 degrees about the circumference of the elongate shaft, however, the first light guide 1202 and the second light guide 1204 can be disposed about the elongate shaft in many configurations as discussed elsewhere herein.
In the configuration in
The protection structures suitable for use herein can be tailored to various configurations dependent on if the portion of the light guide to be protected is a distal tip or a longitudinal portion. Referring now to the embodiments in
In the configuration in
In the configuration in
In the configuration in
In the configuration in
It will be appreciated that the balloons, light guides, and elongate shafts suitable for use with the protection structures can include any of those described elsewhere herein. In various embodiments, the elongate shaft defines an inflation lumen, where the inflation lumen is in fluid communication with the balloon at a distal portion of the elongate shaft.
In an example, a catheter system for imparting pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall is provided. The catheter system can include a catheter configured to advance to the vascular lesion located within or adjacent a blood vessel. The catheter can include an elongate shaft and a balloon coupled to the elongate shaft. The balloon can be configured to be filled with balloon fluid and configured to expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a treatment site. The elongate shaft can define a first recess within the balloon. The catheter can include a first light guide disposed along the elongate shaft and within the balloon, the first light guide configured to be placed in optical communication with a light source and a balloon fluid. A first portion of the first light guide can extend into the first recess and can include a distal tip of the first light guide. The catheter can also include a first protection structure disposed within the first recess of the elongate shaft and in contact with the first portion of the light guide, where the first protection structure includes a potting material filling the first recess, where the potting material is optically matched to the first light guide. It will be appreciated that in some embodiments, the first protection structure is not optically matched.
The catheter system can include a light source that is configured to provide pulses of light to the balloon fluid, thereby initiating plasma formation in the balloon fluid, causing rapid bubble formation, and imparting pressure waves upon the vascular lesion. The first protection structure can be configured to provide structural protection to the first portion and distal tip of the first light guide in the presence of the pressure waves. In some embodiments, the first protection structure can include a potting material that fills the first recess and includes a potting material outer surface that is flush with an outer surface of the elongate shaft. In some embodiments, the first protection structure can include a potting material that partially fills the first recess and includes a potting material outer surface that is not flush with the outer surface of the elongate shaft. In yet other embodiments, the first protection structure can include a potting material that over fills the first recess and includes a potting material outer surface that forms a dome-shaped surface that extends past an outer surface of the elongate shaft, and in some embodiments the dome-shaped surface of the potting material can act as a focusing element.
The various protection structures described herein can include, but are not to be limited to, end cap protection structures, sleeve protection structures, potting material protection structures, and fused component protection structures. The protection structures can be configured to protect a portion of a light guide that can include a distal tip, a longitudinal portion, or both. In one embodiment for protection of a distal tip, an end cap protection structure can include an annular cylinder shape about a distal tip of a light guide. In one embodiment, the distal tip of the first light guide can be flush with a distal tip of the end cap and not obstructed by the end cap. In other embodiments, the distal tip of the first light guide can be flush with a distal tip of the end cap and covered by an optically matched material. In another embodiment for protection of a distal tip, a protection structures that includes potting material can be used to cover the entire outer surface of a distal tip. In various embodiments, the potting material can fill the recess so that an outer surface of the potting material is continuous with an outer surface of the elongate shaft. In some embodiments, a potting material can completely surround a distal tip of the first light guide. In other embodiments, a potting material can partially surround a distal tip of the first light guide. In yet another embodiment for protecting a distal tip, the protection structures can include fused components, where the fused component can include a solid cylindrical shape. In some embodiments, the fused component material can be harder and more durable than the material of the light guides herein. In some embodiments, the fused component can include a material such as a glass, sapphire, diamond, and the like.
Various examples of protection structures suitable for protecting a longitudinal portion of a light guide disposed in a recess can include a sleeve, a potting material, and a fused component. In one embodiment for protection of longitudinal portion of a light guide, a sleeve protection structure can include an annular cylinder shape disposed about a longitudinal portion of a light guide. In various embodiments, the potting material can fill the recess so that an outer surface of the potting material is continuous with an outer surface of the elongate shaft. In some embodiments, a potting material can completely surround a longitudinal portion of the first light guide. In other embodiments, a potting material can partially surround a longitudinal portion of the first light guide. In some embodiments, the potting material can fill a recess and include a potting material outer surface that is flush with the outer surface of the elongate shaft. In some embodiments, the potting material can partially fill a recess and include a potting material outer surface that is not flush with the outer surface of the elongate shaft. In yet other embodiments, the potting material can over fill a recess and include a potting material outer surface that forms a dome-shaped surface that extends past an outer surface of the elongate shaft, and in some embodiments the dome-shaped surface can act as a focusing element. In yet another embodiment for protecting a longitudinal portion, the protection structures can include fused components, where the fused component can include a solid cylindrical shape disposed between two light guides. In some embodiments, the fused component material can be harder and more durable than the material of the light guides herein. In some embodiments, the fused component can include a material such as a glass, sapphire, diamond, and the like. In some examples, the first longitudinal protection structure is completely within the first longitudinal recess. In some examples, the first longitudinal protection structure protrudes from the first longitudinal recess.
The light guides including protection structures as described can be used in various methods for generating pressure waves to induce fractures in a vascular lesion within or adjacent a vessel wall of a blood vessel. In one embodiment, the method can include advancing a catheter to a vascular lesion within the blood vessel, where the catheter includes an elongate shaft, a balloon coupled to the elongate shaft, and at least a first light guide disposed along the elongate shaft within the balloon. The first light guide can be configured to be placed in optical communication with a light source and a balloon fluid. A first portion of the first light guide can be disposed within a first recess defined by the elongate shaft, where the first portion of the first light guide can be in contact with a first light guide protection structure. The method can include expanding the balloon from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a vascular lesion. The method can include, after expanding the balloon, activating a light source in optical communication with the first light guide to direct light from within the first light guide to initiate plasma formation in the balloon fluid and to cause rapid bubble formation, thereby imparting pressure waves upon the vascular lesion, wherein the first light guide protection structure is configured to provide structural protection to the distal tip in the presence of the pressure waves. In some embodiments, the method can include catheters where the first portion includes a distal tip of the first light guide, and where the first protection structure can be configured to provide structural protection to the distal tip of the first light guide. In various embodiments, the method can include, after activating the light source, further expanding the balloon from the first expanded configuration to a second further expanded configuration.
Focusing Element Configurations (
The catheter systems herein can include various focusing elements to direct light from within a light guide to a location away from the light guide. Light directed to a location away from the light guide can initiate a plasma formation within a balloon fluid at the location. The catheter systems including focusing elements are designed to impart pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall. Beneficial therapy effects may be enjoyed by initiating the plasma formation at a location away from the light guide instead of immediately adjacent to the light guide. The light guide may be less likely to be damaged by the plasma initiation event, the resulting pressure, or the resulting bubble dynamics if the plasma formation location is at a location away from the light guide rather than immediately adjacent to the light guide.
As discussed elsewhere herein, the catheter systems can include a catheter that can be configured to advance to the vascular lesion located within or adjacent a blood vessel. The catheter can include an elongate shaft and a balloon coupled to the elongate shaft. The balloon can include a balloon wall and it can be configured to expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a vascular lesion. The catheters herein can include a first light guide disposed along the elongate shaft and within the balloon, where the first light guide can be configured to be placed in optical communication with a light source and a balloon fluid. It will be appreciated that the first light guide can include an optical fiber and the light source can include a laser, both of which are described in more detail elsewhere herein.
The first light guide can include at least a first focusing element located at a distal portion of the first light guide within a balloon and in optical communication with the light source. Referring now to
In the configuration shown in
pressure waves upon the vascular lesion. The first location 1912 can be spaced away from the distal tip 1904 and centered on a longitudinal axis 1908 of the first light guide 1902. The formation of plasma and bubble 1916 within the balloon fluid can originate at the first location 1912 at a first distance 1914 spaced away from the distal tip 1904 and centered on a longitudinal axis 1908 of the first light guide 1902. The first light guide 1902 can also include a first diverting feature (not shown) in optical communication with the focusing element and located at a distal portion of the first light guide, where the diverting feature is configured to direct light from within the first light guide toward a first focusing element and toward the balloon wall away from, or off of, the longitudinal axis.
In some embodiments, the first light guide 1902 can include a second focusing element located at a distal portion of the first light guide, where the second focusing element can be configured to direct light from within the first light guide to a second location at a second distance away from the distal portion of the first light guide to initiate plasma formation in the balloon fluid away from the distal portion and to cause rapid bubble formation, thereby imparting pressure waves upon the vascular lesion. The second focusing element may also be located on the distal tip along with the first focusing element 1906, such as the embodiment described with respect to
In addition or alternatively, in other embodiments, catheter 1900 can include a second light guide coupled to the elongate shaft. The second light guide can be in optical communication with a light source and a balloon inflation fluid, where the second light guide can be in optical communication with the light source and the balloon inflation fluid. The second light guide can include a focusing element of the second light guide located at a distal portion of the second light guide and in optical communication with the light source. The focusing element of the second light guide can be configured to direct light from within the second light guide to a second location at a second distance from the distal portion of the second light guide to initiate plasma formation in the balloon fluid away from the distal portion and to cause rapid bubble formation, thereby imparting pressure waves upon the vascular lesion. It will be appreciated that multiple light guides, each having multiple focusing elements, can be used in the catheter systems herein.
The focusing elements herein can direct light from within a light guide to one or more locations at a distance of at least 1 micrometers (μm) and at most 1 millimeters (mm) away from the distal tip of the first light guide. In an embodiment, the focusing elements herein can direct light from within a light guide to one or more locations at a distance of at least 10 μm and at most 1 mm away from the distal tip of the first light guide. In some embodiments, the focusing elements herein can direct light from within a light guide to a distance of greater than or equal to 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm, away from the distal tip of the first light guide, or can be an amount falling within a range between any of the foregoing. In some embodiments, the focusing elements herein can direct light from within a light guide to one or more locations at a distance greater than 1 mm.
The light guides suitable for use in the catheter systems herein can include multiple focusing elements in a distal portion, as will be discussed in reference to
In the configuration in
The first focusing element 2104 can be configured to direct light 2110 from within the light guide 2100 to a first location 2116 at a first distance 2112 from the first light guide 2100, which is spaced away from the longitudinal axis 2108 of the light guide 2100 to initiate plasma formation in the balloon fluid at the first location 2116 and to cause rapid bubble 2120 formation, thereby imparting pressure waves upon the vascular lesion. The second focusing element 2106 can be configured to direct light 2110 from within the light guide 2100 to a second location 2118 at a second distance 2114 from the first light guide 2100, which is spaced away from the longitudinal axis 2108 of the light guide 2100 to initiate plasma formation in the balloon fluid away at the second location 2118 and to cause rapid bubble 2122 formation, thereby imparting pressure waves upon the vascular lesion. In the embodiment shown in
Diverting features suitable for use with the focusing elements herein such as the embodiment of
The focusing elements can be located at a distal tip of the light guides herein or disposed along the longitudinal axis of the light guides. The focusing elements described herein can be present in a distal tip of the light guides or along one or more locations along a longitudinal portion of the light guides.
The light guides including focusing elements as described can be used in various methods for generating pressure waves to induce fractures in a vascular lesion within or adjacent a vessel wall of a blood vessel. In one embodiment, the method can include advancing a catheter to a vascular lesion within the blood vessel, where the catheter includes an elongate shaft, a balloon coupled to the elongate shaft, and at least a first light guide disposed along the elongate shaft within the balloon. The first light guide can be configured to be placed in optical communication with a light source and a balloon fluid. a first light guide with a first focusing element located at a distal portion of the first light guide. The method can include expanding the balloon from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a vascular lesion. The method can further include, after expanding the balloon, activating a light source in optical communication with the first light guide to direct light from within the first light guide to a first location at a first distance away from the distal portion of the first light guide to initiate plasma formation in the balloon fluid away from the distal portion and to cause rapid bubble formation, thereby imparting pressure waves upon the vascular lesion. The first location is spaced away from the distal tip and is centered on a longitudinal axis of the first light guide. In various embodiments, the first location can be spaced away from the distal end of the light guide such that it is off-axis from the longitudinal axis of the light guide, or away from the longitudinal axis of the light guide. The method can further include, after activating the light source, further expanding the balloon from the first expanded configuration to a second further expanded configuration.
Fortified Balloon Inflation Fluids (
The balloons herein can be inflated with a fortified balloon inflation fluid that is configured to reduce a threshold for inducing plasma formation in the fortified balloon inflation fluid when compared to a base inflation fluid. The fortified balloon inflation fluid can be used in the catheter systems embodied herein. Briefly, the fortified balloon inflation fluid can be used in a catheter system for imparting pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall. The catheter systems can include a catheter that can be configured to advance to the vascular lesion located within or adjacent a blood vessel. The catheter can include an elongate shaft, where a balloon can be coupled to the elongate shaft, and where the balloon includes a balloon wall. The elongate shaft can define an inflation lumen, where the inflation lumen can be in fluid communication with the balloon at a distal portion of the elongate shaft and in fluid communication with a fluid source at a proximal end of the elongate shaft. The balloon can be configured to expand from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a vascular lesion. The balloon can also be configured to expand to a second further expanded configuration. The catheter suitable for use with the fortified balloon inflation fluid can assume many configurations as discussed elsewhere herein.
The fortified balloon inflation fluids described herein can include a base inflation fluid and a fortification component. The fortification component can reduce a threshold for inducing plasma formation in the fortified balloon inflation fluid compared to the base inflation fluid. In some embodiments, the fortification component can include carbon or iron. In some embodiments the fortification element can include iron dextran. In other embodiments, the fortification component can include carbon. In yet other embodiments, the fortification component can include nanoparticles. Various examples of fortification components suitable for use herein include, but are not to be limited to, iron nanoparticles, gold nanoparticles, copper nanoparticles, carbon nanoparticles, carbon nanotubes, including, but not to be limited to single walled carbon nanotubes or double walled carbon nanotubes or mixtures thereof, gold-coated carbon nanotubes, or copper-coated carbon nanotubes. The fortification component can modify various physical parameters of the fortified balloon inflation fluid, such as, but not limited to, viscosity, density, or surface tension. The fortification component can be configured to increase or decrease one or more the viscosity, density, or surface tension of the fortified balloon inflation fluid compared to the base inflation fluid.
The base inflation fluids herein can include those having a mixture of saline and contrast medium. The ratios of the saline and contrast medium can be tailored for treatment at vascular lesion within a vessel wall. In some embodiment, the saline and contrast medium can be present within the base inflation fluid in a ratio of saline to contrast medium of 25:75 volume percent to 75:25 volume percent. In some examples, the ratio of saline to contrast medium within the base inflation fluid can be 25:75 volume percent. In other examples, the ratio of saline to contrast medium within the base inflation fluid can be 50:50 volume percent. In yet other examples, the ratio of saline to contrast medium within the base inflation fluid can be 75:25 volume percent.
Fortified balloon inflation fluids having iron dextran as the fortification component can include a concentration of iron dextran from at least 0.0001 (millimole per liter) mmol/L to 1.0 mmol/L. In some embodiments, the concentration of iron dextran can be greater than or equal to 0.0001 mmol/L, 0.0002 mmol/L, 0.0003 mmol/L, 0.0004 mmol/L, 0.0005 mmol/L, 0.0006 mmol/L, 0.0007 mmol/L, 0.0008 mmol/L, 0.0009 mmol/L, 0.001 mmol/L, 0.002 mmol/L, 0.003 mmol/L, 0.004 mmol/L, 0.005 mmol/L, 0.006 mmol/L, 0.007 mmol/L, 0.008 mmol/L, 0.009 mmol/L, 0.01 mmol/L, 0.02 mmol/L, 0.03 mmol/L, 0.04 mmol/L, 0.05 mmol/L, 0.06 mmol/L, 0.07 mmol/L, 0.08 mmol/L, 0.09 mmol/L, 0.1 mmol/L, 0.2 mmol/L, 0.3 mmol/L, 0.4 mmol/L, 0.5 mmol/L, 0.6 mmol/L, 0.7 mmol/L, 0.8 mmol/L, 0.9 mmol/L, or 1.0 mmol/L or can be an amount falling within a range including any of the foregoing.
Fortified balloon inflation fluids having nanoparticles as the fortification component can include a concentration of nanoparticles from at least 0.01 weight per volume percent (w/v %) to 15 w/v %. In some embodiments, the concentration of nanoparticles present in the fortified balloon inflation fluids can be greater than or equal to 0.01 w/v %, 0.02 w/v %, 0.03 w/v %, 0.04 w/v %, 0.05 w/v %, 0.06 w/v %, 0.07 w/v %, 0.08 w/v %, 0.09 w/v %, 0.10 w/v %, 0.2 w/v %, 0.3 w/v %, 0.4 w/v %, 0.5 w/v %, 0.6 w/v %, 0.7 w/v %, 0.8 w/v %, 0.9 w/v %, 1 w/v %, 2 w/v %, 3 w/v %, 4 w/v %, 5 w/v %, 6 w/v %, 7 w/v %, 8 w/v %, 9 w/v %, 10 w/v %, 11 w/v %, 12 w/v %, 13 w/v %, 14 w/v %, or 15 w/v %, or can be an amount falling within a range including any of the foregoing.
The fortified balloon inflation fluid can be used in catheter systems herein that include a first light guide disposed along the elongate shaft and within the balloon, where the first light guide can be configured to be placed in optical communication with a light source and the fortified balloon inflation fluid. The fortified balloon inflation fluid can be used in catheter systems herein that include a second light guide, a third light guide, a fourth light guide, or more than four light guides. The light guides suitable for use with the fortified balloon inflation fluid can include any of the light guides configured as described elsewhere herein. The light source used with the fortified balloon inflation fluid can be configured to provide sub-millisecond pulses of a light from the light source to at least the first light guide, thereby initiating plasma formation in the fortified balloon inflation fluid, causing rapid bubble formation, and imparting pressure waves upon the vascular lesion.
The fortification component can be included as a coating on one or more surfaces of the catheter systems herein, where it can be solvated by a base inflation fluid prior to use in treatment at a vascular lesions. Referring now to FIG. 22, a longitudinal cross section of a catheter 2200 is shown in accordance with various embodiments herein. The catheter 2200 can be used in a catheter system for imparting pressure to induce fractures in a vascular lesion within or adjacent a blood vessel wall. The catheter 2200 can be configured to advance to the vascular lesion located within or adjacent a blood vessel. The catheter 2200 can include an elongate shaft 102 and a balloon 122 coupled to the elongate shaft 102. The balloon 122 can include a balloon wall. The catheter 2200 can include a fortification component coating 2202 disposed on an inside surface of the balloon wall and in fluid communication with a base inflation fluid. The fortification component coating 2202 can include a fortification component that comprises carbon or iron, as discussed herein.
The balloon 122 of catheter 2200 can be configured to expand from a collapsed configuration suitable for advancing the catheter 2200 through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter 2200 in position relative to a vascular lesion. The balloon 122 of catheter 2200 can be inflated with a base inflation fluid, where the base inflation fluid is configured to solvate the fortification component coating 2202 on the inside surface of the balloon wall to form a fortified balloon inflation fluid. The fortification component of the fortified balloon inflation fluid can be configured to reduce a threshold for inducing plasma formation in the fortified balloon inflation fluid compared to the base inflation fluid.
The catheter 2200 can include a first light guide 2204 disposed along the elongate shaft 102 and within the balloon 122, the first light guide 2204 can be configured to be placed in optical communication with a light source and the fortified balloon inflation fluid. The catheter 2200 can also include a second light guide coupled to the elongate shaft, where the second light guide can be in optical communication with the light source and the fortified balloon inflation fluid. The light source can be configured to provide sub-millisecond pulses of light from the light source to at least the first light guide 2204, and if present any additional light guides, thereby initiating plasma formation in the fortified balloon inflation fluid, causing rapid bubble formation, and imparting pressure waves upon the vascular lesion. The first light guide 2204 can be an optical fiber and the light source can be a laser, both of which are described in more detail elsewhere herein.
The catheters herein can also include a fortification component within a fortification component coating disposed along the elongate shaft. Referring now to
The balloon 122 of catheter 2300 can be configured to expand from a collapsed configuration suitable for advancing the catheter 2300 through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter 2300 in position relative to a vascular lesion. The balloon 122 of catheter 2300 can be inflated with a base inflation fluid, where the base inflation fluid is configured to solvate the fortification component coating 2302 disposed on a surface of the elongate shaft to form a fortified balloon inflation fluid. The fortification component of the fortified balloon inflation fluid can be configured to reduce a threshold for inducing plasma formation in the fortified balloon inflation fluid compared to the base inflation fluid.
The catheter 2300 can include a first light guide 2304 disposed along the elongate shaft 102 and within the balloon 122, the first light guide 2304 can be configured to be placed in optical communication with a light source and the fortified balloon inflation fluid. The catheter 2300 can also include a second light guide coupled to the elongate shaft, where the second light guide can be in optical communication with the light source and the fortified balloon inflation fluid. The light source can be configured to provide sub-millisecond pulses of light from the light source to at least the first light guide 2304, and if present any additional light guides, thereby initiating plasma formation in the fortified balloon inflation fluid, causing rapid bubble formation, and imparting pressure waves upon the vascular lesion. The first light guide 2304 can be an optical fiber and the light source can be a laser, both of which are described in more detail elsewhere herein.
The fortified balloon inflation media described can be used in various methods for generating pressure waves to induce fractures in a vascular lesion within or adjacent a vessel wall of a blood vessel. In one embodiment, the method can include advancing a catheter to a vascular lesion within the blood vessel, where the catheter includes an elongate shaft, a balloon coupled to the elongate shaft, and at least a first light guide disposed along the elongate shaft within the balloon. The method can include expanding the balloon from a collapsed configuration suitable for advancing the catheter through a patient's vasculature to a first expanded configuration suitable for anchoring the catheter in position relative to a vascular lesion. The step of expanding the balloon can include expanding the balloon with a fortified balloon inflation fluid including a base inflation fluid and a fortification component, where the fortification component can be configured to reduce a threshold for inducing plasma formation in the fortified balloon inflation fluid compared to the base inflation fluid. In various embodiments, the method of expanding the balloon can include providing the fortification component as a coating disposed on an inside surface of a balloon wall or on the elongate shaft, where the fortification component coating is in fluid communication with the base inflation fluid, and providing the base inflation fluid to the balloon, where the base inflation fluid solvates the fortification component coating to form the fortified balloon inflation fluid.
The fortification component can include carbon or iron, where the fortification component can include, but is not to be limited to, iron dextran or nanoparticles. Some exemplary nanoparticles include iron nanoparticles, gold nanoparticles, copper nanoparticles, carbon nanoparticles, carbon nanotubes, including, but not to be limited to single walled carbon nanotubes or double walled carbon nanotubes or mixtures thereof, gold-coated carbon nanotubes, or copper-coated carbon nanotubes. In various embodiments, after expanding the balloon, the method can include activating a light source in optical communication with the light guide and the fortified balloon inflation fluid to provide sub-millisecond pulses of light from the light source to the fortified balloon inflation fluid, thereby initiating plasma formation in a fortified balloon inflation fluid and causing rapid bubble formation, and imparting pressure waves upon the vascular lesion. In some embodiments, after activating the light source, the method can include further expanding the balloon from the first expanded configuration to a second further expanded configuration. In other embodiments, after activating the light source, the method can include further expanding the balloon from the first expanded configuration to a second further expanded configuration.
The light sources herein can be configured to generate sub-millisecond pulses of light to be delivered to a treatment site at a frequency of from at least 1 hertz (Hz) to 5000 Hz. In some embodiments, the light sources herein can be configured to generate sub-millisecond pulses of light to be delivered to a treatment site at a frequency from at least 30 Hz to 1000 Hz. In other embodiments, the light sources herein can be configured to generate the sub-millisecond pulses of light to be delivered to a treatment site at a frequency from at least 10 Hz to 100 Hz. In yet other embodiments, the light sources herein can be configured to generate sub-millisecond pulses of light to be delivered to a treatment site at a frequency from at least 1 Hz to 30 Hz. In some embodiments, the light sources herein can be configured to generate sub-millisecond pulses of light to be delivered to a treatment site at a frequency that can be greater than or equal to 1 Hz, 2 Hz, 3 Hz, 4 Hz, 5 Hz, 6 Hz, 7 Hz, 8 Hz, or 9 Hz, 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, 80 Hz, 90 Hz, 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 900 Hz, 1000 Hz, 1250 Hz, 1500 Hz, 1750 Hz, 2000 Hz, 2250 Hz, 2500 Hz, 2750 Hz, 3000 Hz, 3250 Hz, 3500 Hz, 3750 Hz, 4000 Hz, 4250 Hz, 4500 Hz, 4750 Hz, or 5000 Hz or can be an amount falling within a range between any of the foregoing.
Balloons
The balloons suitable for use in the catheter systems herein include those that can be passed through the vasculature of a patient when in a collapsed configuration. In some embodiments, the balloons herein are made from silicone. In other embodiments, the balloons herein are made from polydimethylsiloxane (PDMS), polyurethane, polymers such as PEBAX™ material available from Arkema, which has a location at King of Prussia, Pennsylvania, USA, nylon, and the like. In some embodiments, the balloons can include those having diameters ranging from 1 millimeter (mm) to 25 mm in diameter. In some embodiments, the balloons can include those having diameters ranging from at least 1.5 mm to 12 mm in diameter. In some embodiments, the balloons can include those having diameters ranging from at least 1 mm to 5 mm in diameter. In some embodiments, the diameter can be greater than or equal to 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm, 5.5 mm, 6.0 mm, 6.5 mm, 7.0 mm, 7.5 mm, 8.0 mm, 8.5 mm, 9.0 mm, 9.5 mm, 10.0 mm, 10.5 mm, 11.0 mm, 11.5 mm, 12.0 mm, 12.5 mm, 13.0 mm, 13.5 mm, 14.0 mm, 14.5 mm, 15.0 mm, 15.5 mm, 16.0 mm, 16.5 mm, 17.0 mm, 17.5 mm, 18.0 mm, 18.5 mm, 19.0 mm, 19.5 mm, or 20.0 mm, or can be an amount falling within a range between any of the foregoing.
In some embodiments, the balloons herein can include those having a length ranging from at least 5 mm to 300 mm in length. In some embodiments, the balloons herein can include those having a length ranging from at least 8 mm to 200 mm in length. In some embodiments, the length of the balloon can be greater than or equal to 5 mm, 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, 110 mm, 120 mm, 130 mm, 140 mm, 150 mm, 160 mm, 170 mm, 180 mm, 190 mm, 200 mm, 210 mm, 220 mm, 230 mm, 240 mm, 250 mm, 260 mm, 270 mm, 280 mm, 290 mm, or 300 mm, or can be an amount falling within a range between any of the foregoing.
The balloons herein can be inflated to inflation pressures from 1 atmosphere (atm) to 70 atm. In some embodiments, the balloons herein can be inflated to inflation pressures of from at least 20 atm to 70 atm. In some embodiments, the balloons herein can be inflated to inflation pressures of from at least 6 atm to 20 atm. In some embodiments, the balloons herein can be inflated to inflation pressures of from at least 3 atm to 20 atm. In some embodiments, the balloons herein can be inflated to inflation pressures of from at least 2 atm to 10 atm. In some embodiments, the balloons herein can be inflated to inflation pressures that can be greater than or equal to 1 atm, 2 atm, 3 atm, 4 atm, 5 atm, 6 atm, 7 atm, 8 atm, 9 atm, 10 atm, 15 atm, 20 atm, 25 atm, 30 atm, 35 atm, 40 atm, 45 atm, 50 atm, 55 atm, 60 atm, 65 atm, or 70 atm, or can be an amount falling within a range between any of the foregoing.
The balloons herein can include those having various shapes, including, but not to be limited to, a conical shape, a square shape, a rectangular shape, a spherical shape, a conical/square shape, a conical/spherical shape, an extended spherical shape, an oval shape, a tapered, shape, a bone shape, a stepped diameter shape, an offset shape, or a conical offset shape. In some embodiments, the balloons herein can include a drug eluting coating or a drug eluting stent structure. The drug elution coating or drug eluting stent can include one or more therapeutic agents including anti-inflammatory agents, anti-neoplastic agents, anti-angiogenic agents, and the like.
Balloon Fluids
Exemplary balloon fluids suitable for use herein can include, but are not to be limited to one or more of water, saline, contrast medium, fluorocarbons, perfluorocarbons, gases, such as carbon dioxide, and the like. In some embodiments, the balloon fluids described can be used as base inflation fluids, discussed elsewhere herein. In some embodiments, the balloon inflation fluids include a mixture of saline to contrast medium in a volume ratio of 50:50. In some embodiments, the balloon fluids include a mixture of saline to contrast medium in a volume ratio of 25:75. In some embodiments, the balloon fluids include a mixture of saline to contrast medium in a volume ratio of 75:25. The balloon fluids suitable for use herein can be tailored on the basis of composition, viscosity, and the like in order to manipulate the rate of travel of the pressure waves therein. The balloon fluids suitable for use herein are biocompatible. A volume of balloon fluid can be tailored by the chosen light source and the type of balloon fluid used.
In some embodiments, the contrast agents used in the contrast media herein can include, but are not to be limited to, iodine-based contrast agents, such as ionic or non-ionic iodine-based contrast agents. Some non-limiting examples of ionic iodine-based contrast agents include diatrizoate, metrizoate, iothalamate, and ioxaglate. Some non-limiting examples of non-ionic iodine-based contrast agents include iopamidol, iohexol, ioxilan, iopromide, iodixanol, and ioversol. In other embodiments, non-iodine based contrast agents can be used. Suitable non-iodine containing contrast agents can include gadolinium (III)-based contrast agents. Suitable fluorocarbon and perfluorocarbon agents can include, but are not to be limited to, agents such as the perfluorocarbon dodecafluoropentane (DDFP, C5F12).
The balloon fluids herein can include those that include absorptive agents that can selectively absorb light in the ultraviolet (e.g., at least 10 nanometers (nm) to 400 nm), visible region (e.g., at least 400 nm to 780 nm), and near-infrared region of the electromagnetic spectrum (e.g., at least 780 nm to 2.5 μm), or in the far-infrared region of the electromagnetic spectrum of at least 10 nm to 2.5 micrometers (μm). Suitable absorptive agents can include those with absorption maxima along the spectrum from at least 10 nm to 2.5 μm. In various embodiments, the absorptive agent can be those that have an absorption maximum matched with the emission maximum of the laser used in the catheter system. By way of non-limiting examples, various lasers described herein can include neodymium:yttrium-aluminum-garnet (Nd:YAG−emission maximum=1064 nm) lasers. holmium:YAG (Ho:YAG−emission maximum=2.1 μm) lasers, or erbium:YAG (Er:YAG−emission maximum=2.94 μm). In some embodiments, the absorptive agents used herein can be water soluble. In other embodiments, the absorptive agents used herein are not water soluble. In some embodiments, the absorptive agents used in the balloon fluids herein can be tailored to match the peak emission of the light source. Various light sources having emission wavelengths of at least 10 nanometers to 1 millimeter are discussed elsewhere herein.
In some embodiments, introduction of the balloon fluid causes the expansion of the balloon from a collapsed configuration to a first expanded configuration and from a first expanded configuration to a second further expanded configuration. In addition or alternatively, the expansion of the balloon can be accomplished using a shape-memory material or other means.
Light Guides (
The light guides herein can include an optical fiber or flexible light pipe. The light guides herein can be thin and flexible and can allow light signals to be sent with very little loss of strength. The light guides herein can include a core surrounded by a cladding about its circumference. In some embodiments, the core can be a cylindrical core or a partially cylindrical core. The core and cladding of the light guides can be formed from one or more materials, including but not limited to one or more types of glass, silica, or one or more polymers. The light guides may also include a protective coating, such as a polymer. It will be appreciated that the index of refraction of the core will be greater than the index of refraction of the cladding.
Each light guide can guide light along its length to a distal portion having at least one optical window. The light guides can create a light path as portion of an optical network including a light source. The light path within the optical network allows light to travel from one part of the network to another. Both the optical fiber or the flexible light pipe can provide a light path within the optical networks herein.
The light guides herein can assume many configurations about the elongate shaft of the catheters described herein. In some embodiments, the light guides can run parallel to the longitudinal axis of the elongate shaft of the catheter. In some embodiments, the light guides can be disposed spirally or helically about the longitudinal axis of the elongate shaft of the catheter. In some embodiments, the light guides can be physically coupled to the elongate shaft. In other embodiments, the light guides can be disposed along the length of the outer diameter of the elongate shaft. In yet other embodiments the light guides herein can be disposed within one or more light guide lumens within the elongate shaft. Various configurations for the elongate shafts and light guide lumens will be discussed below.
The light guides herein can include various configurations at a distal portion of the light guide. Referring now to
In some embodiments, a diverting feature can be included with the light guide to direct light toward a side surface portion of the distal portion of the light guide. A diverting feature can include any feature of the system herein that diverts light from the light guide away from its axial path toward a side surface portion of the light guide. Examples include a reflector, a refracting element, and a fiber diffuser. Fiber diffusers will be discussed in more detail below.
The light guides herein can also include one or more focusing elements for directing the origin of a pressure wave away from the distal tip of the light guides. By way of example, in
In other embodiments, the light guides can form a spiral configuration about the longitudinal axis of the elongate shaft of the catheter. In some embodiments, the spiral configuration can run clockwise about the longitudinal axis of the elongate shaft of the catheter, while in other embodiments the spiral configuration can run counter-clockwise about the longitudinal axis of the elongate shaft of the catheter. In some embodiments, the light guides can form a single helix, a double helix, a triple helix, or a quadruple helix about the longitudinal axis of the elongate shaft of the catheter.
The light guides herein can come in various sizes and configurations. The light guides will have a longitudinal axis along the elongate shaft of the light guide and short axis about its circumference. In some embodiments, the light guides can have an outer diameter of about 100 μm, including the cladding and the core. In other embodiments, the light guides can include those that have an outer diameter of from 50 μm to 1000 μm including the cladding and the core. The length of the light guides can include those having a length of from 40 cm to 175 cm. In some embodiments, the length of the light guides can include those having a length of from 50-150 cm. In some embodiments, the length of the light guide can include those having a length of 40 cm, 50 cm, 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 125 cm, 150 cm, or 175 cm. It will be appreciated that the light guides herein can have a usable length that can fall within a range, wherein any of the forgoing lengths can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range.
It will be appreciated that one or more light guides herein can be adhered to the outside surface of the elongate shaft of a catheter, to create a catheter. However, in other embodiments, one or more light guides can be disposed within a lumen of a catheter. In addition, the catheter may define a lumen for a guidewire having an inner diameter of about 0.014 inch (0.356 mm). In some embodiments, the catheter can include those having an inner diameter of about 0.018 inch (0.457 mm). In yet other embodiments, the catheter can include those having an inner diameter of about 0.035 inch (0.889 mm). In some embodiments the light guides herein can be integrated with a balloon catheter. In some embodiments the light guides herein can be integrated into a guidewire. In embodiments where the light guide is integrated into a guidewire, the resulting catheter can be used independently or can be used with various other balloon catheters.
Lumens of the Elongate Shaft (
The elongate shafts herein can include one or more lumens that span the length of the elongate shaft. Referring now to
In the configuration in
The light guides can be disposed within one or more light guide lumens disposed within the elongate shafts symmetrically about the circumference. In some embodiments, the lumens herein can include those that are used for blood flow, cooling or heating fluid flow, delivery of a diagnostic or therapeutic agent, and the like. In the configuration in
The light guides can be disposed within one or more light guide lumens disposed within the elongate shafts asymmetrically about the circumference. In the configuration in
It will be appreciated that the lumens described in
Diverting Features
The diverting features suitable for use herein include a reflecting element, a refracting element, and a fiber diffuser. In some embodiments, the diverting feature can be a reflecting element. In some embodiments, the diverting feature can be a refracting element. In some embodiments, the diverting feature can be a fiber diffuser.
A fiber diffuser can direct light from within a light guide to exit at a side surface portion of the light guide. The fiber diffusers described herein can be created several ways. In some embodiments, the fiber diffusers can be created by micro-machining the surface of the distal portion of a light guide with a CO2 laser. In some embodiments, a fused silica coating can be applied to the distal portion of the light guide. In other embodiments, the fiber diffuser can be formed from a glass, a polymer, or a metal coating on the distal portion of the light guide. In other embodiments, the fiber diffuser can be formed by a fiber Bragg grating on the distal portion of the light guide. In some embodiments, the fiber diffuser can include a machined portion of the light guide, a laser-machined portion of the light guide, fiber Bragg gratings, a fused splicing, a fused splicing forming at least one internal mirror, and a splicing of two or more diffuse regions.
Suitable materials for a fiber diffuser can include, but are not be limited to, the materials of the light guide core or light guide cladding, ground glass, silver coated glass, gold coated glass, TiO2, and other materials that will scatter and not significantly absorbed the light wavelength of interest. One method that can be used to create a uniform diffuser in a light guide, optical component, or materials is to utilize scattering centers on the order of at least 50 nanometers to 5 micrometers in size. The scattering centers can have a distribution about 200 nanometers in size.
The diverting features suitable for focusing light away from the tip of the light guides herein can include, but are not to be limited to, those having a convex surface, a gradient-index (GRIN) lens, and a mirror focus lens.
Light Sources
The light sources suitable for use herein can include various types of light sources including lasers and lamps. Suitable lasers can include short pulse lasers on the sub-millisecond timescale. In some embodiments, the light source can include lasers on the nanosecond (ns) timescale. The lasers can also include short pulse lasers on the picosecond (ps), femtosecond (fs), and microsecond (us) timescales. It will be appreciated that there are many combinations of laser wavelengths, pulse widths and energy levels that can be employed to achieve plasma in the balloon fluid of the catheters described herein. In various embodiments, the pulse widths can include those falling within a range including from at least 10 ns to 200 ns. In some embodiments, the pulse widths can include those falling within a range including from at least 20 ns to 100 ns. In another embodiment, the pulse widths can include those falling within a range including from at least 50 ns to 1500 ns. In other embodiments, the pulse widths can include those falling within a range including from at least 1 ns to 5000 ns. Still alternatively, the pulse widths can fall outside of the foregoing ranges.
Exemplary nanosecond lasers can include those within the UV to IR spectrum, spanning wavelengths of about 10 nanometers to 1 millimeter. In some embodiments, the light sources suitable for use in the catheter systems herein can include those capable of producing light at wavelengths of from at least 750 nm to 2000 nm. In some embodiments, the light sources can include those capable of producing light at wavelengths of from at least 700 nm to 3000 nm. In some embodiments, the light sources can include those capable of producing light at wavelengths of from at least 100 nm to 10 micrometers (μm). Nanosecond lasers can include those having repetition rates of up to 200 kHz. In some embodiments, the laser can include a Q-switched thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In some embodiments, the laser can include a neodymium:yttrium-aluminum-garnet (Nd:YAG), holmium:yttrium-aluminum-garnet (Ho:YAG), erbium:yttrium-aluminum-garnet (Er:YAG), excimer laser, helium-neon laser, carbon dioxide laser, as well as doped, pulsed, fiber lasers.
Pressure Waves
The catheters herein can generate pressure waves having maximum pressures in the range of at least 1 megapascal (MPa) to 100 MPa. The maximum pressure generated by a particular catheter will depend on the light source, the absorbing material, the bubble expansion, the propagation medium, the balloon material, and other factors. In some embodiments, the catheters herein can generate pressure waves having maximum pressures in the range of at least 2 MPa to 50 MPa. In other embodiments, the catheters herein can generate pressure waves having maximum pressures in the range of at least 2 MPa to 30 MPa. In yet other embodiments, the catheters herein can generate pressure waves having maximum pressures in the range of at least 15 MPa to 25 MPa. In some embodiments, the catheters herein can generate pressure waves having peak pressures of greater than or equal to 1 MPa, 2 MPa, 3 MPa, 4 MPa, 5 MPa, 6 MPa, 7 MPa, 8 MPa, 9 MPa, 10 MPa, 11 MPa, 12 MPa, 13 MPa, 14 MPa, 15 MPa, 16 MPa, 17 MPa, 18 MPa, 19 MPa, 20 MPa, 21 MPa, 22 MPa, 23 MPa, 24 MPa, or 25 MPa, 26 MPa, 27 MPa, 28 MPa, 29 MPa, 30 MPa, 31 MPa, 32 MPa, 33 MPa, 34 MPa, 35 MPa, 36 MPa, 37 MPa, 38 MPa, 39 MPa, 40 MPa, 41 MPa, 42 MPa, 43 MPa, 44 MPa, 45 MPa, 46 MPa, 47 MPa, 48 MPa, 49 MPa, or 50 MPa. It will be appreciated that catheters herein can generate pressure waves having operating pressures or maximum pressures that can fall within a range, wherein any of the forgoing numbers can serve as the lower or upper bound of the range, provided that the lower bound of the range is a value less than the upper bound of the range.
Therapeutic treatment can act via a fatigue mechanism or a brute force mechanism. For a fatigue mechanism, operating pressures would be about at least 0.5 MPa to 2 MPa, or about 1 MPa. For a brute force mechanism, operating pressures would be about at least 20 MPa to 30 MPa, or about 25 MPa. Pressures between the extreme ends of these two ranges may act upon a calcified lesion using a combination of a fatigue mechanism and a brute force mechanism.
The pressure waves described herein can be imparted upon the treatment site from a distance within a range from at least 0.1 millimeters (mm) to 25 mm extending radially from a longitudinal axis of a catheter placed at a treatment site. In some embodiments, the pressure waves can be imparted upon the treatment site from a distance within a range from at least 10 mm to 20 mm extending radially from a longitudinal axis of a catheter placed at a treatment site. In other embodiments, the pressure waves can be imparted upon the treatment site from a distance within a range from at least 1 mm to 10 mm extending radially from a longitudinal axis of a catheter placed at a treatment site. In yet other embodiments, the pressure waves can be imparted upon the treatment site from a distance within a range from at least 1.5 mm to 4 mm extending radially from a longitudinal axis of a catheter placed at a treatment site. In some embodiments, the pressure waves can be imparted upon the treatment site from a range of at least 2 MPa to 30 MPa at a distance from 0.1 mm to 10 mm. In some embodiments, the pressure waves can be imparted upon the treatment site from a range of at least 2 MPa to 25 MPa at a distance from 0.1 mm to 10 mm. In some embodiments, the pressure waves can be imparted upon the treatment site from a distance that can be greater than or equal to 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, or 10 mm, or can be an amount falling within a range between any of the foregoing.
It should be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It should also be noted that, as used in this specification and the appended claims, the phrase “configured” describes a system, apparatus, or other structure that is constructed or configured to perform a particular task or adopt a particular configuration. The phrase “configured” can be used interchangeably with other similar phrases such as arranged and configured, constructed and arranged, constructed, manufactured and arranged, and the like.
All publications and patent applications in this specification are indicative of the level of ordinary skill in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated by reference.
As used herein, the recitation of numerical ranges by endpoints shall include all numbers subsumed within that range (e.g., 2 to 8 includes 2.1, 2.8, 5.3, 7, etc.).
The headings used herein are provided for consistency with suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not be viewed to limit or characterize the invention(s) set out in any claims that may issue from this disclosure. As an example, although the headings refer to a “Field,” such claims should not be limited by the language chosen under this heading to describe the so-called technical field. Further, a description of a technology in the “Background” is not an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the invention(s) set forth in issued claims.
The embodiments described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices. As such, aspects have been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope herein.
This application is a divisional application of co-pending U.S. patent application Ser. No. 16/904,282, filed on Jun. 17, 2020, entitled “LIGHT GUIDE PROTECTION STRUCTURES FOR PLASMA SYSTEM TO DISRUPT VASCULAR LESIONS.” Additionally, U.S. patent application Ser. No. 16/904,282 claims priority on U.S. Provisional Application Ser. No. 62/866,981, filed on Jun. 26, 2019, and entitled “SIDE LIGHT DIRECTION PLASMA SYSTEM TO DISRUPT VASCULAR LESIONS,” on U.S. Provisional Application No. 62/867,009, filed on Jun. 26, 2019, entitled, “LIGHT GUIDE PROTECTION STRUCTURES FOR PLASMA SYSTEM TO DISRUPT VASCULAR LESIONS,” on U.S. Provisional Application No. 62/867,026, filed on Jun. 26, 2019, entitled, “FORTIFIED BALLOON INFLATION FLUID FOR PLASMA SYSTEM TO DISRUPT VASCULAR LESIONS,” and on U.S. Provisional Application No. 62/867,034, filed on Jun. 26, 2019, entitled, “FOCUSING ELEMENT FOR PLASMA SYSTEM TO DISRUPT VASCULAR LESIONS,” the contents of which for each application are herein incorporated by reference in their entirety to the extent permitted.
Number | Name | Date | Kind |
---|---|---|---|
4649924 | Taccardi | Mar 1987 | A |
4699147 | Chilson et al. | Oct 1987 | A |
4799479 | Spears | Jan 1989 | A |
4850351 | Herman | Jul 1989 | A |
4913142 | Kittrell et al. | Apr 1990 | A |
4932954 | Wondrazek et al. | Jun 1990 | A |
4955895 | Suglyama | Sep 1990 | A |
4960108 | Reichel et al. | Oct 1990 | A |
4994059 | Kosa et al. | Feb 1991 | A |
4998930 | Lundahl | Mar 1991 | A |
5034010 | Kittrell et al. | Jul 1991 | A |
5041121 | Wondrazek et al. | Aug 1991 | A |
5082343 | Coult et al. | Jan 1992 | A |
5093877 | Aita et al. | Mar 1992 | A |
5104391 | Ingle | Apr 1992 | A |
5104392 | Kittrell et al. | Apr 1992 | A |
5109452 | Selvin et al. | Apr 1992 | A |
5116227 | Levy | May 1992 | A |
5126165 | Akihama et al. | Jun 1992 | A |
5152768 | Bhatta | Oct 1992 | A |
5173049 | Levy | Dec 1992 | A |
5176674 | Hofmann | Jan 1993 | A |
5181921 | Makita et al. | Jan 1993 | A |
5200838 | Nudelman | Apr 1993 | A |
5290277 | Vercimak et al. | Mar 1994 | A |
5324282 | Dodick | Jun 1994 | A |
5372138 | Crowley | Dec 1994 | A |
5387225 | Euteneur | Feb 1995 | A |
5400428 | Grace | Mar 1995 | A |
5422926 | Smith | Jun 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5456680 | Taylor | Oct 1995 | A |
5474537 | Solar | Dec 1995 | A |
5509917 | Cecchetti | Apr 1996 | A |
5540679 | Fram | Jul 1996 | A |
5562657 | Griffin | Oct 1996 | A |
5598494 | Behrmann et al. | Jan 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5611807 | O'Boyle | Mar 1997 | A |
5661829 | Zheng | Aug 1997 | A |
5697377 | Wittkamph | Dec 1997 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5729583 | Tang | Mar 1998 | A |
5764843 | Macken et al. | Jun 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5860974 | Abele | Jan 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5906611 | Dodick et al. | May 1999 | A |
5944697 | Benett et al. | Aug 1999 | A |
6015404 | Altshuler | Jan 2000 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6123923 | Unger | Sep 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6210404 | Shadduck | Apr 2001 | B1 |
6339470 | Papademetriou et al. | Jan 2002 | B1 |
6356575 | Fukumoto | Mar 2002 | B1 |
6368318 | Visuri et al. | Apr 2002 | B1 |
6423055 | Farr | Jul 2002 | B1 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6514249 | Maguire | Feb 2003 | B1 |
6524251 | Rabiner et al. | Mar 2003 | B2 |
6538739 | Visuri et al. | Mar 2003 | B1 |
6560387 | Hehlen et al. | May 2003 | B1 |
6607502 | Maguire et al. | Aug 2003 | B1 |
6631220 | Liang et al. | Oct 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6666834 | Restle et al. | Dec 2003 | B2 |
6773447 | Laguna | Aug 2004 | B2 |
6849994 | White et al. | Feb 2005 | B1 |
6947785 | Beatty et al. | Sep 2005 | B1 |
6966890 | Coyle et al. | Nov 2005 | B2 |
6978168 | Beatty et al. | Dec 2005 | B2 |
6990370 | Beatty et al. | Jan 2006 | B1 |
7309324 | Hayes et al. | Dec 2007 | B2 |
7470240 | Schultheiss et al. | Dec 2008 | B2 |
7539231 | Honea et al. | May 2009 | B1 |
7569032 | Naimark et al. | Aug 2009 | B2 |
7599588 | Eberle et al. | Oct 2009 | B2 |
7713260 | Lessard | May 2010 | B2 |
7758572 | Weber et al. | Jul 2010 | B2 |
7810395 | Zhou | Oct 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7867178 | Simnacher | Jan 2011 | B2 |
7972299 | Carter | Jul 2011 | B2 |
7985189 | Ogden et al. | Jul 2011 | B1 |
8162859 | Schultheiss et al. | Apr 2012 | B2 |
8166825 | Zhou | May 2012 | B2 |
8192368 | Woodruff | Jun 2012 | B2 |
8292913 | Warnack | Oct 2012 | B2 |
8328820 | Diamant | Dec 2012 | B2 |
8364235 | Kordis et al. | Jan 2013 | B2 |
8419613 | Saadat | Apr 2013 | B2 |
8439890 | Beyar | May 2013 | B2 |
8556813 | Cashman et al. | Oct 2013 | B2 |
8574247 | Adams et al. | Nov 2013 | B2 |
8657814 | Werneth | Feb 2014 | B2 |
8709075 | Adams et al. | Apr 2014 | B2 |
8728091 | Hakala et al. | May 2014 | B2 |
8747416 | Hakala et al. | Jun 2014 | B2 |
8888788 | Hakala et al. | Nov 2014 | B2 |
8956371 | Hawkins et al. | Feb 2015 | B2 |
8956374 | Hawkins et al. | Feb 2015 | B2 |
8986339 | Warnack | Mar 2015 | B2 |
8992817 | Stamberg | Mar 2015 | B2 |
9005216 | Hakala et al. | Apr 2015 | B2 |
9011462 | Adams et al. | Apr 2015 | B2 |
9011463 | Adams et al. | Apr 2015 | B2 |
9044618 | Hawkins et al. | Jun 2015 | B2 |
9044619 | Hawkins et al. | Jun 2015 | B2 |
9072534 | Adams et al. | Jul 2015 | B2 |
9131949 | Coleman et al. | Sep 2015 | B2 |
9138249 | Adams et al. | Sep 2015 | B2 |
9138260 | Miller et al. | Sep 2015 | B2 |
9180280 | Hawkins et al. | Nov 2015 | B2 |
9220521 | Hawkins et al. | Dec 2015 | B2 |
9237984 | Hawkins et al. | Jan 2016 | B2 |
9289132 | Ghaffari et al. | Mar 2016 | B2 |
9289224 | Adams et al. | Mar 2016 | B2 |
9320530 | Grace | Apr 2016 | B2 |
9333000 | Hakala et al. | May 2016 | B2 |
9375223 | Wallace | Jun 2016 | B2 |
9421025 | Hawkins et al. | Aug 2016 | B2 |
9433428 | Hakala et al. | Sep 2016 | B2 |
9504809 | Bo | Nov 2016 | B2 |
9510887 | Burnett | Dec 2016 | B2 |
9522012 | Adams | Dec 2016 | B2 |
9554815 | Adams et al. | Jan 2017 | B2 |
9555267 | Ein-Gal | Jan 2017 | B2 |
9566209 | Katragadda et al. | Feb 2017 | B2 |
9579114 | Mantell et al. | Feb 2017 | B2 |
9592328 | Jeevanandam | Mar 2017 | B2 |
9629567 | Porath et al. | Apr 2017 | B2 |
9642673 | Adams | May 2017 | B2 |
9662069 | De Graff et al. | May 2017 | B2 |
9687166 | Subramaniam | Jun 2017 | B2 |
9730715 | Adams | Aug 2017 | B2 |
9764142 | Imran | Sep 2017 | B2 |
9814476 | Adams et al. | Nov 2017 | B2 |
9861377 | Mantell et al. | Jan 2018 | B2 |
9867629 | Hawkins et al. | Jan 2018 | B2 |
9894756 | Weinkam et al. | Feb 2018 | B2 |
9955946 | Miller et al. | May 2018 | B2 |
9974963 | Imran | May 2018 | B2 |
9974970 | Nuta et al. | May 2018 | B2 |
9993292 | Adams et al. | Jun 2018 | B2 |
10039561 | Adams et al. | Aug 2018 | B2 |
10136829 | Deno et al. | Nov 2018 | B2 |
10149690 | Hawkins et al. | Dec 2018 | B2 |
10159505 | Hakala et al. | Dec 2018 | B2 |
10194994 | Deno et al. | Feb 2019 | B2 |
10201387 | Grace et al. | Feb 2019 | B2 |
10206698 | Hakala et al. | Feb 2019 | B2 |
10226265 | Ku et al. | Mar 2019 | B2 |
10357264 | Kat-Kuoy | Jul 2019 | B2 |
10405923 | Yu et al. | Sep 2019 | B2 |
10406031 | Thyzel | Sep 2019 | B2 |
10420569 | Adams | Sep 2019 | B2 |
10441300 | Hawkins | Oct 2019 | B2 |
10463430 | Dick | Nov 2019 | B2 |
10478202 | Adams et al. | Nov 2019 | B2 |
10517620 | Adams | Dec 2019 | B2 |
10517621 | Hakala et al. | Dec 2019 | B1 |
10537287 | Braido et al. | Jan 2020 | B2 |
10555744 | Nguyen et al. | Feb 2020 | B2 |
10561428 | Eggert et al. | Feb 2020 | B2 |
10646240 | Betelia et al. | May 2020 | B2 |
10682178 | Adams et al. | Jun 2020 | B2 |
10702293 | Adams et al. | Jul 2020 | B2 |
10709462 | Nguyen et al. | Jul 2020 | B2 |
10758255 | Adams | Sep 2020 | B2 |
10797684 | Benz et al. | Oct 2020 | B1 |
10842567 | Grace et al. | Nov 2020 | B2 |
10959743 | Adams et al. | Mar 2021 | B2 |
10966737 | Nguyen | Apr 2021 | B2 |
10967156 | Gulachenski | Apr 2021 | B2 |
10973538 | Hakala et al. | Apr 2021 | B2 |
11000299 | Hawkins et al. | May 2021 | B2 |
11020135 | Hawkins | Jun 2021 | B1 |
11026707 | Ku et al. | Jun 2021 | B2 |
11058492 | Grace et al. | Jul 2021 | B2 |
11076874 | Hakala et al. | Aug 2021 | B2 |
11213661 | Spindler | Jan 2022 | B2 |
11229772 | Nita | Jan 2022 | B2 |
11229776 | Kugler et al. | Jan 2022 | B2 |
11246659 | Grace et al. | Feb 2022 | B2 |
11484327 | Anderson et al. | Nov 2022 | B2 |
11633200 | Anderson et al. | Apr 2023 | B2 |
11779363 | Vo | Oct 2023 | B2 |
11839391 | Schultheis et al. | Dec 2023 | B2 |
11911056 | Anderson et al. | Feb 2024 | B2 |
11918285 | Sun et al. | Mar 2024 | B2 |
11944331 | Anderson et al. | Apr 2024 | B2 |
20010016761 | Rudie | Aug 2001 | A1 |
20010049464 | Ganz | Dec 2001 | A1 |
20010051784 | Brisken | Dec 2001 | A1 |
20020045811 | Kittrell et al. | Apr 2002 | A1 |
20020052621 | Fried et al. | May 2002 | A1 |
20020065512 | Fjield et al. | May 2002 | A1 |
20020082553 | Duchamp | Jun 2002 | A1 |
20020183620 | Tearney | Dec 2002 | A1 |
20020183729 | Farr et al. | Dec 2002 | A1 |
20020188204 | McNamara et al. | Dec 2002 | A1 |
20030009157 | Levine et al. | Jan 2003 | A1 |
20030050632 | Fjield et al. | Mar 2003 | A1 |
20030065316 | Evine et al. | Apr 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030125719 | Furnish | Jul 2003 | A1 |
20030144654 | Hilal | Jul 2003 | A1 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20040002677 | Gentsler | Jan 2004 | A1 |
20040024349 | Flock et al. | Feb 2004 | A1 |
20040073251 | Weber | Apr 2004 | A1 |
20040097996 | Rabiner | May 2004 | A1 |
20040133254 | Sterzer et al. | Jul 2004 | A1 |
20040162508 | Uebelacker | Aug 2004 | A1 |
20040210278 | Boll | Oct 2004 | A1 |
20040243119 | Lane et al. | Dec 2004 | A1 |
20040249401 | Rabiner | Dec 2004 | A1 |
20040254570 | Hadsjicostis | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050021013 | Visuri | Jan 2005 | A1 |
20050080396 | Rontal | Apr 2005 | A1 |
20050113722 | Schultheiss | May 2005 | A1 |
20050171437 | Carberry | Aug 2005 | A1 |
20050171527 | Bhola | Aug 2005 | A1 |
20050251131 | Lesh | Nov 2005 | A1 |
20050259319 | Brooker | Nov 2005 | A1 |
20050273014 | Gianchandani et al. | Dec 2005 | A1 |
20050277839 | Alderman et al. | Dec 2005 | A1 |
20060033241 | Schewe et al. | Feb 2006 | A1 |
20060084966 | Maguire et al. | Apr 2006 | A1 |
20060098921 | Benaron et al. | May 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20060200039 | Brockway et al. | Sep 2006 | A1 |
20060221528 | Li et al. | Oct 2006 | A1 |
20060241524 | Lee et al. | Oct 2006 | A1 |
20060241572 | Zhou | Oct 2006 | A1 |
20060241733 | Zhang et al. | Oct 2006 | A1 |
20060270976 | Savage et al. | Nov 2006 | A1 |
20070027524 | Johnson | Feb 2007 | A1 |
20070043340 | Thyzel | Feb 2007 | A1 |
20070060990 | Satake | Mar 2007 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070118057 | Ein-Gal | May 2007 | A1 |
20070142819 | El-Nounou et al. | Jun 2007 | A1 |
20070179496 | Swoyer | Aug 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070255270 | Carney | Nov 2007 | A1 |
20070264353 | Myntti et al. | Nov 2007 | A1 |
20070270897 | Skerven | Nov 2007 | A1 |
20070280311 | Hofmann | Dec 2007 | A1 |
20070299392 | Beyar et al. | Dec 2007 | A1 |
20080033519 | Burwell | Feb 2008 | A1 |
20080081950 | Koenig et al. | Apr 2008 | A1 |
20080086118 | Lai | Apr 2008 | A1 |
20080095714 | Castella et al. | Apr 2008 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080114341 | Thyzel | May 2008 | A1 |
20080132810 | Scoseria et al. | Jun 2008 | A1 |
20080175539 | Brown | Jul 2008 | A1 |
20080195088 | Farr et al. | Aug 2008 | A1 |
20080214891 | Slenker et al. | Sep 2008 | A1 |
20080221550 | Lee | Sep 2008 | A1 |
20080281157 | Miyagi et al. | Nov 2008 | A1 |
20080296152 | Voss | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090036803 | Warlick et al. | Feb 2009 | A1 |
20090043300 | Reitmajer et al. | Feb 2009 | A1 |
20090054881 | Krespi | Feb 2009 | A1 |
20090097806 | Viellerobe et al. | Apr 2009 | A1 |
20090125007 | Splinter | May 2009 | A1 |
20090131921 | Kurtz et al. | May 2009 | A1 |
20090192495 | Ostrovsky et al. | Jul 2009 | A1 |
20090247945 | Levit | Oct 2009 | A1 |
20090281531 | Rizoiu | Nov 2009 | A1 |
20090296751 | Kewitsch et al. | Dec 2009 | A1 |
20090299327 | Tilson et al. | Dec 2009 | A1 |
20090306533 | Rousche | Dec 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100094209 | Drasler et al. | Apr 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins et al. | May 2010 | A1 |
20100125268 | Gustus et al. | May 2010 | A1 |
20100160838 | Krespi | Jun 2010 | A1 |
20100160903 | Krespi | Jun 2010 | A1 |
20100168572 | Sliwa | Jul 2010 | A1 |
20100168836 | Kassab | Jul 2010 | A1 |
20100168862 | Edie et al. | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100191089 | Stebler et al. | Jul 2010 | A1 |
20100198114 | Novak et al. | Aug 2010 | A1 |
20100199773 | Zhou | Aug 2010 | A1 |
20100222786 | Kassab | Sep 2010 | A1 |
20100234875 | Allex et al. | Sep 2010 | A1 |
20100256535 | Novak et al. | Oct 2010 | A1 |
20100265733 | O'Leary | Oct 2010 | A1 |
20100316333 | Luther | Dec 2010 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110059415 | Kasenbacher | Mar 2011 | A1 |
20110082452 | Melsky | Apr 2011 | A1 |
20110082534 | Wallace | Apr 2011 | A1 |
20110118634 | Golan | May 2011 | A1 |
20110144502 | Zhou et al. | Jun 2011 | A1 |
20110184244 | Kagaya et al. | Jul 2011 | A1 |
20110208185 | Diamant et al. | Aug 2011 | A1 |
20110213349 | Brown | Sep 2011 | A1 |
20110245740 | Novak et al. | Oct 2011 | A1 |
20110257641 | Hastings et al. | Oct 2011 | A1 |
20110263921 | Vrba et al. | Oct 2011 | A1 |
20110275990 | Besser et al. | Nov 2011 | A1 |
20110306956 | Islam | Dec 2011 | A1 |
20120064141 | Andreacchi et al. | Mar 2012 | A1 |
20120071715 | Beyar et al. | Mar 2012 | A1 |
20120071867 | Ryan | Mar 2012 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120089132 | Dick et al. | Apr 2012 | A1 |
20120095335 | Sverdlik et al. | Apr 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120116289 | Hawkins et al. | May 2012 | A1 |
20120116486 | Naga et al. | May 2012 | A1 |
20120123331 | Satake | May 2012 | A1 |
20120123399 | Belikov | May 2012 | A1 |
20120143131 | Tun | Jun 2012 | A1 |
20120157892 | Reitmajer et al. | Jun 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20120232409 | Stahmann | Sep 2012 | A1 |
20120296367 | Grovender et al. | Nov 2012 | A1 |
20120330293 | Arai | Dec 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20130041355 | Heeren et al. | Feb 2013 | A1 |
20130046207 | Capelli | Feb 2013 | A1 |
20130046293 | Arai et al. | Feb 2013 | A1 |
20130053762 | Rontal et al. | Feb 2013 | A1 |
20130110003 | Surti | May 2013 | A1 |
20130116714 | Adams et al. | May 2013 | A1 |
20130165764 | Scheuermann | Jun 2013 | A1 |
20130190803 | Angel et al. | Jul 2013 | A1 |
20130197614 | Gustus | Aug 2013 | A1 |
20130218054 | Sverdlik et al. | Aug 2013 | A1 |
20130226131 | Bacino et al. | Aug 2013 | A1 |
20130253466 | Campbell | Sep 2013 | A1 |
20130274726 | Takayama | Oct 2013 | A1 |
20130345617 | Wallace | Dec 2013 | A1 |
20140005576 | Adams | Jan 2014 | A1 |
20140005706 | Gelfand et al. | Jan 2014 | A1 |
20140012186 | Thyzel | Jan 2014 | A1 |
20140039002 | Adams et al. | Jan 2014 | A1 |
20140039358 | Zhou et al. | Feb 2014 | A1 |
20140039513 | Hakala | Feb 2014 | A1 |
20140046229 | Hawkins et al. | Feb 2014 | A1 |
20140046353 | Adams | Feb 2014 | A1 |
20140052146 | Curtis et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140058294 | Gross et al. | Feb 2014 | A1 |
20140074111 | Hakala | Mar 2014 | A1 |
20140153087 | Hutchings et al. | Jun 2014 | A1 |
20140155990 | Nyuli | Jun 2014 | A1 |
20140180069 | Millett | Jun 2014 | A1 |
20140180126 | Millett | Jun 2014 | A1 |
20140180134 | Hoseit | Jun 2014 | A1 |
20140188094 | Islam | Jul 2014 | A1 |
20140228829 | Schmitt | Aug 2014 | A1 |
20140257144 | Capelli et al. | Sep 2014 | A1 |
20140257148 | Jie | Sep 2014 | A1 |
20140276573 | Miesel | Sep 2014 | A1 |
20140288570 | Adams | Sep 2014 | A1 |
20140336637 | Agrawal | Nov 2014 | A1 |
20140357997 | Hartmann | Dec 2014 | A1 |
20150003900 | Ullrich et al. | Jan 2015 | A1 |
20150005576 | Diodone et al. | Jan 2015 | A1 |
20150039002 | Hawkins | Feb 2015 | A1 |
20150057648 | Swift et al. | Feb 2015 | A1 |
20150073430 | Hakala et al. | Mar 2015 | A1 |
20150080875 | Kasprzyk et al. | Mar 2015 | A1 |
20150100048 | Hiereth et al. | Apr 2015 | A1 |
20150105715 | Pikus et al. | Apr 2015 | A1 |
20150119870 | Rudie | Apr 2015 | A1 |
20150126990 | Sharma | May 2015 | A1 |
20150141764 | Harks et al. | May 2015 | A1 |
20150250542 | Islam | Sep 2015 | A1 |
20150276689 | Watanabe et al. | Oct 2015 | A1 |
20150313732 | Fulton, III | Nov 2015 | A1 |
20150320432 | Adams | Nov 2015 | A1 |
20150342678 | Deladurantaye et al. | Dec 2015 | A1 |
20150359432 | Ehrenreich | Dec 2015 | A1 |
20150359557 | Shimokawa | Dec 2015 | A1 |
20160008016 | Cioanta et al. | Jan 2016 | A1 |
20160016016 | Taylor et al. | Jan 2016 | A1 |
20160018602 | Govari et al. | Jan 2016 | A1 |
20160022294 | Cioanta et al. | Jan 2016 | A1 |
20160038087 | Hunter | Feb 2016 | A1 |
20160095610 | Lipowski et al. | Apr 2016 | A1 |
20160135828 | Hawkins et al. | May 2016 | A1 |
20160135891 | Feldman | May 2016 | A1 |
20160143522 | Ransbury | May 2016 | A1 |
20160151639 | Scharf et al. | Jun 2016 | A1 |
20160183819 | Burnett | Jun 2016 | A1 |
20160183957 | Hakala et al. | Jun 2016 | A1 |
20160184020 | Kowalewski et al. | Jun 2016 | A1 |
20160184022 | Grace et al. | Jun 2016 | A1 |
20160184023 | Grace et al. | Jun 2016 | A1 |
20160184526 | Beyar | Jun 2016 | A1 |
20160184570 | Grace et al. | Jun 2016 | A1 |
20160228187 | Gross | Aug 2016 | A1 |
20160262784 | Grace et al. | Sep 2016 | A1 |
20160270806 | Wallace | Sep 2016 | A1 |
20160234534 | Hawkins et al. | Nov 2016 | A1 |
20160324564 | Gerlach et al. | Nov 2016 | A1 |
20160331389 | Hakala et al. | Nov 2016 | A1 |
20160367274 | Wallace | Dec 2016 | A1 |
20160367275 | Wallace | Dec 2016 | A1 |
20170049463 | Popovic et al. | Feb 2017 | A1 |
20170056035 | Adams | Mar 2017 | A1 |
20170086867 | Adams | Mar 2017 | A1 |
20170119469 | Shimizu et al. | May 2017 | A1 |
20170119470 | Diamant et al. | May 2017 | A1 |
20170135709 | Nguyen et al. | May 2017 | A1 |
20170151421 | Asher | Jun 2017 | A1 |
20170192242 | Laycock | Jul 2017 | A1 |
20170209050 | Fengler et al. | Jul 2017 | A1 |
20170265942 | Grace et al. | Sep 2017 | A1 |
20170303946 | Ku et al. | Oct 2017 | A1 |
20170311965 | Adams | Nov 2017 | A1 |
20180008348 | Grace et al. | Jan 2018 | A1 |
20180042661 | Long | Feb 2018 | A1 |
20180042677 | Yu et al. | Feb 2018 | A1 |
20180045897 | Chia | Feb 2018 | A1 |
20180049877 | Venkatasubramanian | Feb 2018 | A1 |
20180085174 | Radtke et al. | Mar 2018 | A1 |
20180092763 | Dagan et al. | Apr 2018 | A1 |
20180095287 | Jeng et al. | Apr 2018 | A1 |
20180098779 | Betelia et al. | Apr 2018 | A1 |
20180152568 | Kat-kuoy | Jun 2018 | A1 |
20180214677 | Tarunaga | Aug 2018 | A1 |
20180238675 | Wan | Aug 2018 | A1 |
20180256250 | Adams et al. | Sep 2018 | A1 |
20180280005 | Parmentier | Oct 2018 | A1 |
20180303501 | Hawkins | Oct 2018 | A1 |
20180303503 | Eggert et al. | Oct 2018 | A1 |
20180303504 | Eggert et al. | Oct 2018 | A1 |
20180304053 | Eggert et al. | Oct 2018 | A1 |
20180323571 | Brown et al. | Nov 2018 | A1 |
20180333043 | Teriluc | Nov 2018 | A1 |
20180360482 | Nguyen | Dec 2018 | A1 |
20190029702 | De Cicco | Jan 2019 | A1 |
20190029703 | Wasdyke et al. | Jan 2019 | A1 |
20190069916 | Hawkins et al. | Mar 2019 | A1 |
20190072378 | Hane et al. | Mar 2019 | A1 |
20190097380 | Luft et al. | Mar 2019 | A1 |
20190099588 | Ramanath et al. | Apr 2019 | A1 |
20190104933 | Stern | Apr 2019 | A1 |
20190117242 | Lawinger | Apr 2019 | A1 |
20190150960 | Nguyen et al. | May 2019 | A1 |
20190150961 | Tozzi | May 2019 | A1 |
20190167349 | Shamay | Jun 2019 | A1 |
20190175111 | Genereux et al. | Jun 2019 | A1 |
20190175300 | Horn et al. | Jun 2019 | A1 |
20190175372 | Boyden et al. | Jun 2019 | A1 |
20190175407 | Bacher | Jun 2019 | A1 |
20190209368 | Park et al. | Jul 2019 | A1 |
20190232066 | Lim et al. | Aug 2019 | A1 |
20190247680 | Mayer | Aug 2019 | A1 |
20190262594 | Ogata et al. | Aug 2019 | A1 |
20190265419 | Tayebati | Aug 2019 | A1 |
20190282249 | Tran et al. | Sep 2019 | A1 |
20190282250 | Tran et al. | Sep 2019 | A1 |
20190321100 | Masotti et al. | Oct 2019 | A1 |
20190321101 | Massoti et al. | Oct 2019 | A1 |
20190328259 | Deno et al. | Oct 2019 | A1 |
20190365400 | Adams et al. | Dec 2019 | A1 |
20190380589 | Lloret | Dec 2019 | A1 |
20190388002 | Bozsak et al. | Dec 2019 | A1 |
20190388110 | Nguyen et al. | Dec 2019 | A1 |
20190388133 | Sharma | Dec 2019 | A1 |
20190388151 | Bhawalkar | Dec 2019 | A1 |
20200000484 | Hawkins | Jan 2020 | A1 |
20200008856 | Harmouche | Jan 2020 | A1 |
20200022754 | Cottone | Jan 2020 | A1 |
20200038087 | Harmouche | Feb 2020 | A1 |
20200046429 | Tschida et al. | Feb 2020 | A1 |
20200046949 | Chisena et al. | Feb 2020 | A1 |
20200054352 | Brouillette et al. | Feb 2020 | A1 |
20200060814 | Murphy | Feb 2020 | A1 |
20200061931 | Brown et al. | Feb 2020 | A1 |
20200069371 | Brown et al. | Mar 2020 | A1 |
20200085458 | Nguyen et al. | Mar 2020 | A1 |
20200085459 | Adams | Mar 2020 | A1 |
20200101269 | Hayes | Apr 2020 | A1 |
20200107960 | Bacher | Apr 2020 | A1 |
20200108236 | Salazar et al. | Apr 2020 | A1 |
20200129195 | McGowan et al. | Apr 2020 | A1 |
20200129741 | Kawwas | Apr 2020 | A1 |
20200155812 | Zhang et al. | May 2020 | A1 |
20200197019 | Harper | Jun 2020 | A1 |
20200205890 | Harlev | Jul 2020 | A1 |
20200246032 | Betelia et al. | Aug 2020 | A1 |
20200289202 | Miyagawa | Sep 2020 | A1 |
20200297366 | Nguyen et al. | Sep 2020 | A1 |
20200337717 | Walzman | Oct 2020 | A1 |
20200383724 | Adams et al. | Dec 2020 | A1 |
20200397230 | Massimini et al. | Dec 2020 | A1 |
20200397453 | McGowan | Dec 2020 | A1 |
20200398033 | McGowan et al. | Dec 2020 | A1 |
20200405333 | Massimini et al. | Dec 2020 | A1 |
20200405391 | Massimini | Dec 2020 | A1 |
20200406009 | Massimini | Dec 2020 | A1 |
20200406010 | Massimini et al. | Dec 2020 | A1 |
20210038237 | Adams | Feb 2021 | A1 |
20210085347 | Phan et al. | Mar 2021 | A1 |
20210085348 | Nguyen | Mar 2021 | A1 |
20210085383 | Vo et al. | Mar 2021 | A1 |
20210116302 | Jean-Ruel | Apr 2021 | A1 |
20210128241 | Schultheis | May 2021 | A1 |
20210137598 | Cook | May 2021 | A1 |
20210153939 | Cook | May 2021 | A1 |
20210177442 | Girdhar et al. | Jun 2021 | A1 |
20210177445 | Nguyen | Jun 2021 | A1 |
20210186613 | Cook | Jun 2021 | A1 |
20210212765 | Verhagen | Jul 2021 | A1 |
20210220052 | Cook | Jul 2021 | A1 |
20210220053 | Cook | Jul 2021 | A1 |
20210244473 | Cook et al. | Aug 2021 | A1 |
20210267685 | Schultheis | Sep 2021 | A1 |
20210275247 | Schultheis | Sep 2021 | A1 |
20210275249 | Massimini et al. | Sep 2021 | A1 |
20210282792 | Adams et al. | Sep 2021 | A1 |
20210290259 | Hakala et al. | Sep 2021 | A1 |
20210290286 | Cook | Sep 2021 | A1 |
20210290305 | Cook | Sep 2021 | A1 |
20210298603 | Feldman | Sep 2021 | A1 |
20210338258 | Hawkins et al. | Nov 2021 | A1 |
20210353359 | Cook | Nov 2021 | A1 |
20210369348 | Cook | Dec 2021 | A1 |
20210378743 | Massimini et al. | Dec 2021 | A1 |
20210378744 | Fanier et al. | Dec 2021 | A1 |
20210386479 | Massimini et al. | Dec 2021 | A1 |
20220000505 | Hauser | Jan 2022 | A1 |
20220000506 | Hauser | Jan 2022 | A1 |
20220000507 | Hauser | Jan 2022 | A1 |
20220000508 | Schmitt et al. | Jan 2022 | A1 |
20220000509 | Laser et al. | Jan 2022 | A1 |
20220000551 | Govari et al. | Jan 2022 | A1 |
20220008130 | Massimini et al. | Jan 2022 | A1 |
20220008693 | Humbert et al. | Jan 2022 | A1 |
20220015785 | Hakala et al. | Jan 2022 | A1 |
20220021190 | Pecquois | Jan 2022 | A1 |
20220022902 | Spano | Jan 2022 | A1 |
20220022912 | Efremkin | Jan 2022 | A1 |
20220023528 | Long et al. | Jan 2022 | A1 |
20220054194 | Bacher et al. | Feb 2022 | A1 |
20220071704 | Le | Mar 2022 | A1 |
20220168594 | Mayer | Jun 2022 | A1 |
20220183738 | Flores et al. | Jun 2022 | A1 |
20220218402 | Schultheis | Jul 2022 | A1 |
20220249165 | Cook | Aug 2022 | A1 |
20220249166 | Cook et al. | Aug 2022 | A1 |
20220273324 | Schultheis | Sep 2022 | A1 |
20220287732 | Anderson et al. | Sep 2022 | A1 |
20220313359 | Schultheis et al. | Oct 2022 | A1 |
20220338890 | Anderson et al. | Oct 2022 | A1 |
20220354578 | Cook | Nov 2022 | A1 |
20220387106 | Cook | Dec 2022 | A1 |
20230013920 | Massimini | Jan 2023 | A1 |
20230064371 | Cook et al. | Mar 2023 | A1 |
20230137107 | Cook et al. | May 2023 | A1 |
20230157754 | Bacher et al. | May 2023 | A1 |
20230200906 | Cook et al. | Jun 2023 | A1 |
20230233256 | Cook et al. | Jul 2023 | A1 |
20230240748 | Cook et al. | Aug 2023 | A1 |
20230248376 | Anderson et al. | Aug 2023 | A1 |
20230255635 | Schultheis et al. | Aug 2023 | A1 |
20230255688 | Schultheis et al. | Aug 2023 | A1 |
20230255689 | Schultheis et al. | Aug 2023 | A1 |
20230310054 | Schultheis | Oct 2023 | A1 |
20230310067 | Schultheis et al. | Oct 2023 | A1 |
20230310073 | Adams et al. | Oct 2023 | A1 |
20230338088 | Massimini et al. | Oct 2023 | A1 |
20230338089 | Schultheis | Oct 2023 | A1 |
20230414234 | Anderson et al. | Dec 2023 | A1 |
20240016544 | Schultheis et al. | Jan 2024 | A1 |
20240016545 | Schultheis et al. | Jan 2024 | A1 |
20240032995 | Schultheis et al. | Feb 2024 | A1 |
20240033002 | Cook | Feb 2024 | A1 |
20240041520 | Schultheis et al. | Feb 2024 | A1 |
20240058060 | Cook | Feb 2024 | A1 |
20240065712 | Schultheis | Feb 2024 | A1 |
20240122648 | Cook | Apr 2024 | A1 |
20240189543 | Salinas | Jun 2024 | A1 |
20240216062 | Cook | Jul 2024 | A1 |
20240277410 | Cook | Aug 2024 | A1 |
20240285296 | Vo | Aug 2024 | A1 |
Number | Date | Country |
---|---|---|
2017205323 | Jan 2022 | AU |
2019452180 | Jan 2022 | AU |
2022227829 | Sep 2022 | AU |
2229806 | Mar 1997 | CA |
2983655 | Oct 2016 | CA |
3209797 | Sep 2022 | CA |
102057422 | May 2011 | CN |
109223100 | Jan 2019 | CN |
110638501 | Jan 2020 | CN |
110638501 | Jan 2020 | CN |
106794043 | Mar 2020 | CN |
107411805 | Jan 2022 | CN |
107899126 | Jan 2022 | CN |
109475378 | Jan 2022 | CN |
113876388 | Jan 2022 | CN |
113877044 | Jan 2022 | CN |
113907838 | Jan 2022 | CN |
113951972 | Jan 2022 | CN |
113951973 | Jan 2022 | CN |
113974765 | Jan 2022 | CN |
113974826 | Jan 2022 | CN |
113993463 | Jan 2022 | CN |
215384399 | Jan 2022 | CN |
215386905 | Jan 2022 | CN |
215458400 | Jan 2022 | CN |
215458401 | Jan 2022 | CN |
215505065 | Jan 2022 | CN |
215534803 | Jan 2022 | CN |
215537694 | Jan 2022 | CN |
215584286 | Jan 2022 | CN |
215606068 | Jan 2022 | CN |
215651393 | Jan 2022 | CN |
215651394 | Jan 2022 | CN |
215651484 | Jan 2022 | CN |
215653328 | Jan 2022 | CN |
115175625 | Oct 2022 | CN |
3038445 | May 1982 | DE |
3836337 | Apr 1990 | DE |
3913027 | Oct 1990 | DE |
202008016760 | Mar 2009 | DE |
102007046902 | Apr 2009 | DE |
102008034702 | Jan 2010 | DE |
102009007129 | Aug 2010 | DE |
202010009899 | Nov 2010 | DE |
102013201928 | Aug 2014 | DE |
102020117713 | Jan 2022 | DE |
0119296 | Sep 1984 | EP |
0261831 | Jun 1992 | EP |
558297 | Sep 1993 | EP |
0571306 | Nov 1993 | EP |
1179993 | Feb 2002 | EP |
1946712 | Jul 2008 | EP |
1946712 | Jul 2008 | EP |
1453566 | Sep 2008 | EP |
2157569 | Feb 2010 | EP |
2879595 | Jun 2015 | EP |
2879595 | Jun 2015 | EP |
2944264 | Jun 2015 | EP |
3226795 | Oct 2017 | EP |
3266487 | Jan 2018 | EP |
3318204 | May 2018 | EP |
2879607 | Feb 2019 | EP |
3461438 | Apr 2019 | EP |
3473195 | Apr 2019 | EP |
3643260 | Apr 2020 | EP |
3076881 | Jan 2022 | EP |
3932342 | Jan 2022 | EP |
3936140 | Jan 2022 | EP |
3960099 | Mar 2022 | EP |
4051154 | Sep 2022 | EP |
4129213 | Feb 2023 | EP |
4297669 | Jan 2024 | EP |
1082397 | Sep 1967 | GB |
862275446 | Nov 1987 | JP |
1996089511 | Apr 1996 | JP |
2008506447 | Mar 2008 | JP |
2008083273 | Apr 2008 | JP |
2011524203 | Sep 2011 | JP |
2014123147 | Jul 2014 | JP |
2015217215 | Dec 2015 | JP |
2018538077 | Dec 2018 | JP |
2024511710 | Mar 2024 | JP |
20050098932 | Oct 2005 | KR |
20080040111 | May 2008 | KR |
20160090877 | Aug 2016 | KR |
20180054041 | May 2018 | KR |
WO9007904 | Jul 1990 | WO |
WO9105332 | Apr 1991 | WO |
9203095 | Mar 1992 | WO |
WO9208515 | May 1992 | WO |
WO9524867 | Sep 1995 | WO |
1999002095 | Jan 1999 | WO |
1999020189 | Apr 1999 | WO |
WO200067648 | Nov 2000 | WO |
WO2000067648 | Nov 2000 | WO |
WO0103599 | Jan 2001 | WO |
WO0103599 | Jan 2001 | WO |
20060006169 | Jan 2006 | WO |
WO2006006169 | Jan 2006 | WO |
WO2009121017 | Oct 2009 | WO |
WO2009149321 | Dec 2009 | WO |
WO2009152352 | Dec 2009 | WO |
2010042653 | Apr 2010 | WO |
WO2011094379 | Aug 2011 | WO |
20110126580 | Oct 2011 | WO |
WO2011126580 | Oct 2011 | WO |
WO2012025833 | Mar 2012 | WO |
WO20120052924 | Apr 2012 | WO |
WO2012058156 | May 2012 | WO |
WO20120120495 | Sep 2012 | WO |
WO2013119662 | Aug 2013 | WO |
20130169807 | Nov 2013 | WO |
WO2013169807 | Nov 2013 | WO |
WO2014025397 | Feb 2014 | WO |
WO20140022867 | Feb 2014 | WO |
WO2014138582 | Sep 2014 | WO |
WO2015056662 | Apr 2015 | WO |
WO2015097251 | Jul 2015 | WO |
20150177790 | Nov 2015 | WO |
WO2016014999 | Jan 2016 | WO |
WO2016089683 | Jun 2016 | WO |
WO2016090175 | Jun 2016 | WO |
WO2016098670 | Jun 2016 | WO |
WO2016109739 | Jul 2016 | WO |
WO2016151595 | Sep 2016 | WO |
WO20170192869 | Nov 2017 | WO |
20180022641 | Feb 2018 | WO |
WO2018022593 | Feb 2018 | WO |
WO2018083666 | May 2018 | WO |
20180175322 | Sep 2018 | WO |
WO2018175322 | Sep 2018 | WO |
WO2018191013 | Oct 2018 | WO |
WO2019200201 | Oct 2019 | WO |
WO2019222843 | Nov 2019 | WO |
WO2020056031 | Mar 2020 | WO |
WO20200086361 | Apr 2020 | WO |
WO2020089876 | May 2020 | WO |
WO2020157648 | Aug 2020 | WO |
WO2020256898 | Dec 2020 | WO |
WO2020256898 | Dec 2020 | WO |
WO2020256949 | Dec 2020 | WO |
WO2020256949 | Dec 2020 | WO |
WO2020263469 | Dec 2020 | WO |
WO2020263685 | Dec 2020 | WO |
WO2020263687 | Dec 2020 | WO |
WO2020263688 | Dec 2020 | WO |
WO2020263689 | Dec 2020 | WO |
WO2021061451 | Apr 2021 | WO |
WO2021067563 | Apr 2021 | WO |
WO2021086571 | May 2021 | WO |
WO2021096922 | May 2021 | WO |
WO2021101766 | May 2021 | WO |
WO2021101766 | May 2021 | WO |
WO2021126762 | Jun 2021 | WO |
WO2021150502 | Jul 2021 | WO |
WO2021162855 | Aug 2021 | WO |
WO2021173417 | Sep 2021 | WO |
WO2021183367 | Sep 2021 | WO |
WO2021183401 | Sep 2021 | WO |
WO2021188233 | Sep 2021 | WO |
WO2021231178 | Nov 2021 | WO |
WO2021247685 | Dec 2021 | WO |
WO2021257425 | Dec 2021 | WO |
WO2022007490 | Jan 2022 | WO |
WO2022008440 | Jan 2022 | WO |
WO2022010767 | Jan 2022 | WO |
WO2022055784 | Mar 2022 | WO |
WO2022125525 | Jun 2022 | WO |
WO2022154954 | Jul 2022 | WO |
WO2022173719 | Aug 2022 | WO |
WO2022183075 | Sep 2022 | WO |
WO2022187058 | Sep 2022 | WO |
WO2022216488 | Oct 2022 | WO |
WO2022240674 | Nov 2022 | WO |
WO2022260932 | Dec 2022 | WO |
Entry |
---|
PathFinder Digital, “Free Space Optics vs. Fiber Optics”, 2023. |
International Search Report and Written Opinion, issued in Application Serial No. PCT/US2023/016152, dated Jul. 12, 2023. |
Accucoat, “Beamsplitter: Divide, combine & conquer”; 2023. |
Lin et al., “Photoacoustic imaging”, Science Direct; 2021. |
Zhou et al., “Photoacoustic Imaging with fiber optic technology: A review”, Science Direct; 2020. |
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2022/053775, dated Apr. 21, 2023. |
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/011497, dated Apr. 28, 2023. |
International Search Report and Written Opinion issued by the European Patent Office, for Serial No. PCT/US2023/012599, dated May 19, 2023. |
Davletshin, Yevgeniy R., “A Computational Analysis of Nanoparticle-Mediated Optical Breakdown”, A dissertation presented to Ryerson University in Partial Fulfillment of the requirements for the degree of Doctor of Philosophy in the Program of Physics, Toronto, Ontario, CA 2017. |
Vogel, A., et al. “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries”, Journal Acoustical Society of America, 1988, pp. 719-731, vol. 84. |
Asshauer, T., et al. “Acoustic transient generation by holmium-laser-induced cavitation bubbles”, Journal of Applied Physics, Nov. 1, 1994, pp. 5007-5013, vol. 76, No. 9, American Institute of Physics. |
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, Splicer Engineering AFL, Duncan, SC USA. |
Ali, Ziad A., et al. “Optical Coherence Tomography Characterization of Coronary Lithoplasty for Treatment of Calcified Lesions”, JACC: Cardiovascular Imaging, 2017, pp. 897-906, vol. 109, No. 8, Elsevier. |
Ali, Ziad A., et al. “Intravascular lithotripsy for treatment of stent underexpansion secondary to severe coronary calcification” 2018, European Society of Cardiology. |
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—full article”, Journal of Biophotonics, 2014, pp. 103-109, vol. 7, No. 1-2. |
Ashok, Praveen C., et al. “Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics—proof” Journal of Biophotonics 7, 2014, No. 1-2. |
Bian, D. C., et al. “Experimental Study of Pulsed Discharge Underwater Shock-Related Properties in Pressurized Liquid Water”, Hindawi Advances in Materials Science and Engineering, Jan. 2018, 12 pages, vol. 2018, Article ID 8025708. |
Bian, D. C., et al. “Study on Breakdown Delay Characteristics Based on High-voltage Pulse Discharge in Water with Hydrostatic Pressure”, Journal of Power Technologies 97(2), 2017, pp. 89-102. |
Doukas, A. G., et al. “Biological effects of laser induced shock waves: Structural and functional cell damage in vitro”, Ultrasound in Medicine and Biology, 1993, pp. 137-146, vol. 19, Issue 2, Pergamon Press, USA. |
Brodmann, Marianne et al. “Safety and Performance of Lithoplasty for Treatment of Calcified Peripheral Artery Lesions”, JACC, 2017, vol. 70, No. 7. |
Brouillette, M., “Shock Waves at Microscales”, 2003, pp. 3-12, Springer-Verlag. |
Mirshekari, G., et al. “Shock Waves in Microchannels”, 2013, pp. 259-283, vol. 724, Cambridge University Press. |
“Bubble Dynamics and Shock Waves”, Springer, 2013, Springer-Verlag, Berlin Heildelberg. |
Hardy, Luke A., et al. “Cavitation Bubble Dynamics During Thulium Fiber Laser Lithotripsy”, SPIE, Feb. 29, 2016, vol. 9689, San Francisco, California, USA. |
Claverie, A., et al. “Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge”, Review of Scientific Instruments, 2014, American Institute of Physics. |
Blackmon, Richard L., et al. “Comparison of holmium: YAG and thulium fiber laser lithotripsy ablation thresholds, ablation rates, and retropulsion effects”, Journal of Biomedical Optics, 2011, vol. 16(7), SPIE. |
Debasis, P., et al. “Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations”, Applied Optics, Aug. 10, 2016, vol. 55, No. 23, Optical Society of America. |
Cook, Jason R., et al. “Tissue mimicking phantoms for photoacoustic and ultrasonic imaging”, Biomedical Optics Express, 2011, vol. 2, No. 11, Optical Society of America. |
Deckelbaum, Lawrence I., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, Wiley-Liss Inc. |
Costanzo, F., “Underwater Explosion Phenomena and Shock Physics”, Research Gate, 2011. |
Mizeret, J. C., et al. “Cylindrical fiber optic light diffuser for medical applications”, Lasers in Surgery and Medicine, 1996, pp. 159-167, vol. 19, Issue 2, Wiley-Liss Inc., Lausanne, Switzerland. |
De Silva, K., et al. “A Calcific, Undilatable Stenosis Lithoplasty, a New Tool in the Box?”, JACC: Cardiovascular Interventions, 2017, vol. 10, No. 3, Elsevier. |
Vesselov, L., et al. “Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers”, Applied Optics, 2005, pp. 2754-2758, vol. 44, Issue 14, Optical Society of America. |
Hutchens, Thomas C., et al. “Detachable fiber optic tips for use in thulium fiber laser lithotripsy”, Journal of Biomedical Optics, Mar. 2013, vol. 18(3), SPIE. |
Kostanski, Kris L., et al. “Development of Novel Tunable Light Scattering Coating Materials for Fiber Optic Diffusers in Photodynamic Cancer Therapy”, Journal of Applied Polymer Science, 2009, pp. 1516-1523, vol. 112, Wiley InterScience. |
Kristiansen, M., et al. “High Voltage Water Breakdown Studies”, DoD, 1998, Alexandria, VA, USA. |
Dwyer, J. R., et al. “A study of X-ray emission from laboratory sparks in air at atmospheric pressure”, Journal of Geophysical Research, 2008, vol. 113, American Geophysical Union. |
Jansen, Duco E., et al. “Effect of Pulse Duration on Bubble Formation and Laser-Induced Pressure Waves During Holmium Laser Ablation”, Lasers in Surgery and Medicine 18, 1996, pp. 278-293, Wiley-Liss Inc., Austin, TX, USA. |
Shangguan, HanQun et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and On Submerged Targets”, SPIE, 1997, pp. 783-791, vol. 2869. |
Varghese, B., et al. “Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation”, SPIE, Mar. 9, 2016, vol. 9740, SPIE, San Francisco, USA. |
Varghese, B., et al. “Effects of polarization and apodization on laser induced optical breakdown threshold”, Optics Express, Jul. 29, 2013, vol. 21, No. 15, Optical Society of America. |
Bonito, Valentina, “Effects of polarization, plasma and thermal initiation pathway on irradiance threshold of laser induced optical breakdown”, Philips Research, 2013, The Netherlands. |
Vogel, A. et al. “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales”, Applied Physics B 68, 1999, pp. 271-280, Springer-Verlag. |
Kang, Hyun W., et al. “Enhanced photocoagulation with catheter based diffusing optical device”, Journal of Biomedical Optics, Nov. 2012, vol. 17(11), SPIE. |
Esch, E., et al. “A Simple Method for Fabricating Artificial Kidney Stones of Different Physical Properties”, National Institute of Health Public Access Author Manuscript, Aug. 2010. |
Isner, Jeffrey M., et al. “Excimer Laser Atherectomy”, Circulation, Jun. 1990, vol. 81, No. 6, American Heart Association, Dallas, TX, USA. |
Israel, Douglas H., et al. “Excimer Laser-Facilitated Balloon Angioplasty of a Nondilateable Lesion”, JACC, Oct. 1991, vol. 18, No. 4, American College of Cardiology, New York, USA. |
Van Leeuwen, Ton G., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine 18, 1996, pp. 381-390, Wiley-Liss Inc., Utrecht, The Netherlands. |
Nguyen, H., et al. “Fabrication of multipoint side-firing optical fiber by laser micro-ablation”, Optics Letters, May 1, 2017, vol. 42, No. 9, Optical Society of America. |
Zheng, W., “Optic Lenses Manufactured on Fiber Ends”, 2015, IEEE, Duncan, SC, USA. |
Whitesides, George M., et al. “Fluidic Optics”, 2006, vol. 6329, SPIE, Cambridge, MA, USA. |
Forero, M., et al. “Coronary lithoplasty: a novel treatment for stent underexpansion”, Cardiovascular Flashlight, 2018, European Society of Cardiology. |
Ghanate, A. D., et al. “Comparative evaluation of spectroscopic models using different multivariate statistical tools in a multicancer scenario”, Journal of Biomedical Optics, Feb. 2011, pp. 1-9, vol. 16(2), SPIE. |
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, Jun. 1996, pp. 3465-3474, Acoustical Society of America, Austin, TX, USA. |
Blackmon, Richard L., et al. “Holmium: YAG Versus Thulium Fiber Laser Lithotripsy”, Lasers in Surgery and Medicine, 2010, pp. 232-236, Wiley-Liss Inc. |
Varghese, B., “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America. |
Noack, J., “Influence of pulse duration on mechanical effects after laser-induced breakdown in water”, Journal of Applied Physics, 1998, pp. 7488-EOA, vol. 83, American Institute of Physics. |
Van Leeuwen, Ton G., et al. “Intraluminal Vapor Bubble Induced by Excimer Laser Pulse Causes Microsecond Arterial Dilation and Invagination Leading to Extensive Wall Damage in the Rabbit”, Circulation, Apr. 1993, vol. 87, No. 4, American Heart Association, Dallas, TX, USA. |
International Preliminary Report on Patentability dated Sep. 15, 2020 in PCT Application Serial No. PCT/US2019/022009. |
International Search Report and Written Opinion dated Sep. 14, 2020 in PCT Application Serial No. PCT/US2020/038523. |
International Search Report and Written Opinion dated Oct. 2, 2020 in PCT Application Serial No. PCT/US2020/036107. |
Schafter+Kirchhoff, Laser Beam Couplers series 60SMS for coupling into single-mode and polarization-maintaining fiber cables, Schafter+Kirchhoff, pp. 1-5, Germany. Dec. 2, 2021. |
International Search Report and Written Opinion dated Jan. 29, 2020 in PCT Application Serial No. PCT/US2020/059961. |
International Search Report and Written Opinion dated Jan. 20, 2020 in PCT Application Serial No. PCT/US2020/054792. |
Partial Search Report and Provisional Opinion dated Feb. 19, 2021 in PCT Application Serial No. PCT/US2020/059960. |
Shariat, Mohammad H., et al. “Localization of the ectopic spiral electrical source using intracardiac electrograms during atrial fibrillation.” 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015. |
Nademanee, Koonlawee, et al. “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate.” Journal of the American College of Cardiology 43.11 (2004): 2044-2053. |
Calkins, Hugh. “Three dimensional mapping of atrial fibrillation: techniques and necessity.” Journal of interventional cardiac electrophysiology 13.1 (2005): 53-59. |
Shariat, Mohammad Hassan. Processing the intracardiac electrogram for atrial fibrillation ablation. Diss. Queen's University (Canada), 2016. |
Meng et al., “Accurate Recovery of Atrial Endocardial Potential Maps From Non-contact Electrode Data.” Auckland Bioengineering Institute. (ID 1421). May 2019. |
Jiang et al., “Multielectrode Catheter for Substrate Mapping for Scar-related VT Ablation: A Comparison Between Grid Versus Linear Configurations.” UChicago Medicine, Center for Arrhythmia Care, Chicago IL (ID 1368). Poster for conference in San Francisco, May 8-11, 2019. |
Sacher et al., “Comparison of Manual Vs Automatic Annotation to Identify Abnormal Substrate for Scar Related VT Ablation.” LIRYC Institute, Bordeaux University Hospital, France (ID 1336). Poster for conference in San Francisco, May 8-11, 2019. |
Oriel Instruments, “Introduction to Beam Splitters for Optical Research Applications”, Apr. 2014, pp. 1-9, https://www.azoptics.com/Article.aspx?ArticaID=871. |
International Search Report and Written Opinion dated Apr. 12, 2021 in PCT Application Serial No. PCT/US2020/059960. |
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2020/064846. |
International Search Report and Written Opinion dated Apr. 13, 2021 in PCT Application Serial No. PCT/US2021/013944. |
International Search Report and Written Opinion dated May 25, 2021 in PCT Application Serial No. PCT/US2021/017604. |
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/018522. |
International Search Report and Written Opinion dated Jun. 2, 2021 in PCT Application Serial No. PCT/US2021/015204. |
International Search Report and Written Opinion dated Jun. 17, 2021 in PCT Application Serial No. PCT/US2021/020934. |
International Search Report and Written Opinion dated Jul. 13, 2021 in PCT Application Serial No. PCT/US2021/024216. |
International Search Report and Written Opinion dated Jun. 22, 2021 in PCT Application Serial No. PCT/US2021/020937. |
International Search Report and Written Opinion dated Jun. 24, 2021 in PCT Application Serial No. PCT/US2021/021272. |
International Search Report and Written Opinion dated Aug. 20, 2021 in PCT Application Serial No. PCT/US2021/031130. |
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/062170. |
International Search Report and Written Opinion dated Apr. 4, 2022 in PCT Application Serial No. PCT/US2021/065073. |
Partial Search Report and Provisional Opinion dated May 3, 2022 in PCT Application No. PCT/US2022/015577. |
International Search Report and Written Opinion dated May 13, 2022 in PCT Application Serial No. PCT/US2022/017562. |
International Search Report and Written Opinion dated Jun. 28, 2022, in PCT Application Serial No. PCT/US2022/015577. |
International Search Report and Written Opinion dated Jun. 27, 2022, in PCT Application Serial No. PCT/US2022/022460. |
International Search Report and Written Opinion dated Aug. 25, 2022 in PCT Application Serial No. PCTUS/2022/028035. |
International Search Report and Written Opinion dated Sep. 15, 2022 in PCT Application Serial No. PCTUS/2022/032045. |
International Search Report and Written Opinion dated Nov. 8, 2022 in PCT Application Serial No. PCTUS/2022/039678. |
Shen, Yajie et al. “High-peak-power and narrow-linewidth Q-switched Ho: YAG laser in-band pumped at 1931 nm.” Applied Physics Express 13.5 (2020): 052006. (Year 2020). |
Vogel, A., et al. “Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina”, Investigative Ophthalmology & Visual Science, Jun. 1994, pp. 3032-3044, vol. 35, No. 7, Association for Research in Vision and Ophthalmology. |
Jones, H. M., et al. “Pulsed dielectric breakdown of pressurized water and salt solutions”, Journal of Applied Physics, Jun. 1998, pp. 795-805, vol. 77, No. 2, American Institute of Physics. |
Kozulin, I., et al. “The dynamic of the water explosive vaporization on the flat microheater”, Journal of Physics: Conference Series, 2018, pp. 1-4, IOP Publishing, Russia. |
Cross, F., “Laser Angioplasty”, Vascular Medicine Review, 1992, pp. 21-30, Edward Arnold. |
Doukas, A. G., et al. “Laser-generated stress waves and their effects on the cell membrane”, IEEE Journal of Selected Topics in Quantum Electronics, 1999, pp. 997-1003, vol. 5, Issue 4, IEEE. |
Noack, J., et al. “Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density”, IEEE Journal of Quantum Electronics, 1999, pp. 1156-1167, vol. 35, No. 8, IEEE. |
Pratsos, A., “The use of Laser for the treatment of coronary artery disease”, Bryn Mawr Hospital, 2010. |
Li, Xian-Dong, et al. “Influence of deposited energy on shock wave induced by underwater pulsed current discharge”, Physics of Plasmas, 2016, vol. 23, American Institute of Physics. |
Logunov, S., et al. “Light diffusing optical fiber illumination”, Renewable Energy and the Environment Congress, 2013, Corning, NY, USA. |
Maxwell, A. D., et al. “Cavitation clouds created by shock scattering from bubbles during histotripsy”, Acoustical Society of America, 2011, pp. 1888-1898, vol. 130, No. 4, Acoustical Society of America. |
McAteer, James A., et al. “Ultracal-30 Gypsum Artificial Stones for Research on the Mechinisms of Stone Breakage in Shock Wave Lithotripsy”, 2005, pp. 429-434, Springer-Verlag. |
Vogel, A., et al. “Mechanisms of Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses”, Lasers in Surgery and Medicine, 1994, pp. 32-43, vol. 15, Wiley-Liss Inc., Lubeck, Germany. |
Vogel, A., et al. “Mechanisms of Pulsed Laser Ablation of Biological Tissues”, Chemical Reviews, 2003, pp. 577-644, vol. 103, No. 2, American Chemical Society. |
Medlight, “Cylindrical light diffuser Model RD-ML”, Medlight S.A., Switzerland. 2015. |
Medlight, “Cylindircal light diffuser Model RD”, Medlight S.A., Switzerland. 2015. |
Mayo, Michael E., “Interaction of Laser Radiation with Urinary Calculi”, Cranfield University Defense and Security, PhD Thesis, 2009, Cranfield University. |
Vogel, A., et al. “Minimization of Cavitation Effects in Pulsed Laser Ablation Illustrated on Laser Angioplasty”, Applied Physics, 1996, pp. 173-182, vol. 62, Springer-Verlag. |
Mirshekari, G., et al. “Microscale Shock Tube”, Journal of Microelectromechanical Systems, 2012, pp. 739-747, vol. 21, No. 3, IEEE. |
“Polymicro Sculpted Silica Fiber Tips”, Molex, 2013, Molex. |
Zhou, J., et al. “Optical Fiber Tips and Their Applications”, Polymicro Technologies A Subsidiary of Molex, Nov. 2007. |
Liang, Xiao-Xuan, et al. “Multi-Rate-Equation modeling of the energy spectrum of laser-induced conduction band electrons in water”, Optics Express, 2019, vol. 27, No. 4, Optical Society of America. |
Nachabe, R., et al. “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods”, Journal of Biomedical Optics, 2011, vol. 16(8), SPIE. |
Naugol'nykh, K. A., et al. “Spark Discharges in Water”, Academy of Sciences USSR Institute of Acoustics, 1971, Nauka Publishing Co., Moscow, USSR. |
Van Leeuwen, Ton G., et al. “Noncontact Tissue Ablation by Holmium: YSGG Laser Pulses in Blood”, Lasers in Surgery and Medicine, 1991, vol. 11, pp. 26-34, Wiley-Liss Inc. |
Nyame, Yaw A., et al. “Kidney Stone Models for In Vitro Lithotripsy Research: A Comprehensive Review”, Journal of Endourology, Oct. 2015, pp. 1106-1109, vol. 29, No. 10, Mary Ann Liebert Inc., Cleveland, USA. |
Ohl, Siew-Wan, et al. “Bubbles with shock waves and ultrasound: a review”, Interface Focus, pp. 1-15, vol. 5, The Royal Society Publishing. Oct. 2015. |
Zheng, W., “Optical Lenses Manufactured on Fiber Ends”, IEEE, 2015, Splicer Engineering, Duncan SC USA. |
Dwyer, P. J., et al. “Optically integrating balloon device for photodynamic therapy”, Lasers in Surgery and Medicine, 2000, pp. 58-66, vol. 26, Issue 1, Wiley-Liss Inc., Boston MA USA. |
“The New Optiguide DCYL700 Fiber Optic Diffuser Series”, Optiguide Fiber Optic Spec Sheet, Pinnacle Biologics, 2014, Pinnacle Biologics, Illinois, USA. |
Van Leeuwen, Ton G., et al. “Origin of arterial wall dissections induced by pulsed excimer and mid-infared laser ablation in the pig”, JACC, 1992, pp. 1610-1618, vol. 19, No. 7, American College of Cardiology. |
Oshita, D., et al. “Characteristic of Cavitation Bubbles and Shock Waves Generated by Pulsed Electric Discharges with Different Voltages”, IEEE, 2012, pp. 102-105, Kumamoto, Japan. |
Karsch, Karl R., et al. “Percutaneous Coronary Excimer Laser Angioplasty in Patients With Stable and Unstable Angina Pectoris”, Circulation, 1990, pp. 1849-1859, vol. 81, No. 6, American Heart Association, Dallas TX, USA. |
Murray, A., et al. “Peripheral laser angioplasty with pulsed dye laser and ball tipped optical fibres”, The Lancet, 1989, pp. 1471-1474, vol. 2, Issue 8678-8679. |
Mohammadzadeh, M., et al. “Photoacoustic Shock Wave Emission and Cavitation from Structured Optical Fiber Tips”, Applied Physics Letters, 2016, vol. 108, American Institute of Physics Publishing LLC. |
Doukas, A. G., et al. “Physical characteristics and biological effects of laser-induced stress waves”, Ultrasound in Medicine and Biology, 1996, pp. 151-164, vol. 22, Issue 2, World Federation for Ultrasound in Medicine and Biology, USA. |
Doukas, A. G., et al. “Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient”, Ultrasound in Medicine and Biology, 1995, pp. 961-967, vol. 21, Issue 7, Elsevier Science Ltd., USA. |
Piedrahita, Francisco S., “Experimental Research Work on a Sub-Millimeter Spark-Gap for Sub Nanosecond Gas Breakdown”, Thesis for Universidad Nacional De Colombia, 2012, Bogota, Colombia. |
Vogel, A., et al. “Plasma Formation in Water by Picosecond and Nanosecond Nd: YAG Laser Pulses—Part I: Optical Breakdown at Threshold and Superthreshold Irradiance”, IEEE Journal of Selected Topics in Quantum Electronics, 1996, pp. 847-859, vol. 2, No. 4, IEEE. |
Park, Hee K., et al. “Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface”, Journal of Applied Physics, 1996, pp. 4072-4081, vol. 80, No. 7, American Institute of Physics. |
Cummings, Joseph P., et al. “Q-Switched laser ablation of tissue: plume dynamics and the effect of tissue mechanical properties”, SPIE, Laser-Tissue Interaction III, 1992, pp. 242-253, vol. 1646. |
Lee, Seung H., et al. “Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications”, Optics Express, 2015, vol. 23, No. 16, Optical Society of America. |
Hui, C., et al. “Research on sound fields generated by laser-induced liquid breakdown”, Optica Applicata, 2010, pp. 898-907, vol. XL, No. 4, Xi'an, China. |
Riel, Louis-Philippe, et al. “Characterization of Calcified Plaques Retrieved From Occluded Arteries and Comparison with Potential Artificial Analogues”, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, 2014, pp. 1-11, ASME, Canada. |
Roberts, Randy M., et al. “The Energy Partition of Underwater Sparks”, The Journal of the Acoustical Society of America, 1996, pp. 3465-3475, vol. 99, No. 6, Acoustical Society of America. |
Rocha, R., et al. “Fluorescence and Reflectance Spectroscopy for Identification of Atherosclerosis in Human Carotid Arteries Using Principal Components Analysis”, Photomedicine and Lsser Surgery, 2008, pp. 329-335, vol. 26, No. 4, Mary Ann Liebert Inc. |
Scepanovic, Obrad R., et al. “Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque”, Journal of Biomedical Optics, 2011, pp. 1-10, vol. 16, No. 1, SPIE. |
Serruys, P. W., et al. “Shaking and Breaking Calcified Plaque Lithoplasty, a Breakthrough in Interventional Armamentarium?”, JACC: Cardiovascular Imaging, 2017, pp. 907-911, vol. 10, No. 8, Elsevier. |
Vogel, A., et al. “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water”, The Journal of the Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, Acoustical Society of America. |
Vogel, A., et al. “Shock-Wave Energy and Acoustic Energy Dissipation After Laser-induced Breakdown”, SPIE, 1998, pp. 180-189, vol. 3254, SPIE. |
International Search Report and Written Opinion, issued by the EP/ISA, in PCT/US2021/048819, dated Jan. 14, 2022. |
Stelzle, F., et al. “Diffuse Reflectance Spectroscopy for Optical Soft Tissue Differentiation as Remote Feedback Control for Tissue-Specific Laser Surgery”, Lasers in Surgery and Medicine, 2010, pp. 319-325, vol. 42, Wiley-Liss Inc. |
Stelzle, F., et al. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery, Sensors, 2013, pp. 13717-13731, vol. 13, Basel, Switzerland. |
Tagawa, Y., et al. “Structure of laser-induced shock wave in water”, Japan Society for the Promotion of Science, 2016. |
Shen, Y., et al. “Theoretical and experimental studies of directivity of sound field generated by pulsed laser induced breakdown in liquid water”, SPIE, 2013, pp. 8796141-8796148, vol. 8796, SPIE. |
Preisack, M., et al. “Ultrafast imaging of tissue ablation by a XeCl excimer laser in saline”, Lasers in Surgery and Medicine, 1992, pp. 520-527, vol. 12, Wiley-Liss Inc. |
Versluis, M., et al. “How Snapping Shrimp Snap: Through Cavitating Bubbles”, Science Mag, 2000, pp. 2114-2117, vol. 289, American Association for the Advancement of Science, Washington DC, USA. |
Yan, D., et al. “Study of the Electrical Characteristics, Shock-Wave Pressure Characteristics, and Attenuation Law Based on Pulse Discharge in Water”, Shock and Vibration, 2016, pp. 1-11, vol. 2016, Article ID 6412309, Hindawi Publishing Corporation. |
Zhang, Q., et al. “Improved Instruments and Methods for the Photographic Study of Spark-Induced Cavitation Bubbles”, Water, 2018, pp. 1-12, vol. 10, No. 1683. |
“Damage threshold of fiber facets”, NKT Photonics, 2012, pp. 1-4, Denmark. |
Smith, A., et al. “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm”, Applied Optics, 2008, pp. 4812-4832, vol. 47, No. 26, Optical Society of America. |
Smith, A., et al. “Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb3 Doped Fused Silica”, SPIE, 2007, pp. 6453171-64531712, vol. 6453, SPIE. |
Sun, X., et al. “Laser Induced Damage to Large Core Optical Fiber by High Peak Power Laser”, Specialty Photonics Division, 2010. |
Smith, A., et al. “Nanosecond laser-induced breakdown in pure and Yb3 doped fused silica”, SPIE, 2007, vol. 6403, SPIE. |
Smith, A., et al. “Optical Damage Limits to Pulse Energy From Fibers”, IEEE Journal of Selected Topics in Quantum Electronics, 2009, pp. 153-158, vol. 15, No. 1, IEEE. |
Reichel, E., et al. “A Special Irrigation Liquid to Increase the Reliability of Laser-Induced Shockwave Lithotripsy”, Lasers in Surgery and Medicine, 1992, pp. 204-209, vol. 12, Wiley-Liss Inc., Graz, Austria. |
Reichel, E., et al. “Bifunctional irrigation liquid as an ideal energy converter for laser lithotripsy with nanosecond laser pulses”, SPIE Lasers in Urology, Laparoscopy, and General Surgery, 1991, pp. 129-133, vol. 1421, SPIE. |
Reichel, E., et al. “Laser-induced Shock Wave Lithotripsy with a Regenerative Energy Converter”, Lasers in Medical Science, 1992, pp. 423-425, vol. 7, Bailliere Tindall. |
Hardy, L., et al. “Cavitation Bubble Dynamics during Thulium Fiber Laser Lithotripsy”, SPIE BiOS, 2016, vol. 9689, SPIE. |
Deckelbaum, L., “Coronary Laser Angioplasty”, Lasers in Surgery and Medicine, 1994, pp. 101-110, vol. 14, Wiley-Liss Inc., Conneticuit, USA. |
Shangguan, H., et al. “Effects of Material Properties on Laser-induced Bubble Formation in Absorbing Liquids and on Submerged Targets”, Diagnostic and Therapeutic Cardiovascular Interventions VII, SPIE, 1997, pp. 783-791, vol. 2869, SPIE. |
Van Leeuwen, T., et al. “Excimer Laser Induced Bubble: Dimensions, Theory, and Implications for Laser Angioplasty”, Lasers in Surgery and Medicine, 1996, pp. 381-390, vol. 18, Wiley-Liss Inc., The Netherlands. |
Vogel, A., et al. “Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water”, The Journal of Acoustical Society of America, 1996, pp. 148-165, vol. 100, No. 1, The Acoustical Society of America. |
Varghese, B., et al. “Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown”, Biomedical Optics Express, 2015, vol. 6, No. 4, Optical Society of America. |
Linz, N., et al. “Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state”, Physical Review, 2015, pp. 134114.1-1341141.10, vol. 91, American Physical Society. |
International Search Report and Written Opinion dated Jun. 27, 2018, in PCT Application Serial No. PCT/US2018/027121. |
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027801. |
International Search Report and Written Opinion dated Jul. 20, 2018, in PCT Application Serial No. PCT/US2018/027784. |
European Search Report, for European Patent Application No. 18185152, mailed Dec. 13, 2018. |
International Search Report and Written Opinion dated May 22, 2019, in PCT Application Serial No. PCT/US2019/022009. |
International Search Report and Written Opinion dated May 29, 2019, in PCT Application Serial No. PCT/US2019/022016. |
International Search Report and Written Opinion dated Jun. 22, 2018, in Application Serial No. NL2019807, issued by the European Patent Office. |
Noimark, Sacha, et al., “Carbon-Nanotube-PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging”, Advanced Functional Materials, 2016, pp. 8390-8396, vol. 26, Wiley-Liss Inc. |
Chen, Sung-Liang, “Review of Laser-Generated Ultrasound Transmitters and their Applications to All-Optical Ultrasound Transducers and Imaging”, Appl. Sci. 2017, 7, 25. |
Colchester, R., et al. “Laser-Generated ultrasound with optica fibres using functionalised carbon nanotube composite coatings”, Appl. Phys. Lett., 2014, vol. 104, 173504, American Institute of Physics. |
Poduval, R., et al. “Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite”, Appl. Phys. Lett., 2017, vol. 110, 223701, American Institute of Physics. |
Tian, J., et al. “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings”, Optics Express, Mar. 2013, pp. 6109-6114, vol. 21, No. 5, Optical Society of America. |
Kim, J., et al. “Optical Fiber Laser-Generated-Focused-Ultrasound Transducers for Intravascular Therapies”, IEEE, 2017. |
Kang, H., et al. “Enhanced photocoagulation with catheter-based diffusing optical device”, Journal of Biomedical Optics, 2012, vol. 17, Issue 11, 118001, SPIE. |
International Search Report and Written Opinion dated Jan. 3, 2020, in PCT Application Serial No. PCT/US2019/056579. |
Communication Pursuant to Article 94(3) EPC, for European Patent Application No. 18185152.8, mailed Jan. 16, 2019. |
European Search Report, for European Patent Application No. 18185152.8, mailed Dec. 20, 2018. |
International Search Report and Written Opinion dated Jul. 29, 2020 in PCT Application Serial No. PCT/US2020/034005. |
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038517. |
International Search Report and Written Opinion dated Sep. 9, 2020 in PCT Application Serial No. PCT/US2020/038530. |
International Search Report and Written Opinion dated Sep. 11, 2020 in PCT Application Serial No. PCT/US2020/038521. |
International Search Report and Written Opinion dated Sep. 7, 2020 in PCT Application Serial No. PCT/US2020/034642. |
International Search Report and Written Opinion, PCT Application Serial No. PCT/US2022/047751 issued Feb. 10, 2023, by the European Patent Office. |
Number | Date | Country | |
---|---|---|---|
20230013920 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
62867034 | Jun 2019 | US | |
62867026 | Jun 2019 | US | |
62866981 | Jun 2019 | US | |
62867009 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16904282 | Jun 2020 | US |
Child | 17948692 | US |