This invention generally relates to light guides and displays incorporating the light guides. In some embodiments, the light guides are flexible.
Optical displays, such as liquid crystal displays (LCDs), are becoming increasingly commonplace, finding use, for example, in mobile telephones, portable computer devices ranging from hand held personal digital assistants (PDAs) to laptop computers, portable digital music players, LCD desktop computer monitors, and LCD televisions. In addition to becoming more prevalent, LCDs are becoming thinner as the manufacturers of electronic devices incorporating LCDs strive for smaller package sizes.
One type of LCD uses a backlight for illuminating the LCD's display area. The backlight typically includes a light guide in the form of a slab or wedge often of an optically transparent polymeric material produced by, for example, injection molding. In many applications, the backlight includes one or more light sources that couple light into the light guide from one or more edges of the light guide. In a slab waveguide, the coupled light typically travels through the light guide by total internal reflection from the top and bottom surfaces of the light guide until encountering some feature that causes a portion of the light to exit the light guide. These features are often printed dots made of a light scattering material. The printed dots are commonly created by screen printing technologies.
Generally, the present disclosure relates to light guides and displays incorporating the light guides.
In one aspect, the present disclosure relates to a light guide including a first layer, or extractor layer, and a second layer, or substrate. Each layer has a first major surface and a second major surface. The second major surface of the extractor layer is in contact with the first major surface of the substrate. The first major surface of the extractor layer has a plurality of discrete light extractors capable of extracting light propagating in the light guide. Light is extracted in a predetermined spatial distribution over the first major surface of the extractor layer.
In some embodiments, at least one of the extractor layer or the substrate layer is flexible. Also, in some embodiments, the predetermined pattern provides substantially uniform illumination over a major surface of the flexible extractor layer.
In another aspect of the invention, a display includes a light source and a light guide. The light guide includes an extractor layer and a substrate layer. Each layer has a first major surface and a second major surface. The second major surface of the extractor layer is in contact with the first major surface of the substrate layer, and the first major surface of the flexible extractor layer has a plurality of discrete light extractors capable of extracting light propagating in the light guide such that light is extracted in a prescribed pattern over substantially the entire first major surface of the flexible extractor layer.
In some embodiments, at least one of the extractor layer or the substrate layer is flexible. Additionally, in some embodiments, the predetermined pattern provides substantially uniform illumination over the entire first major surface of the flexible extractor layer.
In yet another aspect of the invention, a method of manufacturing a light guide includes forming a flexible substrate layer through a substantially continuous process, and forming a flexible light extractor layer on a surface of the flexible substrate layer.
The invention may be more completely understood and appreciated in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
The present disclosure generally applies to back lights that incorporate a light guide for providing a desired illumination pattern in a display system. In some embodiments, the light guides are thin, and can be easily and economically manufactured.
In some embodiments the light guides include multiple layers (two or even three or more layers) for use in a backlight system. In certain embodiments, the light guide is flexible and may be fabricated using a continuous process. Continuous processes suitable for manufacturing of a multilayer light guide of the present disclosure include, for example, continuous cast and cure processes, coextrusion of the multilayer film and molding of the light extraction structures, extrusion of the multilayer light guide and printing of the light extraction structures, extrusion casting and the like. One advantage of the present invention may include reduced light guide thicknesses, which may lead to reduced display thicknesses. Other advantages of the present invention include reduced cost and improved manufacturability.
Light guide 110 includes a first layer, or extractor layer, 120 having a first major surface 121 and a second major surface 122, and a second layer, or substrate layer, 130 having a first major surface 131 and a second major surface 132. In certain preferred embodiments, extractor layer 120 and/or substrate layer 130 are flexible. Second major surface 122 is in contact with first major surface 131. In some embodiments, substantially the entire second major surface 122 is in contact with substantially the entire first major surface 131.
Light from light source 150 propagates in light guide 110 in the general z-direction by reflection from major surfaces 121 and 132, where the reflections can primarily be total internal reflections if desired. For example, light ray 173 undergoes total internal reflection at major surface 121 at point 173A and at major surface 132 at point 173B.
First major surface 121 includes a plurality of discrete light extractors 140 that are capable of extracting light that propagates in the light guide 110. For example, light extractor 140 extracts at least a portion of light ray 171 that propagates in light guide 110 and is incident on light extractor 140. As another example, light extractor 140A extracts at least a fraction of light ray 173 that propagates in light guide 110 and is incident on light extractor 140A. In general, the spacing between neighboring light extractors can be different at different locations on major surface 121. The light extractors can be continuous over the first major surface 121, or discrete individual extractors or discrete areas occupied by light extractors may be separated by areas without extractors, e.g. flat areas, plateaus or land areas. That is, the areal density of light extractors 140 may change over the length or width, or both, of light guide 110. Furthermore, the shape (including the cross-sectional shape), respective heights, and/or respective sizes of the light extractors can be different for different light extractors. Such variation may be useful in controlling the amount of light extracted at different locations on major surface 121. If desired, light extractors 140 can be designed and arranged along first major surface 121 such that light is extracted in a predetermined pattern over a portion or substantially the entire first major surface 121. In some embodiments, light extractors 140 may be designed and arranged along first major surface 121 such that light is extracted substantially uniformly over substantially the entire first major surface 121. Furthermore, a substantially flat plateau area 180 having an average thickness “d” can separate neighboring light extractors. In some embodiments, the average thickness of plateau area 180 is no greater than 20, or 15, or 10, or 5, or 2 microns.
In the exemplary embodiment shown in
Light extractors 140 and/or plateau area 180 may include light diffusive and/or diffractive features 141 for scattering a fraction, for example, a small fraction, of light that may be incident on the diffusive features while propagating inside light guide 110. While illustrated in
The features 141 can be a light diffusive layer disposed, for example by coating, on surface 121. As another example, diffusive and/or diffractive features 141 can be formed while making light extractors 140 by any suitable process, such as microreplication, embossing, or any other method that can be used to simultaneously or sequentially form light extractors 140 and diffusive and/or diffractive features 141.
At least one of layers 120 and 130 may be a bulk diffuser by, for example, including small particles of a guest material dispersed in a host material where the guest and host materials have different indices of refraction. In some preferred embodiments, extractor layer 120 includes a bulk diffuser and substrate 130 does not include a bulk diffuser. Advantageously, when extractor layer 120 includes a diffuse material, the diffuse material may provide a baseline minimum of light extraction along the length of light guide 110. The diffuse material may also minimize the visibility of any defects in light guide 110 by scattering light more uniformly. The guest material may include, for example, nanoparticles that have agglomerated to form a scatter site, glass beads, polymer beads, the materials described in U.S. Published Patent Application No. 2006/0082699 and U.S. Pat. No. 6,417,831, and combinations thereof.
Extractor layer 120 has a first index of refraction n1 and substrate 130 has a second index of refraction n2, where n1 and n2 can be, for example, indices of refraction in the visible range of the electromagnetic spectrum. For example, n1 may be greater than, less than, or equal to n2. In some applications, n1 is greater than or equal to n2 for both S-polarized and P-polarized incident light. Additionally, in embodiments where an adhesive adheres extractor layer 120 to substrate 130, n1 is preferably greater than both n2 and the index of refraction of the adhesive, and the index of refraction of the adhesive is preferably equal to or greater than n2.
In some embodiments, at least one of major surfaces 131, 132 may include a matte finish. The matte finish may provide a level of diffusion in the system to scatter light, which may assist in minimizing the visibility of any defects in extractor layer 120 and/or substrate 130. The matte finish may also provide a baseline minimum of light extraction along the length of light guide 110. The choice of whether to finish one or both major surfaces 131, 132 with a matte finish may depend on the difference in refractive indices between extractor layer 120 and substrate 130. For example, when the refractive indices of extractor layer 120 and substrate 130 are sufficiently similar, only second major surface 132 may include a matte finish. One or both of first major surface 131 and the second major surface 132 may include a matte finish. For example, matte finishes on both first major surface 131 and second major surface 132 may be implemented when the refractive indices of extractor layer 120 and substrate 130 are sufficiently dissimilar. A matte surface 131 may also promote adhesion between the extractor layer 120 and the substrate 130.
Additionally, the matte finish on each major surface 131, 132 may be tailored to different roughness levels. For example, in some embodiments, second major surface 132 may include a matte finish that is only rough enough to prevent wet-out to another film (not shown) adjacent second major surface 132. In other embodiments, second major surface 132 may include a matte finish that is sufficiently rough to both prevent wet-out to another film (not shown) adjacent second major surface 132 and to affect light extraction. In some embodiments, at least one of extractor layer 120 and substrate 130 is isotropic in refractive index. In some applications, both layers are isotropic.
Light source 150 may be any suitable type of light source such as a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED). Furthermore, light source 150 may include a plurality of discrete light sources such as a plurality of discrete LEDs.
In the exemplary embodiment shown in
Extractor layer 120 and substrate 130 are preferably formed of substantially optically transparent material. In some embodiments, the optically transparent materials may be either UV curable or thermally curable. In other embodiments, the optically transparent materials may be melt processable such as, for example, thermoplastics. Exemplary materials include glass or polymeric materials such as cyclic olefin co-polymers (COC), polyester (e.g., polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and the like), polyacrylate, polymethylmethacrylate (PMMA), polycarbonate (PC), polyimide (PI), polystyrene (PS) or any other suitable polymeric material.
In embodiments where extractor layer 120 and/or substrate 130 include an optical polymer, such as, for example PC, the optical polymer preferably does not include any other agent that absorbs light such as, for example, a bluing agent. As seen in
In some embodiments, extractor layer 120 and/or substrate 130 are both flexible and are thin enough to be capable of bending without damage to a radius of curvature down to about 100, or 50, or 30, or 15, or 10, or 5 mm.
In some embodiments, the average thickness of the substrate 130 is at least 5, or 10, or 20, or 40 times the maximum thickness of the extractor layer 120.
In some embodiments, the average thickness of the substrate 130 is no greater than 1000, or 700, or 500, or 400, or 250, or 200 microns.
In some embodiments, the maximum thickness of the extractor layer 120 is no greater than 100, or 50, or 15 microns.
In some embodiments, substrate 130 is self-supporting while extractor layer 120 is not. Here, “self-supporting” refers to a film that can sustain and support its own weight without breaking, tearing, or otherwise being damaged in a manner that would make it unsuitable for its intended use.
Substrate 130 may be in the form of a uniformly thick slab, as shown schematically in
The exemplary embodiment of
The cross-sectional shape of the light extractors 140 may also affect wear on light guide 110 or other components of a back light system. As one illustration, forming light extractors 140 as concave depressions may reduce the wear on light extractors 140 and any other component in contact with first major surface 121 of extractor layer 120 by increasing the surface area in contact, when compared to protruding pyramidal light extractors 140, for example.
Additionally, the spacing of the individual light extractors 140 in one or both of the y- and z-axes may be varied to reduce Moiré. Moiré may occur between light guide 110 and any other component of back light system 100, including a liquid crystal display panel, a prism film that is included in the backlight system 100, or between light guide 110 and a reflection of light guide 110 when backlight system 100 includes a reflector layer. For example, irregularly or randomly spaced light extractors 140 may substantially reduce or even eliminate Moiré in backlight system 100. As another example, the spacing may be regular, but selected to minimize or eliminate Moiré.
In other embodiments, light extractors 140 may include structures formed of a material having a different refractive index than the extractor layer 120 or substrate 130. For example, light extractors 140 may include structures formed by rotogravure printing, silk screen printing, dot matrix printing, microreplication, extrusion casting, embossing, thermal molding, lamination and the like. In these embodiments, light extractors 140 may comprise inks, dyes, or any other materials with a desirable refractive index for light extraction, or may comprise bulk diffusive materials.
The distribution and density of light extractors 140 can be chosen to provide a predetermined light extraction pattern or illumination and may depend on a number of factors such as the shape of light source 150. For example,
In general, the areal density (number of light extractors 140 per unit area of surface 121), shape, size and height, i.e., the geometric factors, of light extractors 140 can be different at different locations along surface 121 of extractor layer 120 to provide a desired light distribution for the extracted light. The areal density, shape, size and height of light extractors 140 may vary regularly or irregularly. For example, the areal density of light extractors 140 may increase as the distance from light source 350 increases or the size of light extractors 140 may increase as the distance from light source 350 increases, or both.
Light guide 110 may have alignment features for aligning the light guide to other components in a system that incorporates the light guide. For example, light guide 110 may have at least one alignment tab and/or alignment notch and/or alignment aperture for aligning light guide 110 to other layers in a system. For example, light guide 110 in
In general, it is desirable to arrange the alignment features in light guide 110 in such a way, for example, asymmetrically, so that there is a unique match between the alignment features and their corresponding features in plate 360. Such an arrangement will reduce or eliminate the possibility of, for example, positioning the light guide with the wrong side of the light guide facing plate 360.
Manufacturing light guides 110 in a substantially continuous process may include manufacture of light guides 110 in a continuous roll form. For example, a continuous web of a flexible substrate 130 may be manufactured first, and a flexible extractor layer 120 may be added to the flexible substrate 130 by any of the methods described herein, with minimal spacing between each flexible extractor layer 120. In preferred embodiments, the continuous web of flexible substrate 130 is sufficiently wide to accept at least one flexible extractor layer, and at least 10 feet long. Continuous manufacture of light guides 110 also permits the convenient continuous combination of light guides 110 with other films, as will be described below in further detail. After manufacture in a continuous roll form, individual light guides 110 may be separated by any conventional means.
In another example not shown in
Specifically, in the embodiment shown in
While
In other embodiments, as illustrated in back light system 500 of
As another example,
The density and size of light extractors 140 can vary across first major surface 121. For example, the density and size can increase with distance along the z-axis. Such an arrangement can, for example, result in light extracted from light guide 110 having uniform irradiance across first major surface 121.
Light redirecting layer 730 includes a microstructured layer 731 disposed on a substrate 732. Similarly, light redirecting layer 740 includes a microstructured layer 741 disposed on a substrate 742. Light redirecting layers 730 and 740 can be conventional prismatic light directing layers previously disclosed, for example, in U.S. Pat. Nos. 4,906,070 (Cobb) and 5,056,892 (Cobb). For example, microstructured layer 731 can include linear prisms extended linearly along the y-axis and microstructured layer 741 can include linear prisms extended linearly along the z-axis.
The operation of a conventional light redirecting layer has been previously described, for example, in U.S. Pat. No. 5,056,892 (Cobb). In summary, light rays that strike the structures in microstructured layers 731 and 741 at incident angles larger than the critical angle are totally internally reflected back and recycled by reflector 710. On the other hand, light rays which are incident on the structures at angles less than the critical angle are partly transmitted and partly reflected. An end result is that light redirecting layers 730 and 740 can result in display brightness enhancement by recycling light that is totally internally reflected.
In some embodiments, the patterns of microstructures on any of the microstructured layers in
Adhesive mechanisms may also be used to attach extractor layer 120 to substrate 130. Any adhesive mechanism utilized to attach adjacent layers of a display system 700, including extractor layer 120 and substrate 130, may include diffusive material. Similar to forming extractor layer 120 of bulk diffuser material, or including matte finishes one or more of surfaces 131, 132, using a diffusive adhesive mechanism may provide a base line minimum of light extraction along the length of light guide 110, and may assist in minimizing the visibility of any defects in light guide 110.
In any embodiment, the adhesive mechanisms 801-806 may be applied to a section spanning the entire length of the light guide 110, or to a section spanning a partial length of light guide 110. When adhesive mechanisms 801-806 are utilized to attach multiple layers together, the adhesive mechanism 801-806 configuration need not be the same for each subsequent layer.
In another example, the adhesive pattern can be selected to extract or change the angle of the light.
Additionally, attaching adjacent layers of a display system 700 may increase the structural strength of display system 700. Each of layers 110, 710, 720, 730, 740 is relatively thin, and may deform or warp. Adhering two or more layers 110, 710, 720, 730, 740 to each other may effectively increase the rigidity of the adhered layers relative to the individual layers. Increased rigidity may facilitate display system 700 assembly. Attaching adjacent layers of display system 700 may also reduce deformation or warping due to environmental factors experienced by display system 700, including heat and humidity.
While the exemplary embodiment shown in
Finally,
Extractor layer 120 and substrate 130 may be combined in multifunctional stacked films 900 with any other desired film useful for backlight systems. For example, in other embodiments, extractor layer 120 and substrate 130 may be combined with another prism layer, which may increase the control of the angle of emitted light. In some embodiments, combining extractor layer 120 and substrate 130 with another film layer may also decrease an assembly time of a display system.
Light guide 1010 includes a first extractor layer 1020 having a first major surface 1051 and a second major surface 1052, a substrate 1030 having a first major surface 1031 and a second major surface 1032, and a functional layer 1040 having a first major surface 1041 and a second major surface 1042. Second major surface 1052 is in contact with first major surface 1031, and first major surface 1041 is in contact with second major surface 1032. In some cases, substantially the entire second major surface 1052 is in contact with substantially the entire first major surface 1031. In some cases, substantially the entire first major surface 1041 is in contact with substantially the entire second major surface 1032.
The first major surface 1051 includes a plurality of discrete light extractors 1043, similar to light extractors 140 of
In some cases, at least one of first extractor layer 1020, substrate 1030, and functional layer 1040, is isotropic in refractive index. In some cases, all three layers are isotropic.
In some embodiments, each layer 1020, 1030, 1040 is flexible, and the entire light guide 1010 is flexible.
The functional layer 1040 can be applied to the substrate layer 1030 using the same or a different method from that in which the first extractor layer 1020 was applied. Suitable methods of application include, but are not limited to, rotogravure printing, silk screen printing, dot matrix printing, microreplication, extrusion casting, embossing, thermal molding, lamination and the like.
The functional layer 1040 may vary widely depending on the intended application of the light guide 1010. For example, the functional layer 1040 may be at least one of an extractor layer, a diffuser, a reflector, a reflective polarizer, a blank substrate, or an antireflective layer.
In the embodiment shown in
The structures 1060 on the functional layer 1040 in
In another example, the surface 1042 of the layer 1040 can have a roughened or matte surface to prevent wet-out to an adjacent object. Or, any suitable surface of either or both of the first extraction structure 1020 and/or the functional layer 1040 can optionally include protrusions and/or corresponding depressions that can be used to align and/or retain the components of the light guide 1010.
In an embodiment shown in
In another embodiment shown in
As shown in
Referring to
All patents, patent applications, and other publications cited above are incorporated by reference into this document as if reproduced in full. While specific examples of the invention are described in detail above to facilitate explanation of various aspects of the invention, it should be understood that the intention is not to limit the invention to the specifics of the examples. Rather, the intention is to cover all modifications, embodiments, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This application is a continuation-in-part application of U.S. application Ser. No. 11/421,241, filed May 31, 2006, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11421241 | May 2006 | US |
Child | 11998831 | US |