This application is a 371 of PCT International Application No. PCT/GB2010/050387 filed Mar. 5, 2010 (Publication No. WO 2010/100504), which claims priority to GB Patent Application No. 0903862.1, filed Mar. 5, 2009, GB Patent Application No. 0905070.9, filed Mar. 24, 2009, and GB Application No. 0920328.2, filed Nov. 20, 2009. The disclosures of the above applications are incorporated herein by reference in their entirety.
This invention relates to light guide devices and methods of manufacture. The light guide devices are suitable for use in a range of applications, particularly in connection with the backlighting of displays, for example, liquid crystal displays.
A number of light guiding devices are known. These devices are employed for a range of functions including illumination, backlighting, signage and display purposes. Typically, the devices are constructed from an injection moulded or machined transparent plastic component, where a light source, such as a fluorescent lamp or a plurality of light emitting diodes (LEDs), is integrated by means of mechanical attachment at the edge of the transparent plastic component.
Common to all of these devices is the fact that light from the light source is guided through a transparent guide, typically made of plastic, by total internal reflection. For backlighting applications, light is emitted in a substantially perpendicular direction to that of the direction of propagation of the light within the transparent guide. This is achieved through the light being directed so as to interact with scattering structures or films located within, or on the surface of, the transparent guide.
The integration of fluorescent lamps or LEDs to the edge of the transparent light guide is not a straightforward process and thus significantly increases the complexity of the production process for these devices. Achieving a good coupling of the light source and the light guide is essential to the optical performance of the device. In addition, edge coupling of the light sources renders these components susceptible to mechanical damage during both the production process and the normal use of the device.
In seeking to provide thin direct lit backlights, it is preferable to have light emitted into the plane of the light guide. Further benefit may be obtained if the light sources are distributed across the panel, so minimising the length of guiding in the light guide. This has the benefit of creating a thin and efficient backlight but has the disadvantage of compromising the light uniformity. For example, this may be through the creation of dark spots and/or more intense areas of light above or in the vicinity of the light source. Preferably, these dark spots and/or more intense areas of light should not be visible or, at least, reduced in appearance in order to provide at least acceptable, and more preferably, improved light uniformity. Existing solutions to this problem tend to add considerable thickness to the backlight.
Many backlights fall into the categories of “edge-lit” or “direct-lit”. These categories differ in the placement of the light sources relative to the output of the backlight, where the output area defines the viewable area of the display device. In edge-lit backlights, one or more light sources are disposed along an outer border or edge of the backlight construction outside the zone corresponding to the output area. The light sources typically emit light into a light guide, which has length and width dimensions of the order of the output area and from which light is extracted to illuminate the output area. In direct-lit backlights, an array of light sources is disposed directly behind the output area, and a diffuser is placed in front of the light sources to provide a more uniform light output. Some direct-lit backlights also incorporate an edge-mounted light, and are thus illuminated with a combination of direct-lit and edge-lit illumination.
Apart from producing light, the light sources also produces heat. If the heat dissipates into a liquid crystal panel for example, the display quality may be adversely affected. Because the transfer of heat to the liquid crystal panel is unlikely to be uniform, the liquid crystal layer within the liquid crystal panel may be subjected to different degrees of heating. This non-uniform distribution of heat may also affect the switching of thin film transistors inside the liquid crystal display and the overall display quality of the liquid crystal panel may deteriorate. There are numerous challenges to overcome in thermally managing a backlight unit for use in combination with displays. Addressing issues surrounding thermal management should not result in an unacceptable increase in weight or thickness or compromise the mechanical integrity of the backlight unit. In addition, the optical performance of the backlight unit should not be significantly compromised.
Other challenges facing display manufacturers, such as those incorporating large area LED Back Light Units (BLUs) include producing a thin and efficient device which enables 2-d or 3-d spatial dimming to support high display performance and reduced power consumption. This has proved problematic for both edge-lit and direct lit devices and has typically resulted in thicker backlight devices. 2-d dimming relates to when the image content of the display is achieved by only switching on selected areas of the backlight which match or correspond to the desired image thus resulting in significant power reduction. 3-d dimming further incorporates the use of colour.
The beam angle of light emerging from a backlight and the uniformity of said beam angle are important in determining the efficiency and the viewing angle of the display that is being illuminated. Some degree of control over the range of light output angles provided by the backlight is desirable.
It is an object of the present invention to provide a light guiding device that addresses one or more of the aforesaid issues.
In a first aspect of the present invention, there is provided a light guide device comprising a base substrate having a first refractive index, upon a first surface of which are mounted one or more light sources and a first guide layer having a second refractive index that is optionally less than or equal to the first refractive index and which comprises a light output surface, the first guide layer being arranged so as to encapsulate the one or more light sources upon the first surface, wherein the base substrate and the guide layer form a composite structure for guiding light produced by the one or more light sources over the first surface and said one or more light sources are positioned directly behind the light output surface and direct light parallel to the plane of the base substrate.
The light guide device may further comprise one or more features or structures that break or disrupt the total internal reflection of guided light. For example, the light guide device may comprise one or more scattering and/or reflective and/or refractive structures arranged so as to direct light away from the first surface and in the direction of the light output surface. For example, the one or more scattering and/or reflective structures and/or refractive structures may be located at the interface between the base substrate and the first light guide layer and/or on the lower surface of the substrate which is opposite the first surface. The one or more scattering and/or reflecting and/or refractive structures may alternatively be located on the top surface of the first guide layer. In this embodiment, the redirected light will exit the device via the lower surface of the transparent base substrate which may therefore serve as a light output surface rather than the first guide layer.
The light guide device may comprise a diffuser located above the light output surface.
Optionally, the light guide device may not comprise a further light guide layer in contact with the first guide layer. Further, the device may optionally not comprise one or more light scattering and/or reflective structures and/or refractive structures which are located between a first and second light guide layer and above the one or more sources of light. The concealment of the one or more light sources and/or desired light uniformity may be provided in the absence of such features. The concealment of the one or more light sources and/or the provision of the desired light uniformity may be provided by only, or substantially only, light directed normal or substantially normal to the plane of the substrate in combination with a diffuser and in combination with a single light guide layer.
The concealment of the one or more light sources and/or provision of the desired light uniformity may be provided in the absence of an opaque or substantially opaque layer or sheet located over the one or more light sources (e.g. side emitting LEDs) which may be in contact with the first guide layer. More specifically, optionally, there may not be present an opaque layer such that the first guide layer is located between the base substrate and the opaque layer. Said optionally excluded opaque layer or sheet typically serves to block or substantially block the appearance of the light source(s). Said optionally excluded opaque layer or sheet may be a printed graphic layer which may incorporate transparent regions. The transparent regions may be arranged to be not directly over the one or more light sources thus essentially providing an edge-lit type arrangement.
The light guide device may further comprise thermal bonding material in contact with the lower surface of the base substrate wherein the lower surface is opposite and parallel or substantially parallel to the first surface, and wherein said thermal bonding material contacts a heat sink plate and forms an air gap between the lower surface of the base substrate and the heat sink plate. The thermal bonding material may be present in discrete portions and may be positioned in line or substantially in line with the one or more sources of light. The non-continuous nature of the thermal bonding material means that an air gap or gaps are formed between the substrate and the heat sink plate thus facilitating efficient heat dissipation. Advantageously, the heat sink plate and the base substrate are not optically coupled. The lower surface of the base substrate may be referred to herein as a second surface of the base substrate. As such, the second (or lower) surface is opposite the first surface of the base substrate.
The one or more light sources direct at least some light parallel to the plane of the base substrate. Advantageously the one or more light sources comprise, or consist of, or consist essentially of side emitting LEDs. Preferably, the one or more light sources form an array of side emitting LEDs across the base substrate in a direct-lit arrangement. Preferably, a portion of the light emitted by the one or more light sources is not coupled into the light guide but is directed normal or substantially normal to the base substrate and in the direction of the light output surface. Typically, this is less than about 20% of the light emitted from the one or more light sources, for example less than about 10% of the light emitted from the one or more light sources, for example about 2% or less of the light emitted from the one or more light sources. The one or more light sources may also include a number of top emitting LEDs. The top emitting LEDs emit light substantially perpendicularly to the main light output of the side emitting LEDs and in the direction of the light output surface. The array of side emitting LEDs may form a two dimensional array of side emitting LEDs in a direct-lit arrangement. The array may comprise, consist of, or consist essentially of a number of rows and/or columns of LEDs which may vary in which direction they direct at least some light parallel to the plane of the base substrate. For example, the LEDs may be arranged so that for an LED in a particular column or row the LED may direct light in substantially the opposite direction when compared with either of the two LEDs to which it is immediately adjacent in said column or row. For example, for two adjacent LEDs, the angle between the direction of light generated by the first LED in a first direction which is substantially parallel to the plane of the base substrate and the direction of light generated by the second LED in a second direction which is also substantially parallel to the plane of the base substrate may be about 180°. In a given row or column, the LEDs may be positioned so that they are substantially in a straight line. The LEDs may be positioned so that alternate LEDs are in a straight line thus forming two substantially parallel lines of LEDs in a given row or column. In an alternative arrangement, the LEDs may be positioned forming a repeating diamond like arrangement or array of LEDs across the substrate. The LEDs may be arranged such that the light is emitted in the same or substantially the same direction for all or substantially all of the LEDs.
According to a second aspect of the present invention, there is provided a method of producing a light guide device, the method comprising:
The method according to the second aspect of the invention provides a means for guiding light produced by the one or more light sources over the first surface. The light may be guided within the composite structure by total internal reflection.
Preferably, the method of adding the first guide layer to the first surface of the base substrate comprises:
The method of applying the liquid polymer on the first surface of the base substrate and/or the first guide layer may comprise printing, stencilling or dispensing the liquid polymer.
The step of applying one or more scattering and/or reflecting and/or refracting structures so as to redirect light away from the first surface or the first guide layer may comprise printing a patterned, reflecting ink layer.
The arrangement of the guide layer in relation to the light sources provides a light guiding device that exhibits enhanced mechanical protection for the light sources. Furthermore, a device is provided that is simple to produce and which exhibits enhanced optical coupling of the light within the device. The generated light may be guided within both the base substrate and the guide layer due to the effects of total internal reflection.
The base substrate and the first light guide layer are light transmissive and preferably transparent to the light generated by the one or more light sources. The terms “transparent”, “opaque” and “transmissive” relate to the optical properties of particular components of the device relative to the wavelength of the light generated by the incorporated light sources.
According to a third aspect of the present invention, there is provided a display device comprising a light guiding device according to the various aspects including the first aspect of the invention. The display device may be a liquid crystal display device and may therefore comprise a liquid crystal cell which may also be referred to as a liquid crystal panel.
The present invention seeks to provide one or more of the following advantages: a more uniform light guide device (including uniform or substantially uniform luminance) with reduced/no dark spots when viewed in use; efficient light distribution resulting in lower power requirements; a thinner, lighter structure; a device comprising a reduced number of system components. The devices according to the present invention may advantageously be used for 2-d and 3-d dimming.
The present invention also provides improved optical coupling from the light sources to the light guide, short average optical path lengths resulting in minimal optical loss in the light guide, minimal surface scattering and beneficial extracted light beam profiles. For example the present invention can provide good uniformity of extracted light possessing desirable angles of distribution, e.g. about +/−30° from the normal at full width half maximum. In addition, these features serve to provide a highly optically efficient (for example equal to or greater than about 90%) backlight which is scalable up to >80 inches (diagonal).
Base Substrate
The base substrate is light transmissive and may be transparent. The base substrate may be formed from a transparent polymer sheet such as polyester or polycarbonate. The thickness of the transparent base substrate is typically of the order of about 0.1 mm, for example in the range of about 0.1 mm to about 0.2 mm. The refractive index of the base substrate is typically equal to or greater than 1.5. For example, the refractive index of the base substrate may be 1.50 to 1.58.
The base substrate may, or may not, be a microstructured film which has an ink in contact with one or more of said microstructures, wherein said ink reduces the amount of light escaping from said microstructure. Alternatively, a microstructured film may be applied to the base substrate. Brightness Enhancement Films (BEFs) are suitable microstructured films for use in the present invention. A suitable example of a microstructured film is BEF III Brightness Enhancement Film, which is commercially available from 3M. A particular film from this range is made from polyester substrate of thickness 127 microns and possesses a prism structure, varying in one direction, in acrylic polymer. The prism structure is 28 microns high, has a pitch of 50 microns and the prism angle is 90°. Such a film, suitably modified with ink, may be used in the present invention to produce a backlight with a non-symmetrical beam angle of the scattered light, provided that light is input from one of the edges parallel to the prism direction. The ink which may be applied to the microstructures may be light transmissive. Light transmissive ink has the effect of planarising or flattening the microstructures and facilitates light guiding by total internal reflection over the film layer. Light transmissive or transparent ink reduces the amount of light escaping from the film at the microstructure on which it is deposited. Without wishing to be bound by theory, it is believed that light which is being guided by total internal reflection through the light guide plate, encounters a substantially flat surface at the interface between the planarised film layer and air. The substantially flat, planarised surface will retain the total internal reflection and the light will continue to be guided within the light guide device. The structured surface which is not modified with an ink scatters light out from the light guide device by breaking the total internal reflection. Reflective ink may also be used on the microstructures as an alternative means for facilitating extraction of light out from the light guide device and controlling the direction in which the light is extracted. Suitable reflective inks for use in the present invention may comprise metal loaded polymers. Preferably, the refractive indices of the ink and the microstructure should match as closely as possible. For example, the difference in refractive indices should be about 2% or less, more preferably about 1% or less.
The ink, which is typically a polymeric material, may be applied to the microstructured surface of the film to form a thin pattern of features according to any of a number of methods and may be referred to in general terms as an additive printing process. For example, conventional screen printing, incorporates the use of a mesh screen with openings corresponding to the pattern required to be printed. This pattern facilitates the accurate delivery of a volume of ink to the required areas of the microstructures to be planarised. A suitable UV curing ink is Windowtex Gloss which is an acrylic based, transparent UV curing polymer screen printable ink and is commercially available from MacDermid Autotype. Suitable inks for use in the present invention include those which may be UV or solvent cured. Other suitable examples of additive printing methods include stencil printing, ink jet printing, flexographic printing and other known lithographic techniques.
The ink may be applied in varying amounts and shapes. This may depend on how close to the light source the ink is being deposited. The intensity of the light becomes less as the distance from the light source increases. To take account of this, larger sized light transmissive ink dots which are more closely spaced may be deposited closer to the position of the light source resulting in small areas of unplanarised microstructure, whereas smaller sized light transmissive ink dots which are more widely spaced may be deposited as the distance from the light source increases, resulting in larger areas of unplanarised microstructure.
Light Sources
The light source can be any of those known to those skilled in the art, including those which are suitable for use in backlighting. Such light sources include one or more LEDs. The light may be non-directional. The LEDs can be any of the designs known to those skilled in the art, including edge-emitting, side emitting, top emitting or bare die LEDs. The LEDs may be selected from one or more of a range of colours. For example, the LEDs may be white. White light may also be generated by combining red, green and blue LEDs. Typically, an LED suitable for use in the present invention is of the order of about 1 mm in each dimension.
The light sources are arranged to direct substantially all or most of the light into the light guide. Advantageously they are selected from side-emitting LEDs wherein the light is directed parallel, or substantially parallel to the plane of the substrate. Even more advantageously a proportion of the light is not coupled into the light guide but is allowed to propagate in the direction of the output surface. For example, less than about 20% of the light emitted from the one or more light sources, for example less than about 10% of the light emitted from the one or more light sources, for example about 2% or less of the light is allowed to propagate in such a manner. The effect of allowing this light to propagate towards the output surface is that the appearance of the light sources is concealed when viewed in normal use and the light is distributed more uniformly. In particular, this light allows a diffuser to be positioned more closely to the light guide layer than in other conventional backlights.
Advantageously, the one or more light sources are arranged to provide direct-lit light guide devices, including direct-lit backlight units. The one or more light sources may form an array of light sources across the base substrate in a direct-lit arrangement. This arrangement serves to provide a good thermal solution compared to more conventional arrangements. This direct-lit arrangement may consist of an array of light sources forming a series of rows and columns across the whole of, or substantially the whole of, the base substrate. For example, the array may comprise, consist of or consist essentially of an array of side-emitting LEDs in a direct-lit arrangement. Such an array may also include a number of top emitting LEDs. The one or more light sources may be arranged in a regular repeating pattern across the base substrate.
Electrical tracks may be patterned onto the base substrate which may be transparent, so forming electrical bonding pads for the one or more light sources and electrical connections for external electrical driving equipment. The electrical tracks may be patterned by etching methods, for example, using copper or gold, or by additive screen printing methods, for example, using silver loaded adhesive. The LED light sources may be electrically and mechanically attached to the electrical bonding pads by soldering or conducting adhesive methods.
Guide Layer
The guide layer (which may also be referred to as a light guide layer) which is typically suitable for use in a backlight unit may be transparent. The guide layer may comprise a transparent flexible plastic polymer layer, typically of about 1 mm in thickness. The refractive index of the guide layer may have a refractive index of about 1.46 to 1.56.
The guide layer may be made from a range of available polymers, including acrylics, urethanes or polycarbonates.
The guide layer and base substrate may be combined using a standard lamination technique. Such a technique may require the use of a transparent adhesive which has a refractive index which is higher than the guide layer and the base substrate. The guide layer and base substrate may be optically joined during manufacture. The method of combining the guide layer and the base substrate may comprise applying and curing a liquid polymer layer. Methods of curing may make use of one or more techniques including UV, thermal or two-part curing. The method may comprise printing, stencilling or dispensing the liquid polymer. Optically joined indicates the layers are combined in such a way that, optically, these layers are effectively indistinguishable.
Light Scattering and/or Reflective and/or Refractive Structures
The light guide device may further comprise one or more features that break the total internal reflection of the guided light. For example, the light guide device may further comprise light scattering and/or reflective and/or refractive structures which disturb the total internal reflection of the guided light. The application of the structures may be accomplished using standard printing, micromoulding, microstamping and microembossing techniques. Suitable scattering structures may be in the form of a patterned reflecting ink layer. Suitable scattering features include highly reflective white printed ink dots. In such an arrangement, each dot disturbs the total internal reflection of the guided light and causes the light to be scattered randomly and to escape from the light guide. The size and/or pitch of the dots may be varied to ensure uniform light scatter.
The ink, which may be a polymeric material, may be applied to the base substrate or guide layer to form a thin pattern of features, according to any of a number of methods and may be referred to in general terms as an additive printing process. For example, conventional screen printing incorporates the use of a mesh screen with openings corresponding to the pattern required to be printed. This pattern facilitates the accurate delivery of a volume of ink to the required areas of the guide layer. Suitable inks for use in the present invention include those which may be UV or solvent cured. Other suitable examples of additive printing methods include stencil printing, ink jet printing, flexographic printing and other known lithographic techniques. The ink may be applied in varying amounts and shapes.
Other suitable structures include microstructured surfaces which comprise a plurality of three dimensional features, or irregularities, which are proud of the surface and arranged on a scale of about 1 to about 1000 microns, independently, in width, depth and pitch, preferably about 5 to about 50 microns, more preferably about 20 to about 50 microns. Specific types of microstructures, or features, which are suitable for use in the present invention include prisms, pyramids, (micro)lenses, e.g. cylindrical or circular shaped lenses and random diffusing structures.
Prism based microstructures may have a saw tooth shape structure varying in one direction across the entirety of the surface with a pitch of about 50 microns, wherein the pitch is the distance between the centre of adjacent microstructures. (Micro)lenses have a regular or random distribution of lenses, which may be of a low focal length, distributed across the surface on a scale of about 10 to 20 microns. The diffusing structures may possess a random surface texture which is also on a scale (depth and pitch) of about 10 to 100 microns.
The light scattering and/or reflective and/or refractive features may also be referred to as light extraction features.
Heat Sink Plate
The heat sink plate may be located behind and substantially parallel to the base substrate, which may be transparent, and may be connected to the substrate via discrete portions of thermal bonding material. The thermal bonding material may advantageously be located in line or substantially in line with the one or more light sources. The positioning of the discrete portions of thermal bonding material means that there is an air gap located between the substrate and the heat sink plate and between the discrete portions of thermal bonding material. The air gap means that the heat sink plate does not interfere with the light guiding mechanism and ensures uniform light scattering from the features that break the total internal reflection of the guided light, e.g. scattering features. Advantageously, the base substrate and the heat sink plate are not optically coupled. A backlight reflector element, e.g. film may be located in the vicinity of the air gap or gaps to improve optical efficiency. For example, the backlight reflector film may be located on the lower surface of the substrate and/or on the upper surface of the heat sink plate.
The heat sink plate may be made from materials which assist in the dissipation of the heat. Suitable examples include metals such as aluminium. The heat sink plate is typically about 0.2 mm to 10 mm in thickness, for example about 2 mm in thickness or less. The thermal bonding material may be an adhesive such as an epoxy or a silicone or it may be a pressure sensitive adhesive tape or screen/stencil printable polymer with high thermal conductivity. The adhesive may be applied using a needle or by using screen printing. The adhesive tape may be applied using a standard taping machine.
The use of the heat sink plate according to the present invention provides the means for operating at higher current at a wider temperature range. By running at higher current the light output can be increased thus reducing the number of light sources e.g. LEDs.
The substrate and heat sink may be combined using lamination techniques.
Diffuser
The diffuser may be positioned more closely to the light guide layer when compared with more conventional light guide devices. For example, the distance from the top of the light guide layer to the bottom of the diffuser may be less than about 12 mm. For example the distance may be as low as about 9 mm or about 2 mm. Typically, the distance between the light guide layer and the diffuser is greater than about 2 mm.
The diffuser may be kept separate from the light guide layer by means of a conventional spacing arrangement. For example, a spacing element is located around the edge of the light guide layer. The diffuser may be chosen from conventional diffusers used in backlights.
Uses of the Light Guide Devices
The light guide devices according to the present invention may be employed for a range of functions including illumination, backlighting, signage and display purposes.
Liquid crystal devices are well known in the art. A liquid crystal display device operating in a transmissive mode typically comprises a liquid crystal cell, which may also be referred to as a liquid crystal panel, a backlight unit which may incorporate a light guide device, and one or more polarisers. Liquid crystal cells are also well known devices. In general, liquid crystal cells typically comprise two transparent substrates between which is disposed a layer of liquid crystal material. A liquid crystal display cell may comprise two transparent plates which may be coated on their internal faces respectively with transparent conducting electrodes. An alignment layer may be introduced onto the internal faces of the cell in order that the molecules making up the liquid crystalline material line up in a preferred direction. The transparent plates are separated by a spacer to a suitable distance, for example about 2 microns. The liquid crystal material is introduced between the transparent plates by filling the space in between them by flow filling. Polarisers may be arranged in front of and behind the cell. The backlight unit may be positioned behind the liquid crystal cell using conventional means. In operation, a liquid crystal cell, operating in a transmissive mode, modulates the light from a light source such as a backlight unit which may comprise a light guide device.
Embodiments of the invention will now be described, by way of example only and without limitation, with reference to the accompanying drawings and the following Examples, in which:
In
At the perimeter interface between the transparent base substrate (2) and the first transparent guide layer (4), a cavity layer structure (not shown) may be incorporated in order to form a suitable cavity in which the LEDs (3) may be embedded.
The refractive indices of the transparent base substrate and the first transparent guide layer may be such that they satisfy the inequality n2≧n4.
Light, generated by the LED light sources is initially coupled into the transparent guide layer so as to propagate in a direction substantially parallel to a plane defined by the transparent base substrate (2). The generated light is guided within both the transparent base substrate and the transparent guide layer due to the effects of total internal reflection. Therefore, the transparent base substrate and the transparent guide layer or layers form a composite structure that acts as the guiding media for the light generated by the encapsulated LED light sources (3).
When the light has propagated as far as the scattering structure (6), it interacts with this structure so as to be redirected and so exit (7) the device via the top surface of the transparent guide layer so providing a backlighting function. The scattering and/or reflective structures and/or refracting structures (6) may comprise highly reflective white ink dots. Both the dot size and/or pitch may be varied in order to fine tune the scattering effects.
In
As a result of the fact that there is no air gap between the output of the light sources and the light guiding media, the transparent guide layer provides a simpler and enhanced means of optically coupling the light within the device.
A device in accordance with the invention was constructed as follows. A 0.125 mm thick sheet of transparent polyester was used as a base substrate. A scattering structure comprising white lines of ink was printed onto the underside of the polyester film. The ink used was a white acrylic based, UV curing polymer screen printable ink which is commercially available. On the opposite (or top) side of the polyester film was printed conducting tracks (silver particle loaded conducting epoxy) and conducting adhesive in order to mount a number of LEDs (Stanley Tw1145Is-tr) onto the substrate and provide suitable electrical connections onto the conducting ink tracks. A cavity, about 0.7 mm deep was formed around the perimeter of the base substrate using a cavity layer structure. The cavity was then filled with UV curing transparent polymer (Dymax 4-20688), thus forming a first light guide layer. A spacing element was positioned and secured on the first light guide layer and the diffuser (Shin Wha 97% haze film) was positioned on the spacing element. The distance of the diffuser to the light guide layer was 9 mm. The LEDs were concealed from observation from above, by the combination of light not coupled into the light guide layer and the diffuser. A thin aluminium heat sinking plate of 2 mm thickness was fixed to the base substrate via discrete localised sections of thermal bonding material. Good uniformity of light was observed from the extracted light.
Number | Date | Country | Kind |
---|---|---|---|
0903862.1 | Mar 2009 | GB | national |
0905070.9 | Mar 2009 | GB | national |
0920328.2 | Nov 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2010/050387 | 3/5/2010 | WO | 00 | 9/6/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/100504 | 9/10/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4877451 | Winnik et al. | Oct 1989 | A |
5408387 | Murase et al. | Apr 1995 | A |
5836096 | Brauer | Nov 1998 | A |
5971559 | Ishikawa et al. | Oct 1999 | A |
6030108 | Ishiharada | Feb 2000 | A |
6337946 | McGaffigan | Jan 2002 | B1 |
6356389 | Nilsen et al. | Mar 2002 | B1 |
6443579 | Myers | Sep 2002 | B1 |
6561663 | Adachi et al. | May 2003 | B2 |
6609799 | Myers | Aug 2003 | B1 |
6947110 | Morimoto et al. | Sep 2005 | B2 |
6969189 | Lee et al. | Nov 2005 | B2 |
7287891 | Park et al. | Oct 2007 | B1 |
7288320 | Steenblik et al. | Oct 2007 | B2 |
7334933 | Simon | Feb 2008 | B1 |
7663804 | Chang | Feb 2010 | B2 |
7719016 | Nada et al. | May 2010 | B2 |
7780306 | Hoshi | Aug 2010 | B2 |
7791683 | Larson et al. | Sep 2010 | B2 |
7929816 | Meir et al. | Apr 2011 | B2 |
7954990 | Gourlay | Jun 2011 | B2 |
7959343 | Ijzerman et al. | Jun 2011 | B2 |
7980747 | Vissenberg et al. | Jul 2011 | B2 |
8011818 | Negley | Sep 2011 | B2 |
8092064 | Erchak et al. | Jan 2012 | B2 |
8128272 | Fine et al. | Mar 2012 | B2 |
8129731 | Vissenberg et al. | Mar 2012 | B2 |
8182128 | Meir et al. | May 2012 | B2 |
8215815 | Meir et al. | Jul 2012 | B2 |
8238703 | Meir et al. | Aug 2012 | B2 |
8264622 | Gourlay | Sep 2012 | B2 |
8393748 | Herrmann et al. | Mar 2013 | B2 |
8393775 | Kim et al. | Mar 2013 | B2 |
8432527 | Tomlinson | Apr 2013 | B2 |
8467013 | Gourlay | Jun 2013 | B2 |
20020008807 | Miyatake et al. | Jan 2002 | A1 |
20030016314 | Dong et al. | Jan 2003 | A1 |
20030039113 | Murr et al. | Feb 2003 | A1 |
20030210222 | Ogiwara et al. | Nov 2003 | A1 |
20030232179 | Steenblik et al. | Dec 2003 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040067360 | Steenblik et al. | Apr 2004 | A1 |
20040085749 | Parker et al. | May 2004 | A1 |
20040130515 | Chuang et al. | Jul 2004 | A1 |
20040136667 | Leu et al. | Jul 2004 | A1 |
20050265029 | Epstein et al. | Dec 2005 | A1 |
20060002146 | Baba | Jan 2006 | A1 |
20060046159 | Emslander et al. | Mar 2006 | A1 |
20060056166 | Yeo | Mar 2006 | A1 |
20060083019 | Hahm et al. | Apr 2006 | A1 |
20060087827 | Jung et al. | Apr 2006 | A1 |
20060092663 | Noh et al. | May 2006 | A1 |
20060187552 | Huang et al. | Aug 2006 | A1 |
20060227323 | Goto | Oct 2006 | A1 |
20060256255 | Minami | Nov 2006 | A1 |
20070081339 | Chung et al. | Apr 2007 | A1 |
20070086179 | Chen et al. | Apr 2007 | A1 |
20070121340 | Hoshi | May 2007 | A1 |
20070133229 | Tsai | Jun 2007 | A1 |
20070147073 | Sakai et al. | Jun 2007 | A1 |
20070159699 | Wang et al. | Jul 2007 | A1 |
20070172171 | Van Ostrand et al. | Jul 2007 | A1 |
20070212533 | Jones et al. | Sep 2007 | A1 |
20070279773 | Johnson et al. | Dec 2007 | A1 |
20080007541 | Eliasson et al. | Jan 2008 | A1 |
20080013323 | Katsumoto et al. | Jan 2008 | A1 |
20080043173 | Lin et al. | Feb 2008 | A1 |
20080055931 | Verstraete et al. | Mar 2008 | A1 |
20080080167 | Chang | Apr 2008 | A1 |
20080117620 | Hama et al. | May 2008 | A1 |
20080129927 | Hamada et al. | Jun 2008 | A1 |
20080130018 | Steenblik et al. | Jun 2008 | A1 |
20080137197 | Hsu et al. | Jun 2008 | A1 |
20080152933 | Mizuno et al. | Jun 2008 | A1 |
20080266863 | Rinko | Oct 2008 | A1 |
20080285305 | Fujino et al. | Nov 2008 | A1 |
20080296792 | Gourlay | Dec 2008 | A1 |
20090086508 | Bierhuizen | Apr 2009 | A1 |
20090121988 | Amo et al. | May 2009 | A1 |
20090161341 | Meir et al. | Jun 2009 | A1 |
20100142222 | Vahabzadeh | Jun 2010 | A1 |
20100164079 | Dekker et al. | Jul 2010 | A1 |
20110050735 | Bae et al. | Mar 2011 | A1 |
20110051037 | Kim et al. | Mar 2011 | A1 |
20110182084 | Tomlinson | Jul 2011 | A1 |
20110234941 | Gourlay | Sep 2011 | A1 |
20110317417 | Gourlay | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
101196573 | Jun 2008 | CN |
20 2007 017 224 | Apr 2008 | DE |
0 797 045 | Sep 1997 | EP |
1 640 756 | Mar 2006 | EP |
1 860 919 | Nov 2007 | EP |
1 890 186 | Feb 2008 | EP |
2 425 392 | Oct 2006 | GB |
2 431 730 | May 2007 | GB |
2 438 440 | Nov 2007 | GB |
2 448 564 | Oct 2008 | GB |
2 454 928 | May 2009 | GB |
2 459 888 | Nov 2009 | GB |
2 463 913 | Mar 2010 | GB |
2 464 916 | May 2010 | GB |
2 468 353 | Sep 2010 | GB |
2 468 410 | Sep 2010 | GB |
2 468 411 | Sep 2010 | GB |
2 468 875 | Sep 2010 | GB |
2 475 511 | May 2011 | GB |
2 475 738 | Jun 2011 | GB |
3019466 | Oct 1995 | JP |
2002-287143 | Oct 2002 | JP |
2004-241282 | Aug 2004 | JP |
2004-296300 | Oct 2004 | JP |
2006-351375 | Dec 2006 | JP |
2007-012856 | Jan 2007 | JP |
2007-041622 | Feb 2007 | JP |
2007-535790 | Dec 2007 | JP |
2008-096889 | Apr 2008 | JP |
2008-305642 | Dec 2008 | JP |
WO 9621122 | Jul 1996 | WO |
WO 0151848 | Jul 2001 | WO |
WO 2005101070 | Oct 2005 | WO |
WO 2005107363 | Nov 2005 | WO |
WO 2006014822 | Feb 2006 | WO |
WO 2006126155 | Nov 2006 | WO |
WO 2007000695 | Jan 2007 | WO |
WO 2007000695 | Jan 2007 | WO |
WO 2007034398 | Mar 2007 | WO |
WO 2007138294 | Dec 2007 | WO |
WO 2007143341 | Dec 2007 | WO |
WO 2008038728 | Apr 2008 | WO |
WO 2008047286 | Apr 2008 | WO |
WO 2008061059 | May 2008 | WO |
WO 2008087572 | Jul 2008 | WO |
WO 2008087572 | Jul 2008 | WO |
WO 2008122909 | Oct 2008 | WO |
WO 2009066056 | May 2009 | WO |
WO 2009068860 | Jun 2009 | WO |
WO 2010035050 | Apr 2010 | WO |
WO 2010046694 | Apr 2010 | WO |
WO 2010100505 | Sep 2010 | WO |
Entry |
---|
International Search Report (ISR) and Written Opinion (WO) in PCT/GB2010/050387 dated May 7, 2010. |
Search Report under Section 17 in GB0905070.9 dated Jun. 9, 2009. |
Search Report under Section 17 in GB0903862.1 dated Jun. 30, 2009. |
Search Report under Section 17 in GB0920328.2 dated Feb. 15, 2011. |
International Search Report (ISR) and Written Opinion (WO), dated Feb. 25, 2009 from PCT Application PCT/GB2008/003862. |
International Search Report (ISR) and Written Opinion (WO), dated Mar. 12, 2009 from PCT Application PCT/GB2008/003928. |
International Search Report (ISR) and Written Opinion (WO), dated Feb. 23, 2010 from PCT Application PCT/GB2009/051270. |
International Search Report (ISR) and Written Opinion (WO), dated Apr. 13, 2010 from PCT Application PCT/GB2009/051409. |
International Search Report (ISR) and Written Opinion (WO), dated Jul. 1, 2010 from PCT Application PCT/GB2010/050388. |
International Preliminary Report on Patentability (IPRP), dated Nov. 2, 2009 from PCT Application PCT/GB2008/003862. |
International Preliminary Report on Patentability (IPRP), dated Nov. 2, 2009 from PCT Application PCT/GB2008/003928. |
International Preliminary Report on Patentability (IPRP), dated Sep. 6, 2010 from PCT Application PCT/GB2009/051270. |
International Preliminary Report on Patentability (IPRP), dated Apr. 26, 2011 from PCT Application PCT/GB2009/051409. |
UK Search Report, dated Mar. 10, 2008 in GB Application No. GB0723057.6. |
UK Search Report, dated Mar. 20, 2008 in GB Application No. GB0723166.5. |
UK Search Report, dated Feb. 13, 2009 in GB Application No. GB0817829.5. |
UK Search Report, dated Jan. 8, 2009 in GB Application No. GB0819308.8. |
UK Search Report, dated Jun. 9, 2009 in GB Application No. GB0905070.9. |
UK Search Report, dated Jun. 30, 2009 in GB Application No. GB0903862.1. |
UK Search Report, dated Feb. 11, 2011 in GB Application No. GB0920333.2. |
UK Search Report, dated Mar. 1, 2011 in GB Application No. GB0920922.2. |
UK Examination Report, dated Oct. 27, 2008 in GB Application No. GB0723166.5. |
UK Examination Report, dated Jun. 28, 2011 in GB Application No. GB0817829.5. |
UK Examination Report, dated Oct.23, 2012 in GB Application No. GB0819308.8. |
Office Action, dated Nov. 16, 2011 issued in U.S. Appl. No. 12/744,149. |
Office Action, dated Aug. 27, 2012, issued in Chinese Patent Application No. 200980141892.4 with English Translation. |
Office Action, dated Sep. 12, 2012 issued in U.S. Appl. No. 12/744,644. |
Office Action, dated Jan. 2, 2013, issued in U.S. Appl. No. 13/125,134. |
Office Action, dated Jan. 14, 2013, issued in Chinese Patent Application No. 201080010523.4 with English Translation. |
Office Action, dated Sep. 4, 2013, issued in U.S. Appl. No. 13/125,134. |
Office Action, dated Jan. 29, 2013, issued in U.S. Appl. No. 13/254,990. |
Office Action, dated Sep. 6, 2013, issued U.S. Appl. No. 13/254,990. |
Office Action, dated Sep. 13, 2013 issued in Japanese Patent Application No. JP 2011-532720. |
Office Action, dated Oct. 22, 2013 issued in Japanese Patent Application No. JP 2011-552528. |
Chinese Office Action, dated Jul. 14, 2014, issued in Chinese Patent Application No. 201080010523.4, with English translation. |
European Office Action (Communication pursuant to Article 94(3) EPC), dated Dec. 11, 2014, issued in European Patent Application No. 10 707 118.5-1562. |
European Office Action (Communication pursuant to Article 94(3) EPC), dated Dec. 10, 2014, issued in European Patent Application No. 10 707 119.3-1562. |
Japanese Office Action, dated Sep. 16, 2014, issued in Japanese Patent Application No. 2011-552528, with English Translation. |
Number | Date | Country | |
---|---|---|---|
20120002438 A1 | Jan 2012 | US |