The invention relates to a portable light and more particularly to portable lights that include LEDs.
In one construction, the light includes a plurality of LEDs that operate under either an AC or DC power supply. A chimney extends through the light and operates to enhance the cooling of the LEDs.
In another construction, a light includes a housing defining a bottom end and a top end, a heat sink disposed within the housing and including a central body that defines a central aperture, and a plurality of arms coupled to the central body and extending outward from the central body, each of the arms including a light receiving surface. A plurality of LEDs is coupled to each of the light receiving surfaces and a hollow tube extends from the bottom of the housing and is coupled to the heat sink to define a cooling air passage that passes through the hollow tube and the central aperture to direct cooling air from the bottom of the housing to the top of the housing.
In another construction, a light includes a housing, a heat sink disposed within the housing, a plurality of LEDs coupled to the heat sink and operable in response to a supply of power, and a first power supply including two power tool battery packs selectively coupled to the housing. A second power supply is arranged to receive AC power from an external source, and a power control circuit is operable to detect the level of charge in each of the power tool battery packs and to deliver power to the LEDs sequentially from the battery packs beginning with the battery pack having the lowest state of charge.
In still another construction, a light includes a housing defining a bottom end and a top end, and a heat sink disposed within the housing and including a central body that defines a central aperture and a plurality of external apertures, the central aperture extending along a central axis of the light and each of the external apertures extending along external axes that are parallel to and offset from the central axis. A plurality of arms is coupled to the central body and extends outward from the central body. Each of the arms includes a light receiving surface and a plurality of fins that extend from the light receiving surface toward the central axis. A plurality of LEDs is coupled to each of the light receiving surfaces, and a cooling air flow path extends from the bottom of the housing through the heat sink aperture to direct cooling air from the bottom of the housing to the top of the housing.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The housing 15 contains the electrical components of the area light 10. Specifically, the housing 15 includes power inputs 30 and power outlets 35 (shown in
The illustrated housing 15 further includes a control panel 45 and a display panel 50 for controlling the operation of the area light 10 and displaying information relevant to the operation of the light 10 including various operating parameters or conditions of the light 10. The control panel 45 includes, among other things, a power button 55, a light intensity control 60, a light intensity indicator 65, and a power source indicator 70. The light intensity control 60 allows a use to increase or decrease the intensity of the light 10. There can be three intensity settings when the area light 10 is using DC power and six intensity settings when the area light 10 is using AC power. The light intensity indicator 65 may include a plurality of indicator bars that depict the level of intensity that the light 10 is supplying. Additionally the indicator bars may appear one color when the area light 10 is using DC power and a different color when the area light 10 is using AC power. The power source indicator 70 may include a second set of indicator bars that depict the amount of power (i.e., the state of charge) remaining in the battery packs 25. The panel 50 may also include an indicator that indicates what operating mode the light is in or other features and parameters of the light 10.
In some arrangements, the light 10 is operable remotely using any suitable communication scheme (e.g., Bluetooth, ONE-KEY etc.). In one construction, ONE-KEY can be used to remotely control the light 10. In these constructions, the panel 45, 50 may include an indicator that operates to notify a user when ONE-KEY is being used to control the light 10. In addition, there may be a control that locks the light 10 from being able to be controlled by a ONE-KEY device. The lock-out could be permanent or it could be for a fixed and predetermined period of time.
ONE-KEY includes an application for use on mobile devices such as smartphones and tablets. The ONE-KEY application could include a battery charge indicator and a status indicator (e.g., charging, waiting to charge, fully charged, etc.). In one construction, a desired run time can be selected (either at the control panel 45 or in the ONE-KEY application), and the light 10 computes a light intensity to achieve that run time based on the current state of charge of the battery packs 25, and the light output is set to that level of intensity.
In addition, the ONE-KEY application may allow the user to control what is done in response to a loss of DC (battery) power. For example, the light 10 could turn off, flash, run for a limited additional time period, etc. In one embodiment the light 10 is configured to adjust its brightness lower based on the proximity of the device that is using the ONE-KEY application to control the light 10.
In operation, if both the battery pack 25 and an AC power source are connected to the area light 10, the AC power source will charge the battery pack 25 and power the area light 10. If multiple battery packs 25 are inserted into the battery ports 20 (thereby connecting to charging circuits) during this time, the AC power will be used to charge one battery pack 25 at a time until all of the battery packs 25 are charged. When the AC power source becomes disconnected from the area light 10, the battery pack 25 (if sufficiently charged) will automatically begin powering the area light 10.
Although multiple battery packs 25 can be inserted into the battery ports 20 at a given time, the illustrated area light 10 only utilizes one battery pack 25 at a time. The area light 10 will utilize one battery pack 25 until that battery pack 25 has been fully drained of power. Then, the next battery pack 25 will begin powering the area light 10. In other words, the area light 10 is configured to utilize the battery packs 25 sequentially rather than in parallel.
When only a single battery pack 25 is inserted into the battery port 20 and thereby connected to the charging circuit 40, the area light 10 will engage in a power saving mode. During the power saving mode, the area light 10 will prolong the battery life by automatically decreasing the light intensity when the charge of the battery pack 25 falls below a certain level. When two or more battery packs 25 are inserted into the battery port 20, the area light 10 will continue to operate at the specified intensity level until each battery pack 25 is drained. When only one battery pack 25 remains un-drained, the area light 10 will go back into the power saving mode, reducing the intensity of the light in order to extend the battery life of the remaining battery pack 25.
Thus, the light 10 can be powered by DC current provided by the battery packs 25 or AC power provided by a conventional AC power source. When the light 10 is powered by DC from the battery packs 25, the light 10 first takes power from the battery pack 25 that has the lower state of charge to preserve the charge of the more highly charged battery pack 25. The battery packs 25 are then discharged in sequence and not in parallel. Of course, other arrangements or operating modes may vary the discharge arrangement of the battery packs 25.
With reference to
As illustrated in
With reference to
A finned inlet member 110, illustrated in
The light support member 105, illustrated in
As illustrated in
In operation, the LEDs 95 are powered by either the DC power supply or the AC power supply to generate the desired illumination. The circuit boards 90 and the LEDs 95 generate a significant amount of heat during operation. Some of that heat is conducted into the chimney 100 either directly, or through the light supporting member 105. As the chimney 100 heats, a natural convection pattern is established. The hot air within the chimney 100 rises and exits the light 10, thereby drawing additional cool air into the bottom of the light 10. In this manner, the cooling ability of the light 10 is enhanced.
As illustrated in
The light support member or heat sink 235 includes a plurality of light support surfaces 240 that are arranged around the perimeter of the light support member 235 and that each support a plurality of LEDs 245 much like the construction of
With reference to
The central aperture 265 includes a plurality of interior fins 285 that further increase the surface area in the central aperture 265. Additionally, the external apertures 270 provide more surface area that can be utilized to enhance the cooling effect as air passes through the external apertures 270 and the central aperture 265.
While the chimney 100 of the construction of
A shorter tube 290, shown in
In operation, the user uses a power button 55 to actuate the light 200 and select an operating mode. The power control circuit or charging circuit 40 determines where power for the LEDs 245 should come from. First the power control circuit 40 determines if AC power is available from an external source. If AC power is not available, the power control circuit 40 will use the battery packs 25 if they are positioned in the battery pack ports 20. If only one battery pack 25 is present, power will be drawn from that battery pack 25. If two battery packs 25 are present, the power control circuit 40 first determines the state of charge for each of the battery packs 25 and then selects the battery pack 25 with the lowest state of charge to deliver power to the LEDs 245 much like the embodiment of
As the LEDs 245 operate, they emit light and produce heat. The heat conducts into the heat sink 235 and increases the temperature of the heat sink 235. The higher temperature of the heat sink 235 heats the air within the central aperture 265, the external apertures 270, and the air around the various fins 280. As the air is heated it rises, thereby producing a natural convection current through the heat sink 235. In the natural convection current, cool air enters the cooling flow path through the bottom opening in the tube or chimney 225. The air rises through the tube 225, through the central aperture 265, into the short tube 290 and out the top of the light 200 to complete the cooling flow path. Similarly, air flows through the external apertures 270 and the various fins 280 from the bottom of the heat sink 235 to the top of the heat sink 235 to enhance the cooling ability of the heat sink 235.
It should be noted that any feature described with regard to one construction is equally applicable to any of the other constructions described herein.
Various features and advantages of the invention are set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/851,013, filed Dec. 21, 2017, which is a continuation of U.S. patent application Ser. No. 15/015,794, filed Feb. 4, 2016, now U.S. Pat. No. 9,851,088, which claims priority to U.S. Provisional Patent Application No. 62/111,990, filed on Feb. 4, 2015, and to U.S. Provisional Patent Application No. 62/265,935, filed on Dec. 10, 2015, the entire contents of all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3331958 | Adler | Jul 1967 | A |
4032771 | Ilzig | Jun 1977 | A |
4228489 | Martin | Oct 1980 | A |
4268894 | Bartunek et al. | May 1981 | A |
4324477 | Miyazaki | Apr 1982 | A |
5203621 | Weinmeister et al. | Apr 1993 | A |
5207747 | Gordin et al. | May 1993 | A |
5351172 | Attree et al. | Sep 1994 | A |
5400234 | Yu | Mar 1995 | A |
5428520 | Skeif | Jun 1995 | A |
5630660 | Chen | May 1997 | A |
5934628 | Bosnakovic | Aug 1999 | A |
5964524 | Qian | Oct 1999 | A |
6045240 | Hochstein | Apr 2000 | A |
D428176 | Bamber et al. | Jul 2000 | S |
6092911 | Baker, III et al. | Jul 2000 | A |
6099142 | Liu | Aug 2000 | A |
6149283 | Conway et al. | Nov 2000 | A |
6183114 | Cook et al. | Feb 2001 | B1 |
6213626 | Qian | Apr 2001 | B1 |
6255786 | Yen | Jul 2001 | B1 |
6265969 | Shih | Jul 2001 | B1 |
D452022 | Osiecki et al. | Dec 2001 | S |
6367949 | Pederson | Apr 2002 | B1 |
6379023 | Passno | Apr 2002 | B1 |
6461017 | Selkee | Oct 2002 | B2 |
6474844 | Ching | Nov 2002 | B1 |
6554459 | Yu et al. | Apr 2003 | B2 |
6637904 | Hernandez | Oct 2003 | B2 |
6824297 | Lee | Nov 2004 | B1 |
6845279 | Gilmore et al. | Jan 2005 | B1 |
6854862 | Hopf | Feb 2005 | B1 |
6857756 | Reiff et al. | Feb 2005 | B2 |
6873249 | Chu | Mar 2005 | B2 |
6877881 | Tsao | Apr 2005 | B2 |
6899441 | Chen | May 2005 | B2 |
D506847 | Hussaini et al. | Jun 2005 | S |
6902294 | Wright | Jun 2005 | B2 |
6926428 | Lee | Aug 2005 | B1 |
7001044 | Leen | Feb 2006 | B2 |
7001047 | Holder et al. | Feb 2006 | B2 |
7011280 | Murray et al. | Mar 2006 | B2 |
7063444 | Lee et al. | Jun 2006 | B2 |
7073926 | Kremers et al. | Jul 2006 | B1 |
D532536 | Krieger et al. | Nov 2006 | S |
7152997 | Kovacik et al. | Dec 2006 | B1 |
7153004 | Galli | Dec 2006 | B2 |
7194358 | Callaghan | Mar 2007 | B2 |
7195377 | Tsai | Mar 2007 | B2 |
7224271 | Wang | May 2007 | B2 |
D553281 | Rugendyke et al. | Oct 2007 | S |
D553771 | Watson et al. | Oct 2007 | S |
7278761 | Kuan | Oct 2007 | B2 |
7350940 | Haugaard et al. | Apr 2008 | B2 |
7364320 | Van Deursen et al. | Apr 2008 | B2 |
7367695 | Shiau | May 2008 | B2 |
7470036 | Deighton et al. | Dec 2008 | B2 |
7484858 | Deighton et al. | Feb 2009 | B2 |
7503530 | Brown | Mar 2009 | B1 |
7566151 | Whelan et al. | Jul 2009 | B2 |
7618154 | Rosiello | Nov 2009 | B2 |
7638970 | Gebhard et al. | Dec 2009 | B1 |
7670034 | Zhang et al. | Mar 2010 | B2 |
7798684 | Boissevain | Sep 2010 | B2 |
7828465 | Robarge et al. | Nov 2010 | B2 |
7857486 | Long et al. | Dec 2010 | B2 |
7914178 | Xiang et al. | Mar 2011 | B2 |
7914182 | Mrakovich et al. | Mar 2011 | B2 |
7972036 | Schach et al. | Jul 2011 | B1 |
D643138 | Kawase et al. | Aug 2011 | S |
7988335 | Liu et al. | Aug 2011 | B2 |
7990062 | Liu | Aug 2011 | B2 |
8007128 | Wu et al. | Aug 2011 | B2 |
8007145 | Leen | Aug 2011 | B2 |
8029169 | Liu | Oct 2011 | B2 |
8047481 | Shen | Nov 2011 | B2 |
8087797 | Pelletier et al. | Jan 2012 | B2 |
8142045 | Peak | Mar 2012 | B2 |
8167466 | Liu | May 2012 | B2 |
8201979 | Deighton et al. | Jun 2012 | B2 |
D665521 | Werner et al. | Aug 2012 | S |
8235552 | Tsuge | Aug 2012 | B1 |
8262248 | Wessel | Sep 2012 | B2 |
8294340 | Yu et al. | Oct 2012 | B2 |
8322892 | Scordino et al. | Dec 2012 | B2 |
8328398 | Van Deursen | Dec 2012 | B2 |
8330337 | Yu et al. | Dec 2012 | B2 |
8360607 | Bretschnieder et al. | Jan 2013 | B2 |
8366290 | Maglica | Feb 2013 | B2 |
8403522 | Chang | Mar 2013 | B2 |
8425091 | Chen | Apr 2013 | B2 |
8439531 | Trott et al. | May 2013 | B2 |
8465178 | Wilcox et al. | Jun 2013 | B2 |
8485691 | Hamel et al. | Jul 2013 | B2 |
8547022 | Summerford et al. | Oct 2013 | B2 |
D695434 | Shen | Dec 2013 | S |
8599097 | Intravatola | Dec 2013 | B2 |
D698471 | Poon | Jan 2014 | S |
D699874 | Chilton et al. | Feb 2014 | S |
8651438 | Deighton et al. | Feb 2014 | B2 |
8659433 | Petrou | Feb 2014 | B2 |
8692444 | Patel et al. | Apr 2014 | B2 |
8696177 | Frost | Apr 2014 | B1 |
D705467 | Aglassinger | May 2014 | S |
D708376 | Crowe et al. | Jul 2014 | S |
8801226 | Moore | Aug 2014 | B2 |
8851699 | McMillan | Oct 2014 | B2 |
8858016 | Strelchuk | Oct 2014 | B2 |
8858026 | Lee et al. | Oct 2014 | B2 |
8939602 | Wessel | Jan 2015 | B2 |
8979331 | Lee | Mar 2015 | B2 |
D726354 | Davies | Apr 2015 | S |
D728402 | Case | May 2015 | S |
9068736 | Lee et al. | Jun 2015 | B2 |
D747263 | Lafferty | Jan 2016 | S |
20020136005 | Lee | Sep 2002 | A1 |
20020167814 | Ching | Nov 2002 | A1 |
20030090234 | Glasgow | May 2003 | A1 |
20030090904 | Ching | May 2003 | A1 |
20030137847 | Cooper | Jul 2003 | A1 |
20030174503 | Yueh | Sep 2003 | A1 |
20060007682 | Reiff, Jr. et al. | Jan 2006 | A1 |
20060067077 | Kumthampinij et al. | Mar 2006 | A1 |
20060146550 | Simpson et al. | Jul 2006 | A1 |
20060279948 | Tsai | Dec 2006 | A1 |
20060285323 | Fowler | Dec 2006 | A1 |
20070211470 | Huang | Sep 2007 | A1 |
20070297167 | Greenhoe | Dec 2007 | A1 |
20080112160 | Robinson et al. | May 2008 | A1 |
20080112170 | Trott et al. | May 2008 | A1 |
20080158887 | Zhu et al. | Jul 2008 | A1 |
20080165537 | Shiau | Jul 2008 | A1 |
20080198588 | O'Hern | Aug 2008 | A1 |
20080253125 | Kang et al. | Oct 2008 | A1 |
20080302933 | Cardellini | Dec 2008 | A1 |
20090021944 | Lee | Jan 2009 | A1 |
20090080205 | Chang | Mar 2009 | A1 |
20090134191 | Phillips | May 2009 | A1 |
20090135594 | Yu et al. | May 2009 | A1 |
20090303717 | Long | Dec 2009 | A1 |
20090323348 | Shuai et al. | Dec 2009 | A1 |
20100027260 | Liu | Feb 2010 | A1 |
20100027269 | Lo et al. | Feb 2010 | A1 |
20100072897 | Zheng | Mar 2010 | A1 |
20100080005 | Gattari | Apr 2010 | A1 |
20100091495 | Patrick | Apr 2010 | A1 |
20100142213 | Bigge et al. | Jun 2010 | A1 |
20100315824 | Chang | Dec 2010 | A1 |
20100328951 | Boissevain | Dec 2010 | A1 |
20110031887 | Stoll et al. | Feb 2011 | A1 |
20110038144 | Chang | Feb 2011 | A1 |
20110050070 | Pickard | Mar 2011 | A1 |
20110058367 | Shiau et al. | Mar 2011 | A1 |
20110075404 | Allen et al. | Mar 2011 | A1 |
20110121727 | Sharrah et al. | May 2011 | A1 |
20110228524 | Greer | Sep 2011 | A1 |
20110286216 | Araman | Nov 2011 | A1 |
20110317420 | Jeon et al. | Dec 2011 | A1 |
20120026729 | Sanchez et al. | Feb 2012 | A1 |
20120033400 | Remus et al. | Feb 2012 | A1 |
20120033429 | Van De Ven | Feb 2012 | A1 |
20120044707 | Breidenassel | Feb 2012 | A1 |
20120048511 | Moshtagh | Mar 2012 | A1 |
20120049717 | Lu | Mar 2012 | A1 |
20120057351 | Wilcox | Mar 2012 | A1 |
20120087118 | Bailet et al. | Apr 2012 | A1 |
20120087125 | Liu | Apr 2012 | A1 |
20120098437 | Smed | Apr 2012 | A1 |
20120120674 | Jonker | May 2012 | A1 |
20120140455 | Chang | Jun 2012 | A1 |
20120155104 | Jonker | Jun 2012 | A1 |
20120212963 | Jigamian | Aug 2012 | A1 |
20120234519 | Lee | Sep 2012 | A1 |
20120236551 | Sharrah et al. | Sep 2012 | A1 |
20120247735 | Ito et al. | Oct 2012 | A1 |
20120262917 | Courcelle | Oct 2012 | A1 |
20120300487 | Jonker | Nov 2012 | A1 |
20130032323 | Hsu | Feb 2013 | A1 |
20130058078 | Meng | Mar 2013 | A1 |
20130063051 | Sterling et al. | Mar 2013 | A1 |
20130077296 | Goeckel et al. | Mar 2013 | A1 |
20130128565 | Cugini et al. | May 2013 | A1 |
20130176713 | Deighton et al. | Jul 2013 | A1 |
20130187785 | McIntosh et al. | Jul 2013 | A1 |
20130258645 | Weber et al. | Oct 2013 | A1 |
20130265780 | Choksi | Oct 2013 | A1 |
20130322073 | Hamm et al. | Dec 2013 | A1 |
20140140050 | Wong et al. | May 2014 | A1 |
20140192543 | Deighton et al. | Jul 2014 | A1 |
20140218936 | Mahling et al. | Aug 2014 | A1 |
20140268775 | Kennemer et al. | Sep 2014 | A1 |
20140301066 | Inskeep | Oct 2014 | A1 |
20140307443 | Clifford et al. | Oct 2014 | A1 |
20140350716 | Fly | Nov 2014 | A1 |
20140376216 | McLoughlin et al. | Dec 2014 | A1 |
20150023771 | Carr et al. | Jan 2015 | A1 |
20150233569 | Xue et al. | Aug 2015 | A1 |
20150233571 | Inan et al. | Aug 2015 | A1 |
20160123571 | Chen et al. | May 2016 | A1 |
20160165701 | Smith | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
0193756 | Sep 1986 | EP |
1205428 | May 2002 | EP |
2436641 | Apr 2012 | EP |
2424694 | Oct 2006 | GB |
20100116933 | Nov 2010 | KR |
2002044503 | Jun 2002 | WO |
2014083117 | Jun 2014 | WO |
2014207595 | Dec 2014 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2016/016602 dated May 10, 2016 (13 pages). |
European Examination Report, Appl. No. EP 167082445, dated Jun. 15, 2018. |
Number | Date | Country | |
---|---|---|---|
20180340683 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62265935 | Dec 2015 | US | |
62111990 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15851013 | Dec 2017 | US |
Child | 16056602 | US | |
Parent | 15015794 | Feb 2016 | US |
Child | 15851013 | US |