Light management filter and related software

Information

  • Patent Grant
  • 11347099
  • Patent Number
    11,347,099
  • Date Filed
    Tuesday, November 26, 2019
    5 years ago
  • Date Issued
    Tuesday, May 31, 2022
    2 years ago
Abstract
The present disclosure describers a novel combination of a physical filter within an electronic device combined with software to manage the high-energy visible blue light spectrum in accordance with factors including total device use and cumulative intake of blue light. The physical filter may be integrated within layers of the display construction including within the cover glass or polarizer. In preferred embodiments, the physical filter with the software application automatically adjusts the total coverage of blue light emissions relative to each other and the system.
Description
FIELD

The present invention relates to a filter for reducing light emission of portions of the light spectrum.


BACKGROUND

Electronic devices, such as portable electronic display devices typically emit a visible light spectrum of which humans are able to detect wavelengths from about 380 nm to about 740 nm. Recently, it has been appreciated that certain characteristics of this light may be harmful to the user, and may lead to health symptoms and reactions, such as but not limited to eye strain, dry and irritated eyes, and headaches. Studies suggest that cumulative and prolonged exposure to the high-energy wavelengths of the visible blue light spectrum (380 nm-500 nm) emitted from digital screens may be leading to various health issues such as, but not limited to those listed above. Within the high-energy visible light spectrum (380-500 nm), a narrower band that has been recognized as especially harmful (415 nm-455 nm).


Some solutions have been proposed and implemented to reduce these especially harmful wavelengths emitted from electronic devices. For example, physical filters, software programs, or applications are available which may be able to manage harmful light emissions within the visible light spectrum including the 380 nm-740 nm.


However, implementations of filters and/or software suffer drawbacks that hinder the user experience or efficacy of light management within the high-energy visible blue light spectrum. Software solutions alone typically impact the entire visible light spectrum, which leads to significant impact to the color temperature and overall system color accuracy. Physical filters alone typically have limitations to coverage across the blue light spectrum and may also impact the system color.


Another drawback to using software filtration of the high-energy visible light spectrum emitted from electronic devices is that there are limitations to the management of narrow bands of light recognized as especially harmful (415 nm-455 nm). Existing solutions for managing high-energy blue light including those shown in FIG. 2 have an inability to reduce only the harmful band of light, therefore impacting the system color. Additionally, the electronic device user has the ability to turn on or off the software, allowing for unfiltered light from the harmful light band without manual adjustment.


Additionally, it is recognized that exposure to high-energy visible blue light is cumulative in terms of causing adverse health effects. Existing solutions do not take into account the cumulative intake of high-energy visible blue light and are unable to intelligently adjust the system based on this information.


SUMMARY

Therefore, a need exists in the field for a novel physical filter integrated within a device display combined with a software application which is able to recognize cumulative exposure and adjust levels of high-energy blue light in accordance with time exposure and other factors. Additionally, there are certain pre-existing conditions and other factors including, for example, age, where intelligent systems can be used to manage high-energy visible blue light. Intelligent system combining a physical filter and software allows for automatic or logical adjustment to blue light emission from the display device which may be automatic or in accordance with logic.


The present disclosure includes a novel physical filter integrated within the construction of the electronic device display, which is combined with a software system to adjust the high-energy blue light spectrum in accordance with factors including time exposure of the electronic devices. The physical filter may be positioned on the device screen or within the construction of the screen with the software application providing adjustment of the spectrum relative to the properties of the physical filter. In preferred embodiments, the electronic device hardware utilizes the camera and software to adjust the light emissions based on factors including total device time usage, ambient lighting, and distance from the display.


Features and advantages of the present disclosure will be more readily understood from the following detailed description which should be read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWING

The drawings are schematic illustrations and are not intended to limit the scope of the invention in any way. The drawings are not necessarily to scale. Some embodiments of the present invention are illustrated as an example and are not limited by the figures of the accompanying drawings, in which like references may indicate similar elements and in which:



FIG. 1 is an exploded perspective view of a portion an embodiment of the disclosed filter.



FIG. 2 is an illustration of the emission spectra for typical software only systems for the management of the high-energy visible blue light according to prior art.



FIG. 3 is an illustration of the emission spectra for an embodiment of a disclosed physical filter.





DETAILED DESCRIPTION

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the term “and/or” includes any and all combination of one or more of the associated listed items. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well as the singular forms, unless the context clearly indicates otherwise. It will be further understood the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one having ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


In describing the invention, it will be understood that a number of techniques and steps are disclosed. Each of these has individual benefit and each can also be used in conjunction with one or more, or in some cases all, of the other disclosed techniques. Accordingly, for the sake of clarity this description will refrain from repeating every possible combination of the individual steps in an unnecessary fashion. Nevertheless, the specification and claims should be read with the understanding that such combinations are entirely within the scope of the invention and the claims.


New physical device filters for managing light in combination with software application systems for managing high-energy blue light as an intelligent system are discussed herein. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.


The present disclosure is to be recognized as an exemplification of the disclosure and is not intended to limit the disclosure to the specific embodiments illustrated by the figures or description below. The present disclosure will now be described by referencing the appended figures representing preferred embodiments. FIG. 1 depicts an exploded perspective view of the elements that may comprise an electronic device display, representative of the construction of an LCD (liquid crystal display) or OLED (organic light-emitting diode device) display (the “device”) according to various embodiments of the present invention. In preferred embodiments, a physical filter which provides the purpose of light filtration specific to the high-energy visible blue light spectrum (380 nm-500 nm), or specific to the harmful blue light spectrum (415 nm-455 nm), are included within the construction. FIG. 1 depicts the physical filter applied to the cover glass 103A, however the filter may be applied to other layers shown.


The physical filter providing light management according to these light spectrums may come forms including a thin film, optically clear adhesive or other physical barrier providing light management of the high-energy visible light spectrum (the “physical filter”). In some embodiments, the physical filter may be applied within the display construction including application to the interior of the cover glass or the polarizer.


As shown in FIG. 3, the physical filter applied to the device provides light management properties specific to the UV and high-energy visible blue light spectrum. This integrated barrier within the device provides protection from UV light (<380 nm), high-energy visible blue light (380 nm-500 nm) and may selectively filter the narrow harmful band of blue light (415 nm-455 nm).


The software application provides recognition of the filtration provided by the physical filter in FIG. 3. The software application identifies the level of coverage to the high-energy visible blue light spectrum provided by the physical filter to the user. Additional coverage levels are identified by the software application in addition to that provided by the physical filter. The software provides tracking of the total time of device usage (“screen time”) and adjusts the level of blue light coverage in relation and automatically.


As the user's screen time increases, the software system will adjust the level of blue light coverage. The automatic adjustment of blue light coverage may also take into account factors including the age of the user or preexisting medical conditions including Age Related Macular Degeneration (AMD), dry eye or other eye, sleep and health conditions. Additionally, the user has the ability to manually adjust the coverage levels.


The electronic device hardware may utilize the front facing camera to detect the distance of the device from the user, ambient lighting in the space, and other potential factors, and as a result adjust the coverage levels.


Although the present invention has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present invention, are contemplated thereby, and are intended to be covered by the following claims.

Claims
  • 1. A novel filter comprising: a thin film that reduces high energy visible blue light passing therethrough; andsoftware that identifies a level of high energy visible light reduction provided by the thin film,
  • 2. The novel filter according to claim 1, wherein the thin film comprises an optically clear adhesive.
  • 3. The novel filter according to claim 1, wherein the high energy visible blue light has a wavelength of between about 380 nm and about 500 nm.
  • 4. The novel filter according to claim 3, wherein the high energy visible light has a wavelength of between about 415 nm to about 455 nm.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U. S. Provisional Pat. Ser. No. 62/772,513, filed Nov. 28, 2018, and titled LIGHT EMISSION MODIFICATION, and cofiled and copending U.S. patent application Ser. No. 16/695,983, filed Nov. 26, 2019, and titled LIGHT EMISSION MODIFICATION. All references cited within are incorporated herein by reference in their entirety.

US Referenced Citations (173)
Number Name Date Kind
2403685 Sachtleben Jul 1946 A
2493200 Land Jan 1950 A
3382183 Donoian May 1968 A
3482915 Corley Dec 1969 A
3687863 Wacher Aug 1972 A
4618216 Suzawa Oct 1986 A
4842781 Nishizawa Jun 1989 A
4878748 Johansen Nov 1989 A
4966441 Conner Oct 1990 A
4989953 Kirschner Feb 1991 A
5083252 McGuire Jan 1992 A
5177509 Johansen Jan 1993 A
5446569 Iwai et al. Aug 1995 A
5483464 Song Jan 1996 A
5555492 Feger Sep 1996 A
5745391 Topor Apr 1998 A
5952096 Yamashita Sep 1999 A
6019476 Kirschner Feb 2000 A
6229252 Teng et al. May 2001 B1
6663978 Olsen Dec 2003 B1
6778238 Moon Aug 2004 B2
6824712 Yang Nov 2004 B1
6826001 Funakura Nov 2004 B2
6846579 Anderson Jan 2005 B2
6955430 Pratt Oct 2005 B2
6984038 Ishak Jan 2006 B2
6991849 Oya Jan 2006 B2
7014336 Ducharme Mar 2006 B1
7019331 Winters Mar 2006 B2
7019799 Utsumi Mar 2006 B2
7019903 Berger Mar 2006 B2
7029118 Ishak Apr 2006 B2
7045944 Ushifusa May 2006 B2
7066596 Ishak Jun 2006 B2
7071602 Terui Jul 2006 B2
7126589 Sung Oct 2006 B2
7158300 Shimoda Jan 2007 B2
7193779 Kim Mar 2007 B2
7218044 Kim May 2007 B2
7258923 Bogerd Aug 2007 B2
7491440 Fukatani Feb 2009 B2
7520608 Ishak Apr 2009 B2
7524060 Ramos Apr 2009 B2
7556376 Ishak Jul 2009 B2
7572028 Mueller Aug 2009 B2
7579769 Wu Aug 2009 B2
7630128 Krieg-Kowald Dec 2009 B2
7695180 Schardt Apr 2010 B2
7703917 Ramos Apr 2010 B2
7731791 Deno Jun 2010 B2
7755276 Wang Jul 2010 B2
7785501 Segawa Aug 2010 B2
7825578 Takashima Nov 2010 B2
7832903 Ramos Nov 2010 B2
7914177 Ramos Mar 2011 B2
8034206 Kim Oct 2011 B2
8044942 Leonhard Oct 2011 B1
8063999 Jabri Nov 2011 B2
8075133 Ramos Dec 2011 B2
8075145 Engblom Dec 2011 B2
8113651 Blum Feb 2012 B2
8164844 Toda Apr 2012 B2
8303859 Koo Nov 2012 B2
8323357 Feldhues Dec 2012 B2
8360574 Ishak Jan 2013 B2
8403478 Ishak Mar 2013 B2
8498042 Danner Jul 2013 B2
8500274 Ishak Aug 2013 B2
8506114 Van De Ven Aug 2013 B2
8507840 Yu Aug 2013 B2
8518498 Song Aug 2013 B2
8547504 Guo Oct 2013 B2
8570648 Ramos Oct 2013 B2
8599542 Healey Dec 2013 B1
8659724 Hagiwara Feb 2014 B2
8680406 Chua Mar 2014 B2
8716729 Wiesmann May 2014 B2
8767282 Hashimura Jul 2014 B2
8817207 Rho Aug 2014 B2
8836209 Baek Sep 2014 B2
8882267 Ishak Nov 2014 B2
8957835 Hoellwarth Feb 2015 B2
8982197 Kim Mar 2015 B2
9051232 Kosuge Jun 2015 B2
9063349 Ishak Jun 2015 B2
9122089 Lee Sep 2015 B2
9287471 de Brouwer Mar 2016 B2
9377569 Ishak Jun 2016 B2
9545304 Ishak Jan 2017 B2
9575335 McCabe Feb 2017 B1
9798163 Ishak Oct 2017 B2
9814658 Ishak Nov 2017 B2
9927635 Ishak Mar 2018 B2
20020005509 Teng Jan 2002 A1
20020018890 Sugimachi Feb 2002 A1
20020158574 Wolk Oct 2002 A1
20030214695 Abramson Nov 2003 A1
20040070726 Ishak Apr 2004 A1
20040114242 Sharp Jun 2004 A1
20040166342 Wursche Aug 2004 A1
20040181006 Warren, Jr. Sep 2004 A1
20040246413 Stephenson Sep 2004 A1
20040232813 Nakano Nov 2004 A1
20050042531 Lee Feb 2005 A1
20050259082 Potsch Nov 2005 A1
20050275769 Roh Dec 2005 A1
20060012754 Larson Jan 2006 A1
20070013649 Kim Jan 2007 A1
20070030415 Epstein Feb 2007 A1
20070077410 Shi Apr 2007 A1
20070078216 Cao Apr 2007 A1
20070195404 Iijima Aug 2007 A1
20070216861 Ishak Sep 2007 A1
20070275184 Lee Nov 2007 A1
20080094566 Ishak et al. Apr 2008 A1
20080137030 Hoffman Jun 2008 A1
20080290787 Cok Nov 2008 A1
20080297931 Ramos Dec 2008 A1
20090058250 Sin Mar 2009 A1
20090105437 Determan Apr 2009 A1
20090128895 Seo May 2009 A1
20090173958 Chakraborty et al. Jul 2009 A1
20100039704 Hayashi Feb 2010 A1
20100134879 Yoshihara Jun 2010 A1
20100231830 Hirakata Sep 2010 A1
20110019269 Dirk Jan 2011 A1
20110043486 Hagiwara Feb 2011 A1
20110157546 Ishak Jun 2011 A1
20110176325 Sherman Jul 2011 A1
20110234079 Eom Sep 2011 A1
20110289654 Williams Dec 2011 A1
20110299168 Combs Dec 2011 A1
20110315939 Okayasu Dec 2011 A1
20120021152 Glaser Jan 2012 A1
20120038861 Van Lieshout Feb 2012 A1
20120075577 Ishak Mar 2012 A1
20120113672 Dubrow et al. May 2012 A1
20120162106 Choi Jun 2012 A1
20120162752 Kitano Jun 2012 A1
20130009059 Caruso Jan 2013 A1
20130063493 House Mar 2013 A1
20130239874 Smith Sep 2013 A1
20130282115 Ishak Oct 2013 A1
20140009912 Wheatley et al. Jan 2014 A1
20140049700 Chen Feb 2014 A1
20140078420 Liu Mar 2014 A1
20140093661 Trajkovska Apr 2014 A1
20140233105 Schmeder Aug 2014 A1
20140355106 Laluet Dec 2014 A1
20140363767 Murakami Dec 2014 A1
20150036379 Lee Feb 2015 A1
20150098058 De Ayguavives Apr 2015 A1
20150124188 Kadowaki May 2015 A1
20150160478 Ishak Jun 2015 A1
20150212238 Chang Jul 2015 A1
20150212352 Guo et al. Jul 2015 A1
20150238308 Ishak et al. Aug 2015 A1
20150248033 Zhu Sep 2015 A1
20150253653 Fujita Sep 2015 A1
20150277003 Ramos Oct 2015 A1
20150329684 Kamimoto Nov 2015 A1
20150338561 Moe Nov 2015 A1
20150378217 Kim Dec 2015 A1
20170363884 Hallock Dec 2017 A1
20180052362 Kang Feb 2018 A1
20180064616 Ishak Mar 2018 A1
20180107050 Barrett Apr 2018 A1
20180113327 Ishak Apr 2018 A1
20190121176 Lee Apr 2019 A1
20190196071 Barrett Jun 2019 A1
20190219751 Barrett et al. Jul 2019 A1
20190285941 Liu et al. Sep 2019 A1
20200166798 Garbar et al. May 2020 A1
Foreign Referenced Citations (69)
Number Date Country
101216611 Jul 2008 CN
101899222 Dec 2010 CN
201666985 Dec 2010 CN
102879920 Jan 2013 CN
202847016 Apr 2013 CN
103448312 Dec 2013 CN
203410122 Jan 2014 CN
103941320 Jul 2014 CN
204213761 Mar 2015 CN
104614786 May 2015 CN
104950515 Sep 2015 CN
106796306 May 2017 CN
105788474 Feb 2019 CN
106324908 Feb 2019 CN
209782327 Dec 2019 CN
202014000982 Mar 2014 DE
0509727 Oct 1992 EP
0855602 Jul 1998 EP
0965034 May 2007 EP
2085798 Aug 2009 EP
2095177 Sep 2009 EP
2096471 Sep 2009 EP
2128889 Dec 2009 EP
2260348 Dec 2010 EP
1794240 Jan 2013 EP
2874001 May 2015 EP
3026485 Jun 2016 EP
2909779 Jun 2008 FR
2001315240 Nov 2001 JP
2003149605 May 2003 JP
2006031030 Feb 2006 JP
2010511205 Apr 2010 JP
2010261986 Nov 2010 JP
2013067811 Apr 2013 JP
2013222212 Oct 2013 JP
2013238634 Nov 2013 JP
2014000819 Jan 2014 JP
2014225030 Dec 2014 JP
2016128931 Jul 2016 JP
10-2006-0048986 May 2006 KR
101815619 Jan 2018 KR
1988002871 Apr 1988 WO
2002101695 Dec 2002 WO
2004090589 Oct 2004 WO
2005034066 Apr 2005 WO
2005106542 Nov 2005 WO
2007075520 Jul 2007 WO
2007109202 Sep 2007 WO
2007146933 Dec 2007 WO
2008024414 Feb 2008 WO
2008067109 Jun 2008 WO
2008106449 Sep 2008 WO
2009123754 Oct 2009 WO
2010111499 Sep 2010 WO
2012006265 Jan 2012 WO
2013123592 Aug 2013 WO
2013176888 Nov 2013 WO
2013188825 Dec 2013 WO
2014055513 Apr 2014 WO
2014077166 May 2014 WO
2014096475 Jun 2014 WO
2014196638 Dec 2014 WO
2015179761 Nov 2015 WO
2016179906 Nov 2016 WO
2016205260 Dec 2016 WO
2019099554 May 2019 WO
20200180947 Sep 2020 WO
2021108105 Jun 2021 WO
2021108107 Jun 2021 WO
Non-Patent Literature Citations (68)
Entry
Search Report and Examination Opinion for European Application No. 15796219.2; dated Aug. 12, 2017; date of filing: May 22, 2015; 7 pp.
Search Report and Examination Opinion for European Application No. 15796219.2; dated Mar. 26, 2019; date of filing: May 22, 2015; 5 pp.
First Office Action for C.N. Application No. 201580040377.2 (national phase of PCT/US2015/032175); dated Feb. 24, 2018; date of filing: May 22, 2015; 5 pp.
Second Office Action for C.N. Application No. 201580040377.2 (national phase of PCT/US2015/032175); dated Jan. 2, 2019; date of filing: May 22, 2015; 12 pp.
First Office Action for J.P. Application No. 2017-032775 (national phase of PCT/US2015/032175); dated May 15, 2019; date of filing: May 22, 2015; 6 pp.
Second Office Action for J.P. Application No. 2017-032775 (national phase of PCT/US2015/032175); dated Feb. 4, 2020; date of filing: May 22, 2015; 22 pp.
International Search Report and Written Opinion for International Application No. PCT/US2016/037457, dated Sep. 16, 2016; date of filing: Jun. 14, 2016; 7 pp.
First Office Action for C.N. Application No. 201680048240.6 (national phase of PCT/US2016/037457); dated Jan. 16, 2020; date of filing: Jun. 14, 2016; 10 pp.
Non-Final Office Action for U.S. Appl. No. 15/844,109; dated Sep. 4, 2019; filed Dec. 15, 2017; 49 pp.
Final Office Action for U.S. Appl. No. 15/844,109; dated Jan. 16, 2020; filed Dec. 15, 2017; 12 pp.
International Search Report and Written Opinion for International Application No. PCT/US2018/061103, dated Jan. 24, 2019; date of filing: Nov. 14, 2018; 6 pp.
Non-Final Office Action for U.S. Appl. No. 16/360,599; dated Jun. 28, 2019; filed Mar. 21, 2019; 11 pp.
Non-Final Office Action for U.S. Appl. No. 16/695,983; dated Jun. 30, 2020; filed Nov. 26, 2019; 24 pp.
Non-Final Office Action for U.S. Appl. No. 16/855,497; dated Jul. 1, 2020; filed Apr. 22, 2020; 13 pp.
Abramowitz, Mortimer and Davidson, Michael W. “Kodak Color Compensating Filters Yellow.” Olympus Microscopy Resource Center. olympus-lifescience.com. Retrieved May 16, 2019.
Doeffinger, Derek, editor. Using Filters. Eastman Kodak Company, 1988. The Kodak Workshop Series, pp. 11, 13, 17, 46, 68-69.
Fonseca, “Apple patents a virtual reality headset for iPhone,” http://vr-zone.com/articles/apple-patents-virtual-reality-headset-iphone/87267.html, Jun. 22, 2015, 4 pp.
Van Der Lely, et al., “Blue Blocker Glasses as a Countermeasure for Alerting Effects of Evening Light-Emitting Diode Screen Exposure in Male Teenagers,” Journal of Adolescent Health, Aug. 2014, 7 pp.
Kim, Boris F. and Bohandy, Joseph. “Spectroscopy of Porphyrins.” Johns Hopkins APL Technical Digest, vol. 2, No. 1, 1981, pp. 153-163, www.jhuapl.edu/techdigest/views/pdfs/V02_N3.../V2_N3_1981_Kim. Retrieved Apr. 12, 2019.
Giovannetti, Rita. “The Use of Spectrophotometry UV-Vis for the Study of Porphyrins.” Macro to Nano Spectroscopy, Uddin, Jamal (Ed.), IntechOpen Limited, 2012, pp. 87-108, www.intechopen.com/books/macro-to-nano-spectroscopy/the-use-of-spectrophotometry-uv-vis-for-thestudy-of-porphyrins. Retrieved Apr. 12, 2019.
Fritz, Norman L. “Filters: An Aid in Color-Infrared Photography.” Photogrammetric Engineering and Remote Sensing, vol. 43, No. 1, Jan. 1977, pp. 61-72, www.asprs.org/wp-content/uploads/pers/1977journal/.../1977_jan_61-72. Retrieved Apr. 4, 2019.
Perovich, B. W. “Black and White Filters Tutorial.” Freestyle Photographic Supplies. www.freestylephoto.biz/black-and-white-filters-tutorial. Retrieved Apr. 12, 2019.
Richards, Bryce S. “Up- and Down-Conversion Materials for Photovoltaic Devices” Proceedings of SPIE—The International Society for Optical Engineering, 9 pp. Apr. 2012.
Simmons, Adam “The Evolution of LED Backlights.” PC Monitors www.pcmonitorsinfo/articles. Retrieved May 1, 2017.
Gallas, Jim and Eisner, Mel; Chapter 23—Eye protection from sunlight damage; Journal; 2001; 437, 439-455; vol. 3. Comprehensive Series in Photosciences, Elvesier, abstract only.
“Capturing All the Light: Panchromatic Visible Absorption for Solar Photoconversion.” U.S. Department of Energy, Basic Energy Sciences, Jun. 1, 2014, science.energy.gov/bes/highlights/2014/bes-2014-06-g/. Retrieved Apr. 12, 2019.
“Filters for Color Photomicrography,” Olympus America Inc., Olympus Microscopy Resource Center, http://www.olympusmicro.com/primer/photomicrography/colorfilters.html, Mar. 2012, 7 pp.
“Kentek Laser Safe Window Protection”, Retrieved at <<http://www.kenteklaserstore.com/category.aspx?categoryID=311>>, 1 pp. Retrieved on Apr. 28, 2014.
“Laser and fluorescent dyes, UV and NIR dyes, security inks and other optically functional materials”, Retrieved at http://www.fabricolorholding.com/product, 2 pp. Retrieved May 18, 2015.
“Reticare, the first ocular protector for electronic device screens to launch at CES 2014”; https://www.reticare.com/tienda/en/blog/post/3-reticare-the-first-ocular-protector-for-electronic-device-screens-to-launch-at-ces-2014; Jan. 10, 2014; 7 pp. Retrieved Nov. 30, 2017.
“Spectral-Transmittance Bar Charts for Selected Kodak Wratten Filters.” google search (www.google.com), search terms: kodak wratten filters bar chart, second image (wratten filter specs, iclane.net). Retrieved May 16, 2019.
“XGear Krystal Sapphire Screen Protector Film Shield For Apple IPhone 4 4S”, Retrieved at <<http://www.ebay.com/itm/XGear-Krystal-Sapphire-Screen-Protector-Film-Shield-For-Apple-IPhone-4-4S-/221364527502>>, 3 pp. Retrieved Apr. 28, 2014.
ebay.com, screenshot of ebay purchase of Apr. 23, 2019. Retrieved May 16, 2019.
Illuminant D65, 4 pp.
Kodak advertisement. Buchsbaum, Ralph. Animals Without Backbones. The University of Chicago Press, 1948.
“290 nm UV Dye”, Technical Data Sheet, Product Code: UV290A, QCR Solutions Corp, Version: 2011.UV Dyes, www.qcrsolutions.com, 1 page.
“530 nm Visible Dye”, Technical Data Sheet, Product Code: VIS530A, QCR Solutions Corp, Version: 2011.VIS Dyes, www.qcrsolutions.com, 1 page.
“675 nm Visible Dye”, Technical Data Sheet, Product Code: VIS675F, QCR Solutions Corp, Version: 2011.VIS Dyes, www.qcrsolutions.com, 1 page.
“ABS 668: Visible Narrow Band Absorber”, Exciton, Inc., www.exciton.com, 1 page.
“ABS 691: Visible Narrow Band Absorber”, Exciton, Inc., www.exciton.com, 1 page.
“DYE VIS 347”, Adam Gates & Company, LLC, www.adamgatescompany.com, 1 page.
“DYE VIS 670”, Adam Gates & Company, LLC, www.adamgatescompany.com, 1 page.
“DYE VIS 671”, Adam Gates & Company, LLC, www.adamgatescompany.com, 1 page.
“ADS640PP Product Specification”, American Dye Source, Inc., Retrieved at <<https://adsdyes.com/products/laser-dyes-2/ads640pp/>>, Retrieved on May 18, 2015, 1 page.
“Infrared Dye 1422”, Adam Gates & Company, LLC, www.adamgatescompany.com, 1 page.
“1003 nm NIR Dye”, Technical Data Sheet, Product Code: NIR1003A, QCR Solutions Corp, Version 2011.NIR Dyes, www.qcrsolutions.com, 1 page.
“1031 nm NIR Dye”, Technical Data Sheet, Product Code: NIR1031M, QCR Solutions Corp, Version: 2011.NIR Dyes, www.qcrsolutions.com, 1 page.
“1072 nm NIR Dye”, Technical Data Sheet, Product Code: NIR1072A, QCR Solutions Corp, Version: 2011.NIR Dyes, www.qcrsolutions.com, 1 page.
“1073nm NIR Dye”, Technical Data Sheet, Product Code: IR Dye 1151, Adam Gates & Company, LLC, www.adamgatescompany.com, 1 page.
“LUM690 Near Infrared Dye”, Moleculum, moleculum.com, Jan. 2015, 2 pages.
“LUM995 Near Infrared Dye”, Moleculum, moleculum.com, Jan. 2015, 2 pages.
“Near Infrared Dye: LUM1000A”, Moleculum, moleculum.com, Jan. 2015, 1 page.
“Tinuvin P Benzotriazole UV Absorber”, Ciba Specialty Chemicals, Inc.,Printing Date: Aug. 1998, 2 pages.
A-594-5 Invisible Blue Pigment, dayglo.com, 1 page. Retrieved Jun. 2, 2019.
Sunstone Luminescent UCP Nanocrystals, sigmaaldrich.com, 7 pp. Retrieved Apr. 17, 2017.
“New ANSI/ISEA Z87. 1-2010 Standard”, Uvex by Sperian, 2 pages.
ANSI Z80.3-2015, Nonprescription Sunglass and Fashion Eyewear Requirements, 41 pp.
ASTM International E 313-05; Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates; Article; 6 pp.
U.S. Appl. No. 16/695,983, filed Nov. 26, 2019; 54 pp.
U.S. Appl. No. 16/696,516, filed Nov. 26, 2019; 60 pp.
Non-Final Office Action for U.S. Appl. No. 14/719,604; dated Aug. 24, 2016; filed May 22, 2015; 41 pp.
Final Office Action for U.S. Appl. No. 14/719,604; dated Mar. 28, 2017; filed May 22, 2015; 66 pp.
Non-Final Office Action for U.S. Appl. No. 14/719,604; dated Aug. 30, 2017; filed May 22, 2015; 59 pp.
International Search Report and Written Opinion for International Application No. PCT/US2015/032175, dated Aug. 28, 2015; date of filing: May 22, 2015; 10 pp.
Final Office Action for U.S. Appl. No. 16/855,497; dated Sep. 22, 2020; filed Apr. 22, 2020; 12 pp.
International Search Report and Written Opinion for International Application No. PCT/US2021/052904, dated Dec. 27, 2021; date of filing: Sep. 30, 2021.
Extended European Search Report pertaining to European Patent Application No. 20891730.2, dated Dec. 14, 2021.
Office Action pertaining to corresponding Korean Patent Application No. 10-2021-7021453, dated Dec. 22, 2021.
Related Publications (1)
Number Date Country
20200174168 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
62772513 Nov 2018 US