The invention relates to a cooling channel piston for an internal combustion engine having heat pipes, having a piston head forged from steel, which comprises a combustion bowl in the piston crown, a ring wall with ring belt, as well as a cooling channel that runs on the circumference at the height of the ring belt, which can be closed off by means of a cover, whereby a plurality of bores are disposed in the cooling channel, distributed over its circumference, directed towards the piston crown, and which has a piston skirt that is connected with pin bosses suspended on the piston head.
Steel pistons of the type stated have not become known up to this time. From WO 2004/029443 A1, only a cooling channel piston of steel is known, in which an improvement in the cooling and shape stability of the piston is supposed to be achieved in that the cooling channel has bores directed towards the piston crown.
Light-metal pistons for an internal combustion engine are described in U.S. Pat. No. 5,454,351 and DE 32 05 173 A1, which uses so-called Heat Pipes, in other words heat pipes, for carrying heat away from the hot piston regions, which, sealed off to be air-tight and pressure-tight, contains an easily evaporating cooling fluid, such as preferably water or also ammonia, glycol, or the like. The heat pipes, which consist of copper, are inserted or cast into bores that are evenly distributed on the circumference and made in the piston crown region on the crankshaft side, whereby the bores extend all the way to the height of the ring belt. In the region of the pin bosses, the heat pipes are structured to be slightly bent, in order to allow assembly of the piston pin into the piston. The method of effect of the heat pipes, which is actually known, consists in evaporation of the fluid situated in the heat pipe on the “hot” side—evaporator side—by means of absorption of the heat of the region to be cooled. The steam components formed flow to the “cold” side—condenser side—of the heat pipe, where they go back into the liquid state, giving off their latent heat of evaporation, due to the temperature gradient between hot and cold side. On the cold side, the heat of evaporation is transported out of the crankshaft chamber of the internal combustion engine by means of spraying on cooling oil. In order to guarantee such removal of the heat in the case of a plurality of individual heat pipes, it is necessary to spray all of the heat pipes, and this results in a complicated and cost-intensive piston design.
The invention is based on the task of structuring a cooling channel piston of the type stated initially, in such a manner that improved heat removal from the heat-stressed piston regions is achieved, and thereby the occurrence of thermal stresses is prevented.
This task is accomplished, according to the invention, in that liquid-filled heat pipes provided with an evaporator and condenser side are disposed in the bores of the cooling channel, whereby the arrangement takes place in such a manner that the evaporator sides end at the piston-crown-side end of the bores, and the condenser sides end in the closed cooling channel.
Because the condenser sides end in the closed cooling channel, effective and rapid heat removal, independent of the piston position, particularly between upper dead point and lower dead point, is achieved at the condenser-side end of the heat pipe, so that an approximately uniform temperature distribution along the piston bowl edge is achieved, thereby effectively preventing crack formations at the piston crown and bowl edge of the combustion bowl, due to thermal stresses.
Practical embodiments of the invention are the object of the dependent claims.
An exemplary embodiment of the invention will be described below, using the drawings. These show
The one-piece cooling channel piston having heat pipes, according to the invention, consists of a forged piston head 10 made of steel, having a combustion bowl 2 in its piston crown 1, a ring wall 4 with ring belt 3, a closed cooling channel 7 that runs around the circumference at the height of the ring belt, as shown in
As shown in
The diameters of the heat pipes 6 amount to approximately 3 to 10% of the piston diameter (Dpiston) and the total length to approximately 20 to 50% Dpiston, depending on the exemplary embodiments according to FIGS. 2/3 or
According to a first exemplary embodiment according to the invention, according to
As a further variant of this embodiment, the use of the bores 5 made in the piston head 10 as a cylindrical head piece 6d can also be considered, which is connected with a lower heat pipe part 6f that is attached to the cooling-channel-side end of the bore 5 by means of a friction-welding connection, screw connection, or glue connection. In the case of the heat pipes produced in such a manner, the bore 5 thereby forms the evaporator side 6a, and the friction-welded lower part 6f forms the condenser side 6b of the heat pipes.
In a second exemplary embodiment according to
In a third exemplary embodiment according to
In order to implement a low heat transfer resistance between heat pipes 6 and piston head 10, these preferably consist of the same steel material, whereby the bores 5 and the outside diameter of the heat pipes are configured in such a manner that the heat pipes 6 are connected with the piston head 10 by means of a pressure fit or by means of a solder or weld connection, also a friction-weld connection.
It lies within the framework of the invention that the bores 5 for accommodating the heat pipes 6 can be disposed not only in a progression parallel to the piston axis A, but also at an incline to the piston axis, depending on the configuration of the combustion bowl, i.e. the wall thickness between combustion bowl 2 and cooling channel 7 (not shown), so that the evaporator side 6a of the heat pipes forms a wall ridge 9 or directly a part of the wall of the combustion bowl, corresponding to the previous exemplary embodiments, whereby the condenser side ends in the cooling channel 7.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 038 946.2 | Aug 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/01411 | 8/10/2005 | WO | 5/4/2007 |