Alternative energy sources are being sought to offset society's dependence on fossil fuels. While many of these alternatives may be viable options in the near future, others still require major technological advances before they will make a significant impact on the overall energy budget.
One such viable alternative is solar energy (i.e., sunlight). Harvesting solar energy is a long-term, attractive strategy for meeting the global energy challenge. When compared to fossil fuels, solar energy use is a carbon-neutral process that poses no known threat from pollution or greenhouse gases. Despite these advantages, solar energy provided less than 0.1% of the world's electricity in 2001 (US Department of Energy 2005b).
Microbial fuel cells (MFCs) can be used to harvest solar energy. MFCs convert chemical energy stored in organic materials into electrical energy through a catalytic reaction mediated by photosynthetic organisms and may be an alternative to fossil fuels. With more solar energy striking the Earth in an hour (4.3×1020 J) than all the energy consumed on our planet in a year (4.1×1020 J; US Department of Energy 2005b), and with photosynthetic microbes highly adapted to capture this solar energy, technological advancements in light-powered MFCs has a potential to improve their utility in practical applications. In principle, hydrogen production via water bio-photolysis by cyanobacteria (Melis 2002) or hydrogen production via direct electron transfer to protons by photosynthetic purple non-sulfur bacteria (Gest & Kamen 1949; Koku et al. 2002) provide a source for the development of light-powered MFCs. Consequently, MFC technology is rapidly evolving for electricity generation from renewable resources.
For example, MFCs recently were shown to capture electricity from organic materials in sediments (Bond et al. 2002; Holmes et al. 2004; and Tender et al. 2002), wastewater (Liu et al. 2004; Logan 2005; and Min & Logan 2004) or agricultural wastes (Min et al. 2005). Typical MFC designs include dual-chambered cells in which anodic and cathodic chambers are separated by a proton exchange membrane (Logan et al. 2005; Park et al. 1999; and Rabaey et al. 2003); whereas more recent MFC designs include single-chambered cells in which the anode and cathode are placed within the same chamber, with the cathode in direct contact with the atmosphere (i.e., an air cathode) (Liu et al. 2005; and Liu & Logan 2004). The organisms used in these MFCs included pure cultures (Bond & Lovley 2003; and Bond & Lovley 2005) or mixed microbial communities.
Strategies are also known in which hydrogen produced in MFCs is collected before sending the collected gas to a separate MFC (He et al. 2005a). Likewise, a direct coupling of hydrogen production and electricity generation was also achieved within a MFC. In such a system, the hydrogen produced by an organism reacted at a catalytic anodic surface. Such a direct coupling has been demonstrated with dark fermentations (Niessen et al. 2005), as well as with photo-fermentations (Rosenbaum et al 2005). More recently, evidence for the presence of nanowires in cyanobacteria has also been presented (Gorby et al. 2006), suggesting the possibility of developing photosynthetic MFCs that do not depend on hydrogen production for electricity generation.
Nevertheless, MFC technology is still in its infancy, since the highest power reported for a MFC (˜5,850 mW/m2; Rosenbaum et al. 2004) is two orders of magnitude lower than the goals for conventional abiotic fuel cells (US Department of Energy 2005a). Consequently, major improvements in choice of photosynthetic organism, bio-compatible reactor configurations and electrodes are needed before any practical application of a MFC is achieved (Logan et al. 2006).
In a first aspect, the present invention is summarized as a light-powered MFC that includes a single light-admitting reaction chamber containing a photosynthetic organism in a growth medium, an anode that is conductive and catalytically active in electrical and fluid communication with a cathode, both disposed within the reaction chamber. The anode includes an oxidation catalyst, while the cathode includes a reduction catalyst that is accessible to oxygen.
The light-admitting reaction chamber can be constructed from an optically transparent material, such as glass, quartz or plastic. Optionally, the reaction chamber can include a vent for gas produced within the reaction chamber.
The photosynthetic organism is one that produces hydrogen (H2) and can be a Rhodospirillaceae, Acetobacteraceae, Bradyrhizobiaceae, Hyphomicrobiaceae, Rhodobiaceae, Rhodobacteraceae, Rhodocyclaceae or Comamonadaceae. In particular, the photosynthetic organism can be Rhodobacteraceae, especially R. sphaeroides strain 2.4.1.
The growth medium is a growth medium for photosynthetic organisms and can include a single carbon source, such as succinate, propionate or glucose. In addition, the growth medium can be limited for a fixed nitrogen source, such as ammonia.
The anode can be carbon or graphite. Alternatively, the anode can be optically transparent and therefore can be a support material, such as glass, coated with an oxidation catalyst and a conductant, such as tin oxide, indium tin oxide, titanium dioxide or combinations thereof.
The cathode can be carbon or graphite and can be permeable to oxygen gas and nitrogen gas, such as an air cathode.
The oxidation catalyst can be platinum; whereas the reduction catalyst can be platinum, a platinum and titanium dioxide mixture, co-tetra-methyl phenylporphyrin (CoTMPP) or iron phthalocyanine (FePc).
In a second aspect, the present invention is summarized as a method for producing electricity directly from a light-powered MFC that includes the steps of: (1) providing a MFC as described above; and (2) exposing the MFC to light, such as sunlight (i.e., solar energy). The MFC can be maintained under anaerobic and/or ammonia-limited conditions. Because the reaction chamber is a single chamber, the photosynthetic organism can directly release hydrogen in the reaction chamber, in close proximity to the anode. Likewise, the anodic and cathodic reactions take place in the single reaction chamber.
These and other features, objects and advantages of the present invention will become better understood from the description that follows. In the description, reference is made to the accompanying drawings, which form a part hereof and in which there is shown by way of illustration, not limitation, embodiments of the invention. The description of preferred embodiments is not intended to limit the invention to cover all modifications, equivalents and alternatives. Reference should therefore be made to the claims recited herein for interpreting the scope of the invention.
While the present invention is susceptible to various modifications and alternative forms, exemplary embodiments thereof are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description of exemplary embodiments is not intended to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Unless defined otherwise, all technical and scientific terms as used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein.
As shown in
The MFC (2, 30, 40) also includes an anode (10, 32, 46), which is an electrode through which positive electric current flows into (but electrons flow from), disposed within the reaction chamber (4, 38, 42). The anode (10, 32, 46) includes an oxidation catalyst (12) and optionally a conductant (i.e., an electron conductor). The anode (10, 32, 46) can be constructed of a material that is porous, such as carbon, graphite or a thin layer of conductive material coated onto an optically transparent support, such as glass. An optically transparent anode (32) (
The anode (10, 32, 46) includes an oxidation catalyst (12) disposed thereon, which can be a substance that causes or accelerates oxidation without itself being affected, thereby increasing electron transfer. A suitable oxidation catalyst (12) includes platinum, although other platinum metals, such as ruthenium, rhodium, palladium, osmium and iridium, can also be used. For example, the oxidation catalyst (12) can be platinum coated upon carbon paper, Typically, the oxidation catalyst (12) can be small particles of platinum deposited on a porous electron conductive support (i.e., porous carbon) heated with an ionomer, such as Nafion®. Commercially available platinum-coated anodes, such as those used in the Examples, have small particle of platinum only a few nanometers in diameter, deposited on the surface of carbon pore walls. As such, the layer of catalyst (12) need only be a few nanometer, but can be microns thick.
The anode (10, 32, 46) can be coated with the oxidation catalyst (12) though high-temperature methods and low-temperature methods known to one of ordinary skill in the art. Among high-temperature methods are sputtering and oxidation on the anode's (10, 32, 46) surface. Among low-temperature methods are sol-gel processes, liquid phase deposition and direct precipitation on the anode's (10, 32, 46) surface. See also, Park H, el al., “Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation,” Energy Fuels 21:2984-2990 (2007). In addition, the anode (10, 32, 46) can be coated with the oxidation catalyst (12) by tape casting a suspension of platinized carbon.
A cathode (14, 34, 44) is in electrical and fluid communication with the anode (10, 32, 46). The cathode (14, 34, 44) is an electrode through which positive electric current flows out (but electrons flow into), disposed about the reaction chamber (4, 38, 42). The cathode (14, 34, 44) includes a reduction catalyst (16) and optionally a conductant (not shown). For the MFCs described herein, the cathode (14, 34, 44) can be an air cathode that is permeable to oxygen gas and nitrogen gas, but is impermeable to water. The cathode (14, 34, 44) can be constructed of a material that is porous, such as carbon or graphite. In a laboratory setting, where reaction chamber (4, 38, 42) volumes can be about 30 ml to about 60 ml, the surface area of the cathode (14, 34, 44) can be about 1 cm2, although one of ordinary skill in the art understands that larger surface areas per unit volume are desired.
As noted above, light penetration through the MFC (2, 30, 40) can be increased by at least two ways, namely, by using an optically transparent reaction chamber (4, 38, 42) with a small diameter or by restricting the size and location of the anode (10, 32, 46) and cathode (14, 34, 44) so that they do not block light penetration. However, light penetration can also be increased by removing the cathode (14, 34, 44) from the internal volume of the reaction chamber (4, 38, 42), such as by sealing the reaction chamber (4, 38, 42) with the catalyst.
The cathode (14, 34, 44) includes a reduction catalyst (16) disposed thereon, which can be a substance that causes or accelerates reduction without itself being affected. Like the oxidation catalyst (12), the reduction catalyst (16) increases electron transfer. A suitable reduction catalyst (16) includes platinum or a platinum and titanium dioxide mixture. For example, the reduction catalyst (16) can be platinum coated upon carbon paper. Likewise, CoTMPP and FePc have recently been shown to be suitable alternatives to platinum in MFCs, Cheng et al. 2006b; and Zhao et al. 2005. In general, the reduction catalyst (16) should be accessible to atmospheric oxygen because the cathode (14, 34, 44) can be an air cathode. Alternatively, oxygen gas evolving from organisms present in the reaction chamber (4, 38, 42) may be reduced in addition to, or in lieu of, atmospheric oxygen.
The cathode (14, 34, 44) can be coated with the reduction catalyst (16), using any of the methods described above with the oxidation catalyst (12).
As shown in
One of ordinary skill in the art, however, understands that the size of the anode (10, 32, 46) and cathode (14, 34, 44), as well as the location of the anode (10, 32, 46) relative to the cathode (14, 34, 44), will vary depending upon the volume of the reaction chamber (4, 38, 42). One of ordinary skill in the art, however, can readily determine these parameters using the teachings described below in the Examples. In general, the greater the distance between the electrodes, the greater the internal resistance of the MFC (2, 30, 40). Therefore, regardless of the size of the reaction chamber (4, 38, 42), the distance between the electrodes should be reduced as much as possible.
The anode and cathode may also include a conductant (not shown), such as, tin oxide, indium tin oxide or a combination thereof. Methods of applying conductants to these electrodes are well-known to one of ordinary skill in the art. See, e.g., U.S. Pat. No. 7,326,399. The conductant can be dispersed between the either catalyst. The layer of conductant need only about a microns or less.
The anode (10, 32, 46) and cathode (14, 34, 44) are in electrical communication via a conductive material (18, 39, 54), such as an assembly of commercially available copper/zinc wires of widths in the range of about 26 to about 30 American wire gauge (AWG) that connect each electrode through a carbon resistor having an electric resistance of 10,000 Ohms. The connections between the conductive material (18, 39, 54) and the electrodes can be of low resistance to prevent power losses in the electron flow and can be isolated using a water-proof, electrical tape such as commercial PVC tape or Kapton tape (CS Hyde; Lake Villa, Ill.). The electrical connection between the electrodes and the wires can be improved, if necessary, by using multiple conductive materials (18, 39, 54) to connect each electrode to the resistor unit, or by the sputtering of a conductive gold layer onto the electrode edges in contact with, the wires and unexposed to the growth medium.
The MFC (2, 30, 40) includes a growth medium (8) for culturing and growing the photosynthetic organism (6), as well as providing fluid communication between the anode (10, 32, 46) and cathode (14, 34, 44). The growth medium (8) can be any growth medium for photosynthetic organisms and should have at least a carbon source for generating electrons, nutrients and a pH compatible for such organisms. Suitable growth medium (8) formulations can be chemically defined and should lack potential electron acceptors, nitrates or carbon dioxide, all of which will compete for the electrons needed to support he production of hydrogen in the MFC (2, 30, 40). See, Biebl & Pfennig 1981. For example, the growth medium (8) can be any growth medium for photosynthetic organisms known to one of ordinary skill in the art, such as Sistrom's minimal growth medium (Sistrom 1960; and Sistrom 1962). Other suitable growth medium (8) formulations are known to one of ordinary skill in the art and may be used with the MFCs (2, 30, 40) described herein. See, e.g., Bergey's Manual of Systematic Bacteriology.
Although not required, one of ordinary skill in the art can increase hydrogen gas production by using a growth medium (8) with a single carbon source. Suitable single carbon sources are monosaccharides and organic acids, particularly those organic acids having a carboxyl group, such as monocarboxylic acids and dicarboxylic acids. See, Truper & Pfennig 1978. The single carbon source preferably has a low oxidation state (i.e., be highly reduced). Single carbon sources for use with the MFCs (2, 30, 40) described herein include, but are not limited to, succinate, propionate, glucose, pyruvate, malate, butyrate, tartrate, acetate, ethanol and glycerol.
To further increase hydrogen gas production, the growth medium (8) is limited for a fixed nitrogen source. That is, the ammonia in the growth medium (8) can be depleted by the photosynthetic organism (6) or can be replaced with an organic nitrogen source that limits the photosynthetic organism's (6) ability to produce ammonia. Alternatively, the growth medium (8) is essentially free of ammonia. Suitable organic nitrogen sources include, but are not limited to, amino acids such as glutamate and nitrogen gas, as well as any other fixed nitrogen that is transport or assimilated by the photosynthetic organism (6).
The growth medium (8) has a pH between about 3 to about 9, alternatively between about 5 to about 9. However, one of ordinary skill in the art understands that the optimal pH of the growth medium (8) for hydrogen production will vary with the isoelectic point (pI) of the materials used for the electrodes. Likewise, the pH of the growth medium (8) should be compatible with growth, survival or hydrogen production by the photosynthetic organism (6), although it is known that lower pHs may increase current production by traditional abiotic MFCs.
The photosynthetic organism (6) is also in the growth medium (8) and catalyzes the conversion of organic matter in the growth medium (8) into electricity by transferring electrons to a developed circuit and does so by using hydrogen as a reducing agent. One such photosynthetic organism (6) is purple non-sulfur bacteria, especially those from the following families: Acetobacteraceae, Bradyrhizobiaceae, Chromatiaceae, Comamonadaceae, Hyphomicrobiaceae, Rhodobiaceae, Rhodobacteraceae, Rhodocyclaceae, Rhodospirillaceae, as well as other known or existing photosynthetic organisms (6) that produce hydrogen. In addition, a mixture or consortia of these photosynthetic organisms (6) may be used. Of particular interest herein are members of Rhodobacteraceae, especially R. sphaeroides. Suitable R. sphaeroides include strains 2.4.1 (American Type Culture Collection (ATCC); Manassas, Va.; Catalog# BAA-808), 2.4.7 (ATCC: Catalog # 17028) or R. capsidatus B10 (ATCC; Catalog# 33303). Other photosynthetic organisms (6) include red, blue or green algae, as these organisms are known to produce biohydrogen.
Purple non-sulfur bacteria, such as R. sphaeroides, are efficient at capturing light energy (e.g., solar energy) when grown photosynthetically under anaerobic conditions and in the presence of an external organic substrate (i.e., carbon source). These organisms absorb light within the visible range, and then transform the absorbed light photosynthetically into ATP, generating electrons and protons. The electrons are eventually transferred to a high potential electron acceptor such as oxygen. These metabolic requirements are consistent with the operation of the MFCs (2, 30, 40) described herein, in which the reaction chamber (4, 38, 42) can be anaerobic for the transfer of electrons from the photosynthetic organism (6) to the anode (10, 32, 46), and that an external organic substrate can be provided as an electron donor to induce biological activity that fuels the MFC (2, 30, 40). The main difference with respect to typical MFCs described in the literature and the MFCs (2, 30, 40) described herein is that our reaction chambers (4, 38, 42) allow sufficient light penetration.
Manipulations of the photosynthetic organism (6) are also contemplated, particularly manipulations that increase hydrogen production. When R. sphaeroides generates excess reducing power, it passes the resulting electrons to one of several pathways (Richardson et al. 1988), such as polyhydroxybutyrate synthesis, the Calvin cycle (Paoli et al. 1998; Richaud et al. 1991; and Tichi & Tabita 2001), hydrogen gas evolution (Gest & Kamen 1949), reduction of other electron acceptors (McEwan et al. 1987) or other uncharacterized pathways (Tavano et al. 2005). Therefore, it may be possible to improve MFC (2, 30, 40) function by altering these systems.
For example, one of ordinary skill in the art may remove systems that compete for reducing power, such as carbon dioxide fixation, polyhydroxyalkanoate synthesis or production of soluble metabolites, by altering the systems that produce the hydrogen that powers the MFCs (2, 30, 40) or by eliminating the dependence of ammonia-limiting conditions (Rey et al. 2007). These alterations can be accomplished by genetic manipulation of the photosynthetic organism (6).
In operation, a light source (20, 36) illuminates the reaction chamber (4, 38, 42), causing the photosynthetic organism (6) to oxidize organic substrates, such as the carbon source, and to produce electrons. Electrical current resulting from the oxidation reaction at the anode (10, 32, 46) travels to cathode (14, 34, 44) through conductive material (18, 39, 54) and is then catalytically combined by the reduction catalyst (16) with oxygen and protons to form water at the cathode (14, 34, 44). Thus, the photosynthetic organism (6) functions as a biocatalyst, mediating the degradation of organic materials to produce electrons.
Using single chambered MFCs (2, 30, 40) is important because molecular oxygen is ultimately the preferred electron acceptor. Oxygen diffusing from the cathode (14, 34, 44) (specifically, an air cathode) to the anode (10, 32, 46) dictates the minimum distance necessary between the electrodes. See, Cheng et al. 2006a. In the examples described herein, a negative effect of reducing electrode spacing was not observed. On the contrary, the best MFC performance was obtained when the center of the electrodes was separated by only 1.1 cm. Since the examples used a pure culture of R. sphaeroides, and R. sphaeroides is not know to form biofilms on electrode surfaces to date, oxygen diffusion into the MFCs was likely minimized by aerobic respiration of planktonic R. sphaeroides located near tire cathode.
Without intending to be limited as to the theory underlying the present invention, it is believed that the main mechanism of electron transfer from R. sphaeroides to the anode was through in situ oxidation of the hydrogen produced by the culture in the stationary phase, when ammonia became a limiting nutrient. Neither biogas nor electricity was produced during exponential growth. This is consistent with the general use of resting cells of purple non-sulfur bacteria for hydrogen production under ammonia-limited conditions, and observations of the kinetics of hydrogen production in growing cultures (Koku et al. 2003), which showed that hydrogen evolution did not occur until mid-exponential or stationary phase.
The rate of hydrogen production was significantly higher than the rate of in situ hydrogen utilization, and therefore, most of the hydrogen produced was vented from the MFCs. Consequently, a calculation of Coulombic efficiencies was not relevant because most of the hydrogen was vented as a biogas. To increase in situ hydrogen oxidation, one of ordinary skill in the art would typically increase the surface area of the anode per unit of reactor volume, However, the material used in the anode was based on black carbon paper, and therefore, increasing anode surface area would have resulted in a decrease in light penetration with the consequent decrease in light-driven hydrogen production. As such, the anode was made as thin as possible and located in the center of the MFC, Likewise, and from a materials science perspective, improving the efficiency of photosynthetic MFCs required the use of anode materials that allow penetration of the near-infrared light (i.e., optically transparent) needed for photosynthesis by purple non-sulfur bacteria.
The Examples below do not show any evidence for the existence of electron transfer mechanisms other than hydrogen production and its in situ oxidation, That is, there was no observable, direct contact between the cells and anode (i.e., no nanowires were present). Likewise, very little power output (<0.01 mW/m2) was detected when the platinum-coated anode was replaced by a similar-sized piece of plain carbon paper. Moreover, the best performance obtained corresponded to normalized power densities around 700 mW/m2 (i.e., 2.9 W/m3 on a volumetric basis). In contrast, MFCs incubated in tire dark produced no more than 0.5 mW/m2 (i.e., 0.008 W/m3 on a volumetric basis).
In the examples with commercially available platinum-coated carbon paper, we maintained high MFC performance for more than forty-eight hours, without an apparent loss in catalytic activity, thus highlighting the importance of using biocompatible materials for the light-admitting reaction chamber aid electrodes in light-powered MFCs.
The invention will be more fully understood upon consideration of the following non-limiting Examples.
Methods
MFCs. All experiments were conducted in single-chamber MFCs constructed in glass test tubes to facilitate light admittance (
The anode was a rectangular piece (5 cm2, unless noted otherwise) of either platinum-coated phosphoric acid fuel cell electrode on Toray carbon paper (0.35 mg platinum/cm2; E-Tek; Somerset, N.J.) or plain Toray carbon paper (E-Tek) that did not contain platinum. The cathode was also made of platinum-coated Toray carbon paper (1.7 cm2). In most experiments, the anode and cathode were connected through a 10,000 Ohm external resistance.
Biogas produced by the cultures was vented out through a needle placed at the top of the MFCs and connected to a U-shaped tube filled with a liquid (e.g., water or oil) to prevent oxygen from diffusing back into the MFCs. When necessary, sterile Sistrom's minimal medium without any organic carbon source was added to the MFCs to maintain a constant culture volume.
Photosynthetic cultures. Experiments were conducted with R. sphaeroides strain 2.4.1. Prior to electrochemical experiments, the bacteria were grown under anaerobic photosynthetic conditions, using Sistrom's minimal medium containing 50 mM succinate made from a succinic acid salt solution (Thermo Fisher Scientific; Waltham, Mass.) as the sole carbon source. The cultures were placed in front of an incandescent light source (10 W/m2, as measured with a Yellow-Springs-Kettering model 6.5-A radiometer through a Coming 7-69, 620 nm to 110 nm filter) and were allowed to grow for ˜2 days, until a typical red pigmentation was observed.
MFC Experiments. To initiate a MFC experiment, 1 ml of the culture was replaced with fresh Sistrom's minimal medium containing either 50 mM succinate, glucose or propionate as the carbon source, and then, the MFC was connected to the data acquisition system. To test the effect of light on function of the MFC, parallel cultures were pre-grown photosynthetically, and then amended with the carbon source, placed in the dark and monitored for power output.
Electrochemical measurements. A voltage drop across the external resistance (V) was measured and logged at five-minute intervals using a computer-controlled, digital multimeter (DMM PCI-4070; National Instruments; Austin, Tex.) combined with a data input/output card (PCI-6518, National Instruments) and a relay system that facilitated on-line measurements of up to eight MFCs operated in parallel. LabVIEW®-based software (National Instruments) was used as a graphical interface for data handling. The response variables derived from these measurements were current (I) and power (P) generated through the circuit, as well as current and power densities calculated per unit area of anode surface (A), or per unit volume of microbial culture (VL). Current was calculated according to Ohm's law (I=V/R, where R is the external resistance), and power was estimated as P=V2/R.
To generate polarization curves, the external circuits were disconnected, and the MFCs stabilized to an open circuit potential. Next, the external resistance was varied from 100,000 Ohms to 10 Ohms at discrete intervals. At each condition, voltage readings were taken once the voltage drop reached an equilibrium condition, which occurred a few minutes after the replacement of the external resistance. The internal resistance in the MFCs was calculated from the slope of a linear region of the polarization curves (Logan et al. 2006).
Other analytical methods. Ammonium was measured by a salicylate method using a Test N'Tube™ Kit (Hack Loveland, Colo.). The composition of the biogas was measured by gas chromatography using a Shimadzu GC-8A system equipped with a thermal conductivity detector and a stainless steel column packed with Carbosieve SII (Supelco; Bellefonte, Pa.). Helium was used as a carrier gas, and the temperatures for the injector, column and detector were 150° C., 100° C. and 150° C., respectively.
Results
MFC power generation.
Analysis of the biogas in some MFC experiments indicated that hydrogen and carbon dioxide were the main gases produced, with hydrogen corresponding to 68% to 78% of the total. The power output slightly depended on the type of substrate added to the MFC (
MFCs placed in the dark immediately after the addition of the carbon source to the stationary phase culture resulted in insignificant power densities (less than 0.5 mW/m2) in comparison to the power densities observed when the cultures were exposed to light. In addition, MFC experiments in the dark failed to accumulate biogas, providing further evidence for the connection between biogas production and electricity generation. It is known that light-dependent hydrogen formation occurs in R. sphaeroides and related photosynthetic purple non-sulfur bacteria, and that nitrogenases are one possible source of hydrogen, especially under nitrogen-limited conditions. In these MFC experiments, nitrogen became limiting by the end of the initial growth stage since the ammonium concentration decreased ˜40-fold over this period (from an initial value of 3.8 mM to 0.1 mM), a condition that likely induced nitrogenase-mediated hydrogen formation when the culture received additional organic substrate.
To further explore whether hydrogen oxidation at the anode was the main mechanism of power generation in the R. sphaeroides-based MFCs, we performed light-exposed experiments in which the platinum-coated anode was replaced by a similar-sized piece of plain carbon paper. Under these conditions, the power output was less than 0.01 mW/m2 (data not shown), which is insignificant compared with the power densities obtained when the anode was coated with platinum. Based on the observations that hydrogen gas was a major component of the biogas produced in these MFCs, that the increase in power density coincided with the onset of biogas production, and that power generation required the presence of a catalyst on the anode, there is strong evidence to conclude that in situ hydrogen oxidation was the major source of electrons for these light-powered MFCs.
Effect of MFC configuration on power output. To investigate the range of power densities achievable with the R. sphaeroides-based MFCs, experiments were conducted with varying distances between the electrodes and with electrodes differing in anode size. In single-chamber MFCs, the distance between the anode and the cathode significantly affected power output. When the electrodes are too far apart, ohmic losses restrict performance, but when they are placed too close, MFC performance can be compromised if oxygen diffusing through the cathode reaches the anode (Cheng et al. 2006a). Consequently, experiments were conducted in which the anode was placed at different distances from the cathode.
The polarization curves presented in
The relative ratio of anode to cathode surface area also affects power generation in other MFCs (Oh & Logan 2006). The effect was demonstrated in dual chamber MFCs, where the surface area of the proton exchange membrane also had a significant impact on power output (Oh & Logan 2006). However, the effect of the surface area ratio in single chamber MFCs with air cathodes and without a proton exchange membrane has not been reported. Thus, to explore the impact of the anode to cathode surface area ratio in the power output of the single chamber light-powered MFCs, we performed experiments with anodes having surface areas of 1.25 cm2, 2.5 cm2 or 5 cm2, while maintaining the surface area of the cathode constant (
In this example, the spacing between electrodes was kept as small as possible to minimize ohmic losses, as described in
The above experiments demonstrate that it is possible to operate single-chambered MFCs that capture solar energy and simultaneously utilize organic renewable resources. In our single-chambered MFCs, hydrogen was produced by R. sphaeroides and oxidized in situ on an anodic surface containing platinum as the catalyst. To close the circuit, an air cathode catalyzed the reduction of atmospheric oxygen. In the initial MFC designs presented here, the rate of in situ hydrogen oxidation was much lower than the rate of hydrogen production, and therefore, most of the biogas produced was vented out of the system. In situ hydrogen oxidation could be maintained for up to forty-eight hours, without any evidence of inhibition of the electrocatalytic anodic reactions.
Methods
MFCs. MFCs were constructed as described in Example 1; however, the MFCs had each had a different anode material: (1) platinum-coated phosphoric acid fuel cell electrode on Toray carbon paper (i.e., positive control), (2) indium tin oxide (Cardinal Glass; Spring Green, Wis.) coated on glass, (3) tin oxide (Cardinal Glass) coated on glass, (4) indium tin oxide coated on glass with a layer of titanium dioxide and platinum, and (5) tin oxide coated on glass with a layer of titanium dioxide and platinum.
Each anode had an approximate area of ˜1 cm2. Briefly, the MFCs were assembled in modified test tubes with a side window made to host a cathode. The anodes were immersed in a citric acid-phosphate buffer solution (pH 18 7). Copper tape (3M; St. Paul, Minn.) was used to enhance the area of contact between the anode and the conducting wire. The tape surrounded the top of the anode with the wire inserted in between layers of tape. This copper-based contact was then covered with insulating Kapton tape.
MFC experiments. Once the systems were assembled, hydrogen gas was delivered through a needle into the solution, to ensure hydrogen availability. The MFCs were evaluated sequentially, using the same peristaltic pump to ensure similar hydrogen flow rates. Voltage drop across a 10 kΩ resistor was measured before and during hydrogen application to each of the MFCs. The MFCs were tested under light and dark conditions.
The influence of pH on MFC performance was evaluated with the indium tin oxide anode. The MFC was modified so that the clip was replaced by conductive tape covered by insulating Kapton tape. The MFC was filled with three buffers of varying pH (3, 5 and 7). Voltage drop across a 10 kΩ resistor was measured as follows: (1) prior to hydrogen gas bubbling (2) during hydrogen gas bubbling under light conditions (3) during hydrogen gas bubbling under dark conditions, and (4) after stopping hydrogen gas bubbling.
Results
Effect of anode materials. Table 1 summarizes the voltage drop measured with the different anode materials. No significant voltage drop (i.e., less than 10 mV) was detected before starting the hydrogen bubbling. Platinized tin oxide and indium tin oxide showed promise as a material for optically transparent anodes, although its performance was lower than the platinum-coated, carbon anode. On the other hand, the tin oxide-coated glass anode did not produce any significant current flowing across the resistor. The indium tin oxide-coated glass produced some voltage drop, but at significantly lower levels than the platinum-coated anodes.
The indium tin oxide-coated anode had a power density that was somewhat lower than the positive control; whereas the tin oxide-coated anode showed negligible hydrogen generation. Both, the indium tin oxide-coated anode with a layer of titanium dioxide and platinum, and the tin oxide coated-anode with a layer of titanium dioxide and platinum had a power density that was an order of magnitude lower than the positive control.
Effects of pH on MFCs. There was an important effect of pH on MFC, and no effect of light. Tire effect of pH changes could be related with surface charge. The pI of indium tin oxide is 18 7.5, thus a less negative charge given by increasing pH might be necessary for enhancing its anodic performance. Table 2 summarizes the voltage drop of the indium tin oxide MFC at various pHs.
The above experiments demonstrate that optically transparent electrodes are feasible for use with the MFCs described herein, that indium tin oxide by itself has conductive and reactive properties, that adding platinum to optically transparent electrodes improves their reactivity, and that indium tin oxide and tin oxide are suitable materials for optically transparent electrodes when platinum is used as a catalyst. Moreover, the above experiments demonstrate that the reaction in the MFCs is influenced by pH and may be related to the pi of the anode.
Methods
MFCs. MFC's were constructed as described in Example 2.
Photosynthetic cultures. R. sphaeroides strain 2.4.1 was used as the biological catalyst, as described in Example 1. However, ammonia present in the medium was replaced with an equimolar amount of glutamate.
MFC Experiments. MFC experiments were performed as described in Example 1.
Electrochemical measurements. Electrochemical measurements were performed as described in Example 1.
Results
MFC power generation. The bacteria cells grew and were not inhibited by the materials used to construct the electrodes, as evidenced by hydrogen gas production. These results indicate that the MFCs having optically transparent electrodes are indeed bio-compatible.
Effect of anode materials. The results obtained in these experiments were similar to those in Example 2. The indium tin oxide-coated glass anode showed promise as a material for optically transparent anodes, and the tin oxide-coated glass anode did not produce any significant current flowing across the resistor. When either the indium tin oxide or tin oxide anodes were coated with a thin layer of platinum/titanium dioxide, they performed similarly, with peak voltages between 70 and 80 mV. These power densities, however, where an order of magnitude lower than the positive control, which is consistent with the results obtained in Example 2.
Various changes in the details and components that have been described may be made by those skilled in the art within the principles and scope of the invention herein described in the specification and defined in the appended claims. Therefore, while tire present invention has been shown and described herein in what is believed to be the most practical and preferred embodiments, it is recognized that departures can be made therefrom within the scope of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent processes and products.
All documents cited are incorporated herein by reference as if set forth in their entirety.
Biebl H & Pfennig N, “Isolation of members of the family Rhodospirillaceae,” The Prokaryotes 167-273 (Starr M, et al, eds., New York: Springer 1981).
Blankenship R, et al., “Anoxygenic Photosynthetic Bacteria.” (Kluwer Academic Publishers, Boston 1995).
Bond D, et al., “Electrode-reducing microorganisms that harvest energy from marine sediments,” Science 295:483-485 (2002).
Bond D & Lovley D, “Electricity production by Geobacter sulfurreducens attached to electrodes,” Applied and Environmental Microbiology 69:1548-1555 (2003).
Bond D & Lovley D, “Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans,” Applied and Environmental Microbiology 71:2186-2189 (2005).
Cheng S, et al., “Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing,” Environmental Science & Technology 40:2426-2432 (2006a).
Cheng S, et al., “Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells,” Environmental Science & Technology 40:364-369 (2006b).
Gest H & Kamen M, “Photoproduction of molecular hydrogen by Rhodospirillum rubrum.” Science 109:558-559 (1949).
Gorby Y, et al., “Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms,” Proceedings of the National Academy of Sciences of the United States of America 103:11358-11363 (2006).
He D, et al., “Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell,” Journal of Power Sources 141:19-23 (2005a).
He Z, et al, “Electricity generation from artificial wastewater using an upflow microbial fuel cell,” Environmental Science & Technology 39:5262-5267 (2005b).
Holmes D, et al., “Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments,” Microbial Ecology 48:178-190 (2004).
Kim J, et al., “Evaluation of procedures to acclimate a microbial fuel cell for electricity production,” Applied Microbiology and Biotechnology 68:23-30 (2005).
Kim M, et al., “Comparison of H-2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant,” International Journal of Hydrogen Energy 31:121-127 (2006).
Koku H, et al., “Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides,” International Journal of Hydrogen Energy 27:1315-1329 (2002).
Koku H, et al., “Kinetics of biological hydrogen production by tire photosynthetic bacterium Rhodobacter sphaeroides OU 001,” International Journal of Hydrogen Energy 28:381-388 (2003).
Lane N, “What can't bacteria do?,” Nature, 441:274-277 (2006).
Liu H, et al, “Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell,” Environmental Science & Technology 39:658-662 (2005).
Liu II & Logan B, “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane,”. Environmental Science & Technology 38:4040-4046 (2004).
Liu H, et al, “Production of electricity during wastewater treatment using a single chamber microbial fuel cell,” Environmental Science & Technology 38:2281-2285 (2004).
Logan B, “Generating electricity from wastewater treatment,” Water Environment Research, 77:211-211 (2005).
Logan B, et al, “Microbial fuel cells: methodology and technology,” Environmental Science & Technology 40:5181-5192 (2006).
Logan B, et al, “Electricity generation from cysteine in a microbial fuel cell,” Water Research 39:942-952 (2005).
McEwan A. et al., “The periplasmic nitrate reductase of Rhodobacter capsulatus: purification, characterization and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulfoxide and chlorate,” Archives of Microbiology 147:340-345 (1987).
Melis A, “Green alga hydrogen production: progress, challenges and prospects,” International Journal of Hydrogen Energy 27:1217-1228 (2002).
Min B, ex al, “Electricity generation from swine wastewater using microbial fuel cells,” Water Research 39:4961-4968 (2005).
Min B & Logan B, “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell,” Environmental Science & Technology 38:5809-5814 (2004).
Nandi R & Sengupta S, “Microbial production of hydrogen: an overview,” Critical Reviews in Microbiology 24:61-84 (1998).
Nath K & Das D, “Improvement of fermentative hydrogen production: various approaches,” Applied Microbiology and Biotechnology 65:520-529 (2004).
Niessen J, et al, “Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation,” Letters in Applied Microbiology 41:286-290 (2005).
Niessen J. et at., “Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch,” Electrochemistry Communications 6:955-958 (2004).
Oh S & Logan 3. “Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells,” Applied Microbiology and Biotechnology 70:162-169 (2006).
Paoli G, et al., “Physiological control and regulation of the Rhodobacter capsulatus cbb operons,” Journal of Bacteriology 180:4258-4269.
Park D, et al, “Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production,” Applied and Environmental Microbiology 65:2912-2917 (1999).
Park D & Zeikus J, “Improved fuel cell and electrode designs for producing electricity from microbial degradation,” Biotechnology and Bioengineering 81:348-355 (2003).
Phung N, et al., “Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences,” Fems Microbiology Letters 233:77-82 (2004).
Rabaey K, et al., “Microbial phenazine production enhances electron transfer in biofuel cells,” Environmental Science & Technology 39:3401-3408 (2005).
Rabaey K. et al., “Biofuel cells select for microbial consortia that self-mediate electron transfer,” Applied and Environmental Microbiology 70:5373-5382 (2004).
Rabaey K, et al., “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency,” Biotechnology Letters 25:1531-1535 (2003).
Rabaey K & Verstraete W, “Microbial fuel cells: novel biotechnology for energy generation,” Trends in Biotechnology 23:291-298 (2005).
Reguera G, et al., “Extracellular electron transfer via microbial nanowires.” Nature 435; 1098-1101 (2005).
Rey F, et al., “Redirection of metabolism for biological hydrogen production,” Appl. Environ. Microbiol. 73:1665-1671 (2007).
Richardson D, et al, “The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on proprionate or butyrate,” Archives of Microbiology 150:131-137 (1988).
Riehaud P, et al., “Identification and sequence analysis of the hupR1 gene, which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus,” Journal of Bacteriology 173:5928-5932 (1991).
Rosenbaum M, et al., “In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides,” Environmental Science & Technology 39:6328-6333 (2005).
Schroder U, et al., “A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude,”” Angewandte Chemie-International Edition 42:2880-2883 (2003).
Sistrom W, “A requirement for sodium in the growth of Rhodopseudomonas sphaeroides,” Gen Microbiol. 22:778-785 (1960).
Sistrom W, “The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides,” J. Gen. Microbiol. 28:607-616 (1962).
Tavano C. et al., “Gene products required to recycle reducing power produced under photosynthetic conditions,” J. Bacterial. 187:5249-5258 (2005).
Tender L, et al., “Harnessing microbially generated power on the seafloor,” Nature Biotechnology 20:821-825 (2002).
Thiele J, et al, “Control of interspecies electron flow during anaerobic-digestion—role of floe formation in syntrophic methanogenesis,” Applied and Environmental Microbiology, 54:10-19 (1988).
Tichi M & Tabita F, “Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism,” Journal of Bacteriology 183:6344-6354 (2001).
Truper H & Pfennig N, “The photosynthetic bacteria,” 19-30 (Clayton R & Sistrom W, Eds. Plenum Press, New York 1978).
Ueno Y, et al., “Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost,” Applied Microbiology and Biotechnology 57:555-562 (2001).
US Department of Energy, “Annual progress report—fuel cells,” (2005a) (available on the US Dept. of Energy website).
US Department of Energy, “Basic research needs for solar energy utilization,” (2005b) (available on the Office of Basic Energy Sciences website).
Yagishita T, et al., “Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles,” Journal of Fermentation and Bioengineering 85:546-549 (1998).
Yokoi H, et al., “Microbial hydrogen production from sweet potato starch residue,” Journal of Bioscience and Bioengineering 91:58-63 (2001).
Zhao F, et al., “Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel ceils,” Electrochem. Commun. 7:1405-1410 (2005).
Zhao F, et al., “Challenges and constraints of using oxygen cathodes in microbial fuel ceils,” Environmental Science & Technology 40:5193-5199 (2006).
Zurrer H & Bachofen R, “Hydrogen Production by the Photosynthetic Bacterium Rhodospirillum-Rubrum,” Applied and Environmental Microbiology 37:789-793 (1979).
This application claims the benefit of U.S. Provisional Patent Application No. 60/889,266, filed Feb. 10, 2007, incorporated herein by reference as if set forth in its entirety.
This invention was made with United States government support awarded by the following agency: DOD—NAVY Grant Nos. 144-LT10, 144-MC50, 144-QP83 and 144-QL34. The United States government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60889266 | Feb 2007 | US |