The present invention relates generally to illumination and lighting and, more specifically, to light reflectors and flood lighting systems.
Faceted reflectors are known to those of ordinary skill in the art for producing a highly uniform patch of light and are commonly used in the production of surgical lights, car head lamps, and other applications where an intense beam of light, directed to a singular patch of area, is necessary for accomplishing a particular goal. For example, faceted reflectors used as surgical lights illuminate the specific area of surgical importance for the surgeon; faceted reflectors illuminate the road surface for an automobile driver without directing light into the line of sight of the in-coming traffic.
Rigorous mathematical algorithms and computational modeling have been used to increase the uniformity of the singular patch and to improve the sharpness of the border between the singular patch of light and the background. Additionally, reflector designs have been conventionally used for side, flood illumination of parking facilities, such as parking lot or garages. These reflector designs generally include a geometric housing, i.e., parabolic, elliptical, etc. These conventional designs have proven to be highly useful and efficient both energetically and economically. However, the illumination distribution created by these geometric housings is quite limited. As a result, several geometric housings must be incorporated and properly aligned for illuminating a given area to achieve required illumination distribution. Again, there is room for improvement in the field of side, flood illumination reflector design, as well as more generally in the field of light reflectors and flood lighting systems.
In one embodiment, a light reflector includes a housing having a body with a plurality of facets. Each facet has a shape that is a portion of one of a plurality of ellipses sharing a common focus. The first and second surfaces are formed by first and second planes intersecting along a line within a volume of the body. The housing is arranged relative to the light source so that the light source is positioned near the first surface and at the common focus. The housing is angularly oriented relative to the light source such that a majority of light emitted by the light source is directed into the housing, reflected by at least one of the facets, and exits the light reflector out of either the first surface or the second surface.
In another embodiment, a flood lighting system is provided for illuminating a surface. The flood lighting system includes a plurality of light sources and a plurality of light reflectors. Each light reflector includes a housing having a body having a plurality of facets. Each facet has a shape that is a portion of one of a plurality of ellipses sharing a common focus. First and second surfaces are formed by first and second planes intersecting along a line within a volume of the body. One of the light sources is positioned near the first surface, at the common focus, and is angularly oriented relative to the respective housing such that a majority of light emitted by the light source is directed into the housing, reflected by at least one of the facets, and exits the light reflector out of one of the first or second surfaces. The flood lighting system is mounted at a distance from the surface.
In another embodiment, the body of the light reflector may include a free-form surface that is generated as the best fit to the plurality of facets. A free-form surface is used in CAD and other computer graphics software to describe the skin of a three-dimensional geometric element. A free-form surface lacks rigid radial dimensions in contrast to regular surfaces. One approach for generated a free-form surface is lofting, which may involve the interpolation of a set of curves or a set of multiply-connected by a smooth surface and may involve the use of splines as a mathematical solution.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments of the invention and, together with a general description of the invention given above and the detailed description of the embodiments given below, serve to explain the embodiments of the invention.
Along the major axis 12 are two points, or foci 16, 18, that are offset from a center 20 of the major axis 12. The foci 16, 18 are those points along the major axis 12 where the sum of the distances from any point along the boundary of the ellipse 10 to the foci 16, 18 is constant.
Another inherent feature of the foci 16, 18 that is known to those of ordinary skill in the art of optics is that a beam of light leaving one focus 16 will be reflected at the boundary of the ellipse 10 in a direction toward the other focus 18. In other words, light emitted from a point light source positioned at first focus 16 would be internally reflected by the ellipse and creates an aberration-free image at the second focus 18. With this feature in mind, and with reference to
It would be understood that adjustments to the length of minor axis 14 (
It would also be readily appreciated by one of ordinary skill in the art that the number of points of light to be generated on the common plane 38 would be equal to the number of ellipses 24, 26, 28 comprising the ellipse system 22.
The ellipse system 22 may be modeled on a computing system. Briefly, an initial ellipse system 22 and an initial set of parameters characterizing the ellipse system 22 are established, where the ellipse system 22 is comprised of a plurality of ellipses 32, 34, 36 all sharing the common focus 30. While the size of each of the plurality of ellipses 32, 34, 36 comprising the initial ellipse system 22 may be arbitrarily established, initial parameters of each of the plurality of ellipses 32, 34, 36, for example, the minor axis 14 of each, are selected to establish a parametric baseline in order to reduce computational time. An initial reflector geometry is then generated from the initial parameters of this initial ellipse system 22. The process is iterated to generate a final reflector geometry with the desired design characteristics for a light intensity distribution map. With continued reference to
The computer 221 may include at least one processing unit 222 (illustrated as “CPU”) coupled to a memory 224 along with several different types of peripheral devices, e.g., a mass storage device 226, a user interface 228 (including, for example, user input devices and a display), and a network interface 230. The memory 224 may be comprised of dynamic random access memory (DRAM), static random access memory (SRAM), non-volatile random access memory (NVRAM), persistent memory, flash memory, at least one hard disk drive, and/or another digital storage medium. The mass storage device 226 is typically at least one hard disk drive and may be located externally to the computer 221, such as in a separate enclosure or in one or more networked computers 232, one or more networked storage devices 234 (including, for example, a tape drive), and/or one or more other networked devices 136 (including, for example, a server). The computer 221 may communicate with the networked computer 232, networked storage device 234, and/or networked device 236 through a network 238.
As illustrated in
The memory 224 of the computer 221 may include an operating system 240 to control the primary operation of the computer 221 in a manner that is well known in the art. In a specific embodiment, the operating system 240 may be a Unix-like operating system, such as Linux. The memory 224 may also include at least one application 242, or other software program, configured to execute in combination with the operating system 240 and perform a task. It will be appreciated by one having ordinary skill in the art that other operating systems may be used, such as Windows, MacOS, or Unix-based operating systems, for example, Red Hat, Debian, Debian GNU/Linux, etc.
In general, the routines executed to implement the embodiments of the invention, whether implemented as part of an operating system or a specific application, component, algorithm, program, object, module or sequence of instructions, or even a subset thereof, will be referred to herein as “computer program code” or simply “program code.” Program code typically comprises one or more instructions that are resident at various times in memory and storage devices in a computer, and that, when read and executed by at least one processor in a computer, cause that computer to perform the steps necessary to execute steps or elements embodying the various aspects of the invention.
Various program code described hereinafter may be identified based upon the application or software component within which it is implemented in specific embodiments of the invention. However, it should be appreciated that any particular program nomenclature that follows is merely for convenience; and thus, the invention should not be limited to use solely in any specific application identified and/or implied by such nomenclature. Furthermore, given the typically endless number of manners in which computer programs may be organized into routines, procedures, methods, modules, objects, and the like, as well as the various manners in which program functionality may be allocated among various software layers that are resident within a typical computer (e.g., operating systems, libraries, Application Programming Interfaces [APIs], applications, applets, etc.), it should be appreciated that the invention is not limited to the specific organization and allocation of program functionality described herein.
As will be appreciated by one skilled in the art, the embodiments of the present invention may also take the form of a computer program product embodied in at least one computer readable storage medium having computer readable program code embodied thereon.
The computer readable storage medium may be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof, that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. Exemplary computer readable storage medium include, but are not limited to, a hard disk, a floppy disk, a random access memory, a read-only memory, an erasable programmable read-only memory, a flash memory, a portable compact disc read-only memory, an optical storage device, a magnetic storage device, or any suitable combination thereof. Computer program code for carrying out operations for the embodiments of the present invention may be written in one or more object oriented and procedural programming languages.
The methods described herein for designing a reflector can be implemented by computer program instructions supplied to the processor of any type of computer to produce a machine with a processor that executes the instructions to implement the functions/acts specified herein. These computer program instructions may also be stored in a computer readable medium that can direct a computer to function in a particular manner To that end, the computer program instructions may be loaded onto a computer to cause the performance of a series of operational steps and thereby produce a computer implemented process such that the executed instructions provide processes for implementing the functions/acts specified herein.
Those skilled in the art will recognize that the environment illustrated in
The simulation according to an embodiment of the present invention for modeling of the ellipse system 22 and for determining a resultant shape of a reflector, and the method for such modeling, will now be described with reference to
In block 248, an ellipse system and an initial set of parameters for the ellipse system are established, where the ellipse system is comprised of a plurality of ellipses all sharing the common focus. While the size of each of the plurality of ellipses comprising the initial ellipse system may be arbitrarily established, one of ordinary skill in the art would understand how to tailor initial parameters of each of the plurality of ellipses, for example, the minor axis of each, to establish an educated guess in order to reduce computational time. An initial reflector geometry is then generated from the initial parameters of this ellipse system.
In block 250, parameters of one or more of the plurality of ellipses comprising the ellipse system are iteratively adjusted. Each of the plurality of ellipses has one independent parameter—minor axis 14 (“b” in
In block 251, a reflector geometry is then re-generated from the parameter-adjusted ellipse system. A resultant distribution map of the light intensity is calculated from the ellipse system profile, in block 252.
In block 254, a decision is made as to whether the calculated resultant distribution map of the light intensity is equal to a desired distribution map of the light intensity in terms of two-dimensional shape, image size, illumination uniformity, spot size, and so forth. One of ordinary skill in the art would readily appreciate that the decision could be extended to accept a light intensity distribution map that is within a specified standard deviation of the desired light intensity distribution map. If the resultant light intensity distribution map is not satisfactorily similar to the desired light intensity distribution map, then the process returns to block 250 to further iterative adjustments to the ellipse system are made. Otherwise, the modeling ends.
With the calculated resultant light intensity distribution map satisfactorily determined, the shape and parameters of the ellipse system used in calculating the satisfactory resultant light intensity distribution map are used to manufacture a reflector that is capable of generating the light intensity distribution map. In one embodiment, a mold for a reflector may be generated from the light intensity distribution map. In another embodiment, instructions for generating the shape of the reflector may be communicated to a The reflector, which is shown and described in yet greater detail below, is constructed such that an inner surface of the reflector is faceted, the facets being formed from the intersecting surfaces of the plurality of ellipses that are sharing the common focus. As a result, each of the facets has a shape that includes at least a portion of an ellipse that is sharing the common focus.
Parameters of one or more of the plurality of ellipses comprising the initial reflector geometry is iteratively adjusted. Each of the plurality of ellipses has one independent parameter—minor axis 14 (“b” in
The interactive process of designing a reflector shape involves a software algorithm based on an optical software package, such as LightTools (Optical Research Associates, Inc), used to simulate reflector performance and a CAD software package, such as SolidWorks (Dassault Systems), used to develop a model. The algorithm maintains parameters of a plurality of elliptical shapes and provides logic to build a reflector shape based on these ellipses. A model of the reflector shape may be imported into the optical software package to conduct raytracing, which simulates the intensity distribution on a screen for light coming from the reflector. Based on the results of this optical simulation, parameters of plurality of elliptical shapes can be modified and the process of building a model of reflector shape and testing the reflector shape with the optical software package may be repeated. The interactive design process stops when optical simulation of the light distribution on the screen meets or exceeds the design requirements for the reflector.
With a final reflector geometry satisfactorily determined, the shape and parameters of the ellipse system 22 used in calculating the final reflector geometry are used to create a mold for manufacturing a reflector body that is capable of generating the desired illumination profile. The reflector body 46, which is shown and described in yet greater detail below, is constructed such that an inner surface of the reflector is faceted, where the facets are formed from the intersecting surfaces of the plurality of ellipses 24, 26, 28 sharing a common focus 30. As a result, each of the facets has a shape that includes at least a portion of an ellipse 24, 26, 28 that is sharing the common focus 30.
Manufacture of the reflector body 46 may be accomplished by filling the mold with a suitable polymeric material (acrylics, polycarbonate, polyesters, polyethylene, and so on) and curing, if necessary. The reflector body 46 may be constructed simply as a unitary structure from the polymeric material, therefore having minimal costs as compared to conventional imaging and illumination systems having separate lenses and objects. The single unit reflector body 46 therefore is capable of collecting light from a light source and distributing that light for illumination. The reflector body 24 may also be formed from a glass or a metal.
Alternative types of technology, such as electroforming and thermoforming, may be used to manufacture the reflector. The reflective surface may also be machined, for example, on diamond single point CNC equipment with Slow Tool Servo capability for cutting and shaping free form surfaces.
An opening 66 is positioned at the closed end (opposite the cut ends 58, 60) of each reflector body 50, 52, though this is not specifically shown in the solid reflector body 52. The opening 66 allows a light source to be positioned at the common focus 30 (
Suitable LEDs 68 may include those ranging in size of light emitting area from about 1 mm to about 25 mm, but should not be limited to only these sizes. An array of individual LEDs assembled on common base can also be used. Suitable constructions for the LED 68 include, but are not limited to, a white LED, a color LED, or a multi-color LED, as these constructions are understood. In alternative embodiments, the LED 68 can be replaced by other types of light sources such as an organic light emitting diode (OLED), a laser diode, an arc lamp, an Ultra High Pressure (UHP) lamp, a high-intensity discharge (HID), etc.
In some embodiments it may be advantageous to eliminate the distinct, abrupt boundaries between adjacent facets 54 of the hollow reflector body 50 (
While not specifically shown, another embodiment of a skew faceted elliptical reflector housing may be constructed from the solid reflector body 52 (
The light source, illustrated in
Referring still to
In
Referring now to
The reflector 80, with its unique ability to provide flood illumination of a large area, makes this geometry widely adaptable for use as a side reflector system 100, which is shown with greater detail in
As can more clearly seen in
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Furthermore, to the extent that the terms “includes”, “having”, “has”, “with”, “composed”, “comprised” or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
While the present invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Thus, the invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative example shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.
This application claims the benefit of U.S. Provisional Application No. 61/387,259, filed Sep. 28, 2010, which is hereby incorporated by reference herein in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
61387259 | Sep 2010 | US |