Field of the Invention
The present invention relates to a light scanning apparatus and an image forming apparatus including the light scanning apparatus.
Description of the Related Art
Hitherto, in an image forming apparatus employing an electrophotographic method, a photosensitive drum having a surface charged to a uniform electric potential is scanned with a light beam which is emitted from a light scanning apparatus based on image information, to thereby form an electrostatic latent image. The formed electrostatic latent image is developed by developer (toner) into a visible image, and the visible toner image is transferred onto a sheet. After that, the unfixed toner image is fixed on the sheet by a fixing unit, and the sheet is delivered. The light scanning apparatus configured to perform scanning with a light beam includes an optical system having a deflection device, which includes a rotary polygon mirror configured to deflect the light beam emitted from a semiconductor laser serving as a light emitting source, an optical lens (fθ lens), a reflecting mirror, and other components. In recent years, there has been an increasing demand for high-speed recording in the image forming apparatus, and hence higher scanning speed in the light scanning apparatus, that is, higher rotation speed of the rotary polygon mirror of the deflection device has been pursued continuously. When the rotary polygon mirror is rotated at high speed, a positive pressure region and a negative pressure region are generated on a mirror surface of the rotary polygon mirror, thereby causing adhesion of dirt, such as fine dust or mist in air, on the negative pressure region of the mirror surface. Such adhesion of dirt on the rotary polygon mirror reduces reflectivity at a portion with the adhesion of dirt. Therefore, the light intensity of a light beam, which is deflected by the rotary polygon mirror and output from the light scanning apparatus, is reduced. There has been a problem in that the reduced light intensity may cause failure in writing to a photosensitive drum as well as image degradation on the sheet onto which an image formed on the photosensitive drum is transferred.
To address this problem, a related-art light scanning apparatus secures sealability of the light scanning apparatus with the following configuration. Specifically, an opening formed on top of a housing having optical components mounted therein (hereinafter referred to as “optical box”) is covered with a cover component (hereinafter referred to as “upper cover”) configured to cover the opening, and a sealing part formed of a soft sealing member such as a foam member is sandwiched at a portion where the optical box and the upper cover are brought into abutment against each other. The upper cover and the optical box are snap-fitted or fastened with screws. With this, the sealing member of the sealing part is pressed, thereby securing the sealability of the light scanning apparatus.
In the case of this configuration, there may occur deformation of the upper cover due to a repulsion force of the pressed sealing member, and fatigue degradation of the sealing member due to continuous pressing. Thus, there is a problem in that the sealability of the light scanning apparatus is degraded along with deformation of the upper cover or fatigue degradation of the sealing member. For the purpose of preventing degradation in the degree of sealing of the optical box, there has been proposed a measure to reduce deformation of the upper cover and fatigue degradation of the sealing member to a maximum extent.
For example, in Japanese Patent Application Laid-Open No. 2014-12368, there is proposed an optical box including a plurality of fixing seats for allowing an upper cover to be fastened thereon with screws. In this optical box, the fixing seats onto which the upper cover is screwed include high fixing seats and low fixing seats. When use is started, the high fixing seats and the upper cover are fastened with screws. The fixing seats are removable. When the sealing member is degraded by fatigue, the upper cover is re-assembled, and the high fixing seats having been used so far are removed. Then, the upper cover is screwed onto the low fixing seats, thereby being capable of fastening the upper cover even under a state in which the sealing member is degraded by fatigue. Removing the high fixing seats and screwing the upper cover onto the low fixing seats can suppress deformation of the upper cover due to a repulsion force from the fixing seats.
In the method described above, there is a problem in that the dust-proof performance may be degraded due to a gap formed between the sealing member and the upper cover along with deformation of the upper cover which may occur from an initial period of use rather than over time, and due to separation of the sealing member caused by the deformation of the upper cover.
The present invention has been made under such circumstances, and it is an object of the present invention to prevent degradation in the degree of sealing of an optical box due to deformation of an upper cover with a simple configuration.
In order to solve the above-mentioned problems, the present invention has the following configurations.
(1) A light scanning apparatus, including: a light source configured to emit a light beam; a rotary polygon mirror configured to deflect the light beam emitted from the light source so as to scan a photosensitive member with the light beam; an optical member configured to guide the light beam deflected by the rotary polygon mirror to the photosensitive member; an optical box on which the light source is mounted and configured to contain the rotary polygon mirror and the optical member; a cover configured to cover an opening of the optical box; a fixation unit configured to fix the cover on the optical box; the cover having a dust-proof member which is molded on the cover so as to prevent dust from entering into the optical box and which is sandwiched between the cover fixed on the optical box by the fixation unit and a side wall of the optical box; and the dust-proof member including an abutment portion against which the side wall is brought into abutment, and non-abutment portions which are provided on both sides of the abutment portion in a transverse direction of the abutment portion and which are separated from the side wall, and the dust-proof member including a groove in one of the non-abutment portions, which is located on a side opposite to another one of the non-abutment portions located on a side where the fixation unit is provided, with respect to the abutment portion against which the side wall is brought into abutment.
(2) An image forming apparatus, including: a photosensitive member; the light scanning apparatus described in Item (1), which is configured to radiate a light beam onto the photosensitive member to form an electrostatic latent image on the photosensitive member; a developing unit configured to develop the electrostatic latent image formed by the light scanning apparatus to form a toner image; and a transfer unit configured to transfer the toner image formed by the developing unit onto a recording medium.
According to the present invention, degradation in the degree of sealing of the optical box due to deformation of the upper cover can be prevented with a simple configuration.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present invention are described in detail below with reference to the attached drawings.
Components of the image forming units 102Y, 102M, 102C, and 102Bk of the image forming apparatus 100 according to this embodiment are the same, and hence description is hereinafter made using the image forming unit 102Y. In the following description, a direction of a rotation axis of a rotary polygon mirror 205 is referred to as a Z axis direction. A main scanning direction as a scanning direction of the light beam or a longitudinal direction of a reflecting mirror is referred to as a Y axis direction. A direction which is perpendicular to both the Y axis and the Z axis is referred to as an X axis direction.
The image forming unit 102Y includes the photosensitive drum 107Y serving as a photosensitive member, a charging device 108Y, and a developing device 109Y. When an image is formed, the charging device 108Y charges a surface of the photosensitive drum 107Y to a uniform electric potential. The charged surface of the photosensitive drum 107Y is exposed with light by the light scanning apparatus 103, thereby forming an electrostatic latent image. This electrostatic latent image is formed into a visible image (developed) with yellow toner supplied by the developing device 109Y, thereby forming a toner image. At a primary transfer portion Ty, a primary transfer roller 110Y is arranged so as to be opposed to the photosensitive drum 107Y. A predetermined transfer voltage is applied to the primary transfer roller 110Y so that the toner image formed on the photosensitive drum 107Y (on the photosensitive member) is transferred onto the intermediate transfer belt 105. Similarly, toner images of other colors on the photosensitive drums 107M, 107C, and 107Bk are also transferred onto the intermediate transfer belt 105 by primary transfer rollers 110M, 110C, and 110Bk arranged at primary transfer portions Tm, Tc, and TBk.
At the secondary transfer portion T2, a secondary transfer roller 111 is arranged so as to be opposed to the intermediate transfer belt 105. A predetermined transfer voltage is applied to the secondary transfer roller 111 so that the toner images on the intermediate transfer belt 105 are transferred onto the recording sheet, which is a recording medium conveyed from the sheet-feeding unit 101. The recording sheet bearing the transferred toner images is conveyed to the fixing device 106, and the unfixed toner images are heated to be fixed on the recording sheet by the fixing device 106. The recording sheet after having been subjected to the fixing by the fixing device 106 is delivered to a sheet delivery unit (not shown).
[Light Paths of Light Scanning Apparatus]
Next, the light scanning apparatus 103 and 104 are described. The image forming apparatus according to this embodiment includes the light scanning apparatus 103, which is configured to expose the photosensitive drums 107Y and 107M with light, and the light scanning apparatus 104, which is configured to expose the photosensitive drums 107C and 107Bk with light. The light scanning apparatus 103 and 104 have the same configuration as illustrated in
As illustrated in
On the first scanning light path, the laser light (light beam) emitted from the light source 201 is transformed into parallel light by a collimator lens 202. The laser light is converged only in the sub-scanning direction by a cylindrical lens 203 arranged immediately after the collimator lens 202. The laser light converged only in the sub-scanning direction is shaped by a diaphragm 204 into a predetermined shape and thereafter formed into a linear image on a reflection surface of the rotary polygon mirror 205. The laser light formed into the image on the reflection surface of the rotary polygon mirror 205 is transformed into scanning light toward the photosensitive drum 107 through rotation of the rotary polygon mirror 205 in a direction of the arrow (clockwise direction) in
On the second scanning light path, the laser light (light beam) emitted from the light source 208 is transformed into parallel light by a collimator lens 209. The laser light is converged only in the sub-scanning direction by a cylindrical lens 210 arranged immediately after the collimator lens 209. The laser light converged only in the sub-scanning direction is shaped by a diaphragm 211 into a predetermined shape and thereafter formed into a linear image on the reflection surface of the rotary polygon mirror 205. The laser light formed into the image on the reflection surface of the rotary polygon mirror 205 is transformed into scanning light toward the photosensitive drum 107 through rotation of the rotary polygon mirror 205. The surface of the photosensitive drum 107 is scanned with the transformed laser light at constant speed through fθ lenses 212 and 213 serving as optical members.
[Configuration of Light Scanning Apparatus]
The laser light emitted from the light source 208 is deflected by the rotary polygon mirror 205. The deflected laser light is reflected by the reflecting mirror 216 after having passed through the fθ lens 212, and then is guided to the fθ lens 213. The laser light having passed through the fθ lens 213 is reflected by the reflecting mirror 217 and guided to the photosensitive drum 107Y. The rotary polygon mirror 205 is supported by a drive motor 218 and rotationally driven by the drive motor 218. In this embodiment, the rotary polygon mirror 205 and the drive motor 218 integrally construct a deflection unit.
As illustrated in
[Appearance of Light Scanning Apparatus]
[Overview of Sealing Part]
[Shape of Sealing Part]
The sealing part 305 includes a sealing portion 305A, which is an abutment portion to be brought into abutment against the side wall of the optical box 219 and pressed when the upper cover 301 is mounted on the optical box 219, and sealing portions 305B and 305C, which are non-abutment portions located on both sides of the sealing portion 305A and prevented from being brought into abutment against the optical box 219 (separated from the optical box 219). The sealing portion 305B is a sealing portion which is adjacent to the sealing portion 305A and located on an inner side of the optical box 219 with respect to the sealing portion 305A, and has a groove 306 separated from the optical box 219. The sealing portion 305C is adjacent to the sealing portion 305A and located on an outer side of the optical box 219, which is a side opposite to the sealing portion 305B across the sealing portion 305A.
(Sealing Portion 305A)
The sealing portion 305A includes convex-shaped portions 307 and 309, which are convex portions having a convex shape and being protruded toward the optical box 219 (in a −Z axis direction), and concave-shaped portions 308 and 310, which are concave portions having a concave shape and being opposed to the optical box 219. The concave-shaped portion 308 is located between the convex-shaped portion 307 and the convex-shaped portion 309, and the concave-shaped portion 310 is located between the convex-shaped portion 309 and the sealing portion 305C. When the sealing portion 305A is viewed from the optical box 219, the sealing portion 305A has an opening formed by the convex-shaped portions 307 and the sealing portion 305C, and grooves formed in the opening by the concave-shaped portions 308 and 310 are partitioned by the convex-shaped portion 309.
The convex-shaped portion 307 is located at an end of the sealing portion 305A, which is connected to the sealing portion 305B, and has three surfaces a, b, and c. When the upper cover 301 is mounted on the optical box 219, the surface a forms a standing wall portion, which stands toward the optical box 219, and is connected to the adjacent surface b and a surface k of the sealing portion 305B. The surface b adjacent to the surface a is a flat surface which extends in the X axis direction, and is connected to the adjacent surface c. The surface c adjacent to the surface b is inclined with respect to a +Z axis direction and in a +X axis direction, and is connected to an adjacent surface d of the concave-shaped portion 308.
The convex-shaped portion 309 is located in the +X axis direction from a center of the sealing portion 305A, that is, close to the sealing portion 305C, and has a surface f which is a convex portion having a semicircular sectional shape and being protruded toward the optical box 219. One end of the surface f is adjacent (connected) to the concave-shaped portion 310, and another end of the surface f is adjacent (connected) to a surface e of the concave-shaped portion 308. A height of the convex-shaped portion 309 (height in the −Z axis direction (direction toward the optical box) from a bottom surface of the sealing part 305 on the upper cover 301 side) is lower than a height of the surface b of the convex-shaped portion 307 (height in the −Z direction from the bottom surface of the sealing part 305 on the upper cover 301 side).
The concave-shaped portion 308 is located between the convex-shaped portion 307 and the convex-shaped portion 309 and has two surfaces d and e. The surface d forms a standing wall portion, which stands toward the optical box 219 when the upper cover 301 is mounted on the optical box 219. One end of the surface d is connected to the surface c of the convex-shaped portion 307, and another end of the surface d is connected to the adjacent surface e. The surface e adjacent to the surface d is a flat surface extending in the X axis direction (also a bottom surface of the concave-shaped portion 308), and is connected to the adjacent convex-shaped portion 309.
The concave-shaped portion 310 is located between the convex-shaped portion 309 and the sealing portion 305C. One end of the concave-shaped portion 310 is connected to the surface f of the convex-shaped portion 309, and another end of the concave-shaped portion 310 is connected to an adjacent surface n of the sealing portion 305C.
(Sealing Portion 305B)
The sealing portion 305B has a surface g, the groove 306, and the surface k. The surface g is a flat surface extending in the X axis direction, which is formed to have a shape of continuing from a bottom surface of the upper cover 301 opposed to the optical box 219. The groove 306 has three surfaces h, i, and j. The surface h is adjacent to the surface g and forms a standing wall portion, which stands toward the optical box 219. One end of the surface h is connected to the surface g, and another end of the surface h is connected to the surface i. The surface i forms a convex portion having a semicircular sectional shape recessed away from the optical box 219. One end of the surface i is adjacent (connected) to the surface h, and another end of the surface i is adjacent (connected) to the surface j. The surface j is adjacent to the surface k and forms a standing wall portion, which stands toward the optical box 219. One end of the surface j is connected to the surface k, and another end of the surface j is connected to the surface i. The surface k is a flat surface extending in the X axis direction, which is formed to have a shape such as an extension of the surface g through intermediation of the groove 306. One end of the surface k is connected to the surface j of the groove 306, and another end of the surface k is connected to the surface a of the convex-shaped portion 307 of the sealing portion 305A.
A width (length in the transverse direction) of the groove 306 represents a distance of the opening of the groove 306, that is, a distance between the surface h and the surface j of the groove 306. A depth of the groove 306 represents a distance of the opening of the groove 306 to the deepest portion, that is, a distance from the surface g or k of the sealing portion 305B to the deepest portion of the surface i of the groove 306.
(Sealing Portion 305C)
The sealing portion 305C has surfaces 1, m, and n. The surface 1 is a flat surface extending in the X axis direction, which has a shape such as an extension of a flat surface at an end of the upper cover 301 opposed to the optical box 219 and is formed at an end of the sealing portion 305C on an outer side of the optical box 219. The surface m is adjacent to the surface 1 and forms a standing wall portion, which stands toward the optical box 219 when the upper cover 301 is mounted on the optical box 219. One end of the surface m is connected to the surface 1, and another end of the surface m is connected to the surface n. The surface n is inclined with respect to the +Z axis direction and in the −X axis direction. One end of the surface n is connected to the surface m, and another end of the surface n is connected to the adjacent concave-shaped portion 310 of the sealing portion 305A. A height of the surface 1 of the sealing portion 305C (height in the −Z axis direction (direction toward the optical box) from the bottom surface of the sealing part 305 on the upper cover 301 side) is higher than a height of the surface b of the convex-shaped portion 307 in the sealing portion 305A (height in the −Z axis direction from the bottom surface of the sealing part 305 on the upper cover 301 side).
[State of Sealing Part when Upper Cover is Mounted on Optical Box]
As illustrated in
When the upper cover 301 is mounted on the optical box 219, the convex-shaped portions 307 and 309 of the sealing portion 305A are brought into press contact with the surfaces 219b and 219c of the optical box 219. With this, a repulsion force is generated in the sealing portion 305A. The generated repulsion force is exerted in the X axis direction and in the Z axis direction. However, when the upper cover 301 is deformed due to the repulsion force exerted in the Z axis direction, a gap is formed between the upper cover 301 and the optical box 219, thereby affecting the dust-proof performance. In this embodiment, the groove 306 formed in the sealing portion 305B adjacent to the sealing portion 305A works to allow a part of the sealing portion 305A to be relieved toward the groove 306 by a volume corresponding to the amount of compression due to elastic deformation of the sealing portion 305A in the X axis direction (hereinafter referred to as “volume relief”). As a result, the repulsion force is dissipated, and hence the repulsion force exerted in the Z axis direction is transformed into the repulsion force in the X axis direction. The groove 306 eliminates formation of the gap between the optical box 219 and the upper cover 301 due to the deformation of the upper cover 301, thereby being capable of preventing degradation in the degree of sealing and degradation in the dust-proof performance of the optical box 219.
[Difference in Repulsion Force in Accordance with Shapes of Sealing Part]
The sealing part 305 having the groove 306 according to this embodiment is described with reference to
Next,
As can be seen from the graph of
As can be seen from the graph of
[Position of Groove]
When the upper cover 301 is mounted on the optical box 219, the sealing part 305 illustrated in
As illustrated in
The groove 306 is formed in a periphery (vicinity) of each of the snap-fit parts 304 or screw-fastened portions which are locations where the upper cover 301 and the optical box 219 are fixed. In this embodiment, when the groove 306 is formed in a periphery of the snap-fit part 304, a length of the groove 306 in the Y axis direction (length in the longitudinal direction) is set to be longer by about 1 mm from each of both ends of the snap-fit part 304. Similarly, a length of the groove 306 in the Y axis direction formed in the vicinity of the screw-fastened portion is also set to be larger than a diameter of a screw by about 1 mm. Moreover, the groove 306 may be formed, for example, in an entire periphery of the sealing part 305, rather than in accordance with the locations where the upper cover 301 and the optical box 219 are fixed, to thereby reduce the repulsion force with respect to the upper cover 301. In this case, the repulsion force in the vicinity of the location where the upper cover 301 and the optical box 219 are fixed can be reduced, and a small amount of repulsion force generated at other locations can also be reduced. Whether to form the groove 306 partially in accordance with the fixed locations or entirely in the sealing part 305 may be selected in accordance with the configuration of the upper cover 301 or moldability of a molding member for use in formation of the sealing part 305.
As described above, according to this embodiment, degradation in the degree of sealing of the optical box due to deformation of the upper cover can be prevented with a simple configuration.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2015-161970, filed Aug. 19, 2015, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-161970 | Aug 2015 | JP | national |