The invention describes a microscope that is very fast image pick-up having several freely configurable detection channels and good 3D resolution.
To achieve high image rates in the confocal and/or 4D microscopy, measures are necessary for paralleling the sample scanning. To date, this has meant a restriction in the resolution in 2D or 3D by non-changing confocal apertures (e.g. with a Nipkow disk) and a limitation of the number of detectors used and their fixed spectral allocation (generally an externally mounted CCD camera). This considerably limits the possible applications and samples and/or the quality of the image results in 3D.
A new, fast confocal and/or 4D microscope according to the invention distinguishes itself by the combination of high image rates by paralleling the sample scanning and an adjustable confocal aperture. In addition internal detectors are used, whose arrangement is such that several selectable color splitters split a flexible configuration of the detection channels. In this way, new applications in image pick-up become possible, which previously were not possible with fast confocal or 4D microscope. In particular, a separation/mixing of superimposed spectral signals like fluorescence signals can be carried out with fast change of the detection channels and the detected wave length, as is described in principle in DE19915137A1 and U.S. Pat. No. 6,028,306.
The invention can also be used advantageously with multi-point illumination as in U.S. Pat. No. 6,028,306 and Nipkow arrangements as in U.S. Pat. No. 6,028,306, WO8807695 and EP539691A.
In the following, the invention will be described in more detail by way of example with reference to the drawings.
Reference is made to DE 19702753A1 for the general description of a point-by-point laser scanning microscope, which thus becomes a component of the present description.
The radiation source module 2 generates illumination radiation that is suitable for laser scanning microscopy, i.e. radiation that can trigger fluorescence. Depending on the application, the radiation source module has several radiation sources for this. In an embodiment shown, two lasers 6 and 7 are provided in the radiation source module 2, each of which has a light valve 8 and an attenuator 9 mounted after it and that couple their radiation over a coupling point 10 into a fiber optic cable 11. The light valve 8 acts as a beam deflector that can be used for beam shutoff without the operation of the laser in the laser unit 6 and/or 7 itself having to be turned off. The light valve 8 is designed as e.g. an AOTF that deflects the laser beam in the direction of a light trap that is not shown before coupling in the fiber optic cable 11 to turn the beam off.
In the example representation in
The radiation coupled in the fiber optic cable 11 is combined by means of movable collimation optics 12 and 13 over beam concentration mirrors 14, 15 and changed with respect to the beam profile in a beam-shaping unit.
The collimators 12, 13 provide that the radiation supplied by the radiation source module 2 to the scanning module 3 is collimated into an infinite beam path. In each case, this is advantageously carried out with a single lens that has a focusing function by sliding along the optical axis under the control of a central control unit (that is not shown) in that the distance between collimator 12, 13 and the respective end of the fiber optic cable can be changed.
The beam-forming unit, which will be explained in more detail below, generates, from the rotation-symmetrical, Gaussian profiled laser beam as is present after the beam concentration mirrors 14, 15, a line-shaped beam that is no longer rotation-symmetrical but is suitable in its cross section for generating a square illuminated field.
This illumination beam that is also referred to as line-shaped is used as the excitation radiation and will be guided over a main color splitter 17 and zoom optics, which are yet to be described, to a scanner 18. More details will be given later about the main color splitter, it only needs to be mentioned here that it has the function of separating the sample beam returning from the microscope module 4 from the excitation radiation.
The scanner 18 deflects the line-shaped beam in one or two axes, after which it is bundled by a scanning objective 19, as well as a tube lens and an objective of the microscope module 4 into a focus 22 that lies in a preparation and/or on a sample. The optical imaging is carried out in this process so that the sample will be illuminated with excitation radiation in a focal line.
This type of fluorescence radiation that is excited in a line-shaped focus goes over lens and tube lens of the microscope module 4 and the scanning objective 19 back to the scanner 18 so that in the return direction after scanner 18 a static beam is again present. Therefore, it is said that the scanner 18 de-scans the fluorescence radiation.
The main color splitter 17 allows the fluorescence radiation lying in wave length ranges other than that of the excitation radiation to pass through so that it is diverted over a deviation mirror 24 in detector module 5 and can then be analyzed. In the embodiment in
Each spectral channel has a slotted diaphragm 26 that creates a confocal or semi-confocal image with respect to sample 23 and whose size is specified by the depth of focus with which the fluorescence radiation can be detected. The geometry of the slotted diaphragm 26 thus determines the cross section plane within the (thick) preparation from which the fluorescence radiation is detected.
The slotted diaphragm 26 has a block filter 27 mounted after it that blocks undesirable excitation radiation that has gotten to the detector module 5. The line-shaped, fanned out radiation coming from a specific deep section that is separated in this way will then be analyzed by a suitable detector 28. The second spectral detection channel, which also comprises a slotted diaphragm 26a, a blocking filter 27a and a detector 28a, is also designed analogously to the color channel described.
The use of a confocal slot aperture in the detector module 5 is only used as an example. Naturally, a single point scanner can also be produced. The slotted diaphragms 26, 26a are then replaced by aperture diaphragms and the beam-forming unit can be eliminated. Also, for a construction such as this, all optics are designed with rotation symmetry. Then naturally instead of a single point scanning and detection, in principle any multi-point arrangements like scatter plots or Nipkow disk concepts can be used, which will be explained further using
The illumination arrangement with the aspherical unit 38 can be used for uniform filling of a pupil between a tube lens and a lens. In this way, the optical resolution of the lens can be fully utilized. This variation is thus also effective in a microscope system that scans single points or multiple points, e.g. in a line-scanning system (in the latter additionally to the axis, in which focusing on or in the sample is carried out).
The e.g. line-shaped conditioned excitation radiation is guided to the main color splitter 17. This is designed, in a preferred embodiment, as spectral-neutral separating mirrors according to DE 10257237 A1, whose disclosure is included here in its full scope. The term “color splitter” thus also includes splitter systems that do not work spectrally. Instead of the spectral independent color splitter that has been described, a homogeneous neutral splitter (e.g. 50/50, 70/30, 80/20, etc.) or a dichroic splitter can also be used. In this way, a selection is possible depending on the application, if the main color splitter is preferably provided with a mechanical device that makes change simple, e.g. by a corresponding splitter wheel that contains individual replaceable splitters.
A dichroic main color splitter is especially advantageous when coherent, i.e. directional beams will be detected, e.g. reflection, Stokes and/or anti-Stokes Raman spectroscopy, coherent Raman processes of a higher order, generally parametric non-linear optical processes like second harmonic generation, third harmonic generation, sum frequency generation, double photon and multi-photon absorption and/or fluorescence. Several of these methods of non-linear optical spectroscopy require the use of two or more laser beams that are superimposed in a collinear way. In this case, the beam concentration of beams from several lasers has proven to be especially advantageous. Basically, in fluorescence microscopy, widely available dichroic beam splitters can be used. Also, for Raman microscopy, it is advantageous to use holographic notch splitters or filters before the detectors for suppression of the Rayleigh scatter portion.
In the embodiment in
The cylinder telescope 37, which can also be operated with a motor and is mounted before the aspherical unit 38, works together with zoom optics 41. This has been selected in the embodiment in
If a zoom factor less than 1.0 is desired, the cylinder telescope 37 is automatically swiveled into the optical beam. It prevents the aperture diaphragm 42 from being incompletely illuminated when the zoom objective 41 is reduced. The swiveling cylinder telescope 37 thus guarantees that even with zoom factors less than 1, i.e. independent of the adjustment of zoom optics 41, an illumination line of a constant length will always be present at the location of the objective pupil. In comparison to the simple visual field zoom, laser power losses are thus prevented in the illumination beam.
Since when the cylinder telescope 37 is swiveled in, a jump in display brightness is unavoidable in the illumination line, a provision is made in the control unit (not shown) that the traversing speed of scanner 18 or an amplification factor of the detectors in detector module 5 is adapted accordingly with active cylinder telescope 37 in order to keep the display brightness constant.
In addition to the zoom optics 41 driven by a motor as well as the cylinder telescope 37 that can be activated with a motor, remote controlled adjusting elements are also provided in the detector module 5 of the laser scanning microscope in
In addition, a correction unit 40, which will be described briefly below, is provided for compensation.
The slotted diaphragm 26, together with round optics 44 mounted in front of it and the first cylinder optics 39 also mounted in front of it and the second cylinder optics mounted after it, forms a pinhole objective in detector arrangement 5, whereby the pinhole is implemented here by the slotted diaphragm 26. In order to prevent the undesirable detection of excitation radiation reflected in the system, the second cylinder lens 39 also has a blocking filter 27 before it that has suitable spectral properties to allow only desirable fluorescence radiation to get to detector 28, 28a.
A change in the color splitter 25 or the blocking filter 27 unavoidably causes a certain tipping or wedge error during swiveling. The color splitter can cause an error between sample area and slotted diaphragm 26, the blocking filter 27 can cause an error between the slotted diaphragm 26 and detector 28. In order to prevent the necessity of a recalibration of the position of the slotted diaphragm 26 and/or the detector 28, a plane parallel plate 40 is mounted between round optics 44 and the slotted diaphragm 26, i.e. in the image beam between sample and detector 28, which can be brought into different tipped positions under the control of a controller. For this purpose, the plane parallel plate 40 is mounted in an adjustable bracket.
Resonance scanners are described, for example, in Pawley, Handbook of Biological Confocal Microscopy, Plenum Press 1994, page 461ff.
If the scanner is controlled in such a way that it scans a field asymmetrically to the optical axis, i.e. to the rest position of the scanner mirror, an offset displacement OF of the selected ROI will be obtained in connection with a zoom effect. Because of the effect of the scanner 18 to descan, as already mentioned, and by the repeat passage through the zoom optics 41, the selection of the region of interest ROI in the detection beam path will again be lifted in the direction of the detector. In this way, a selection lying within the scan image SF can be made for the region of interest ROI. In addition, images can be obtained for different selections of the region of interest ROI, and these can be combined to a high resolution image.
If the goal is not only to move the selected range of interest ROI by an offset OF with respect to the optical axis, but additionally to rotate it, an embodiment is effective that provides an Abbe-König prism in a pupil in the beam path between main color splitter 17 and sample 23, which results in an image field rotation, as is known. Also, this will be lifted in the direction of the detector. Now images with different offset displacements OF and different rotation angles can be measured and then put together to make a high resolution image, for example according to an algorithm as is described in the publication Gustafsson, M., “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in “Three-dimensional and multidimensional microscopy: Image acquisition processing VII,” Proceedings of SPIE, Vol. 3919 (2000), pages 141-150.
As a change to the construction in
The zoom optics 41 correspond to the previously explained construction whereby naturally the scanner 18 becomes superfluous because of the Nipkow disk 64. However, it can still be provided if the selection of a region of interest ROI will be carried out as explained using
Another embodiment that can be considered is a multi-point scanning as described in U.S. Pat. No. 6,028,306, the disclosure of which is included here in its full scope in this regard. Here as well, a local resolution detector 28 is provided. The sample is then illuminated by a multi-point light source that is implemented by a beam expander with downstream micro-lens array, which illuminates a multi-aperture plate in such a way that a multi-point light source is implemented.
direction of the detector. In this way, a selection lying within the scan image SF can be made for the region of interest ROI. In addition, images can be obtained for different selections of the region of interest ROI, and these can be combined to a high resolution image.
arrangement of 2 internal detectors with a replaceable beam splitter for detection of several colors on a fast (paralleling) line scanner.
The use of a schematically represented line scanner (see
arrangement of an adjustable confocal slotted diaphragm for better 3D detection through optical section placement on a fast (paralleling) line scanner.
In this case, an adjustable slotted diaphragm is shown schematically, as an alternative or additionally to be able to vary the layer thickness in Z direction to change the spectral detection mode.
In the case of a beam multiplication with axial or lateral slot, instead of a dichroic beam splitter, a neutral splitter can also be used. The light paths that are offset to each other axially and/or laterally can be selectively directed to the slotted diaphragms of the detectors, for example by appropriate axial and/or lateral positioning.
The invention described represents an important expansion of the application possibilities of fast confocal laser scanning microscopes. The importance of such a further development can be understood from reading the standard cell biology literature and the fast cellular and subcellular processes1 described there and the testing methods used there with a large number of dyes2.
For example, see.:
The invention has especially great importance for the following processes and procedures:
Development of Organisms
The invention described is suitable, among other things, for the examination of development processes, which are mainly characterized by dynamic process in the range of tenths of a second to hours. Example applications on the level of symplasts and complete organisms are described here as an example:
This relates especially to the following focal points:
The invention described is excellently suited for the examination of intercellular transport processes, since in this case very small motile structures, e.g. proteins, have to be represented at high speeds (usually in the range of hundredths of a second). In order to record the dynamics of complex transport processes, such applications as FRAP with ROI bleaching are also often used. Examples of such studies are described here:
The invention described is especially suitable for the display of molecular and other subcellular interactions. In this case, very small structures must be displayed at high speed (in the range of hundredths of a second). In order to resolve the spatial position of the molecules necessary for the interaction, indirect techniques like FRET with ROI bleaching are also used. Example applications are described here:
The invention described is outstandingly well suited to the examination of most extremely fast signal transfer processes. These mostly neurophysiological processes make the highest demands of time resolution, since the activities mediated by ions proceed in the range of hundredths to less than thousandths of a section. Example applications of examinations in muscle or nervous systems are described here as an example:
Number | Date | Country | Kind |
---|---|---|---|
10 2004 034 981.9 | Jul 2004 | DE | national |