This application is based on application No. 11-266829 filed in Japan, the content of which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a light shutter device and a driving method thereof, and more particularly to a light shutter device which has light shutter elements made of a material with an electro-optical effect such as PLZT to write an image on a photosensitive recording medium and a method of driving such a device.
2. Description of Related Art
As means of writing an image (latent image) on a silver salt photographic paper or film or on a photosensitive member for electrophotography, there have been suggested various kinds of light shutter devices which employ light shutter elements made of a material with an electro-optical effect such as PLZT and which turn on and off the light shutter elements individually.
In such a light shutter device, when a voltage is applied to a PLZT light shutter element, the PLZT causes birefringence, and light which is incident to the element via a polarizer located before the element is emergent from an analyzer located after the element. The polarizer and the analyzer are arranged to cross Nicol (are arranged in such a way that the direction of polarization of the polarizer and the direction of polarization of the analyzer will cross at 90 degrees to each other). The plane of polarization of the polarizer and the plane of polarization of the analyzer are at 45 degrees to the direction of electric field acting on the light shutter element.
In order to write a full-color image, color filters of R, G and B, which are the three primary colors, are switched in order during irradiation of the light shutter elements, so that a silver salt film is exposed to light of R, light of G and light of B separately line by line.
Incidentally, as
In Japanese Patent Laid Open Publication No. 10-333107, the Japanese applicants suggested a device which switches the voltage applied to the driver IC for the light shutter elements in synchronization with the light incidence of the three primary colors. However, the switching of a high voltage to be applied to the driver IC is influenced by the capacity of a bypass capacitor or the like, it is difficult to switch the voltage at a high speed.
An object of the present invention is to provide a light shutter device in which the driving voltage of light shutter elements can be speedily switched between values suitable for light of the three primary colors and a method of driving such a device.
Another object of the present invention is to provide a light shutter device in which not only the above object can be achieved but also variation of the half-wave voltages during continuous long-time operation is minimized so as to obtain fixed light transmittance and a method of driving such a device.
Further, another object of the present invention is to provide a light shutter device in which not only the above objects can be achieved but also the driving voltage of light shutter elements has a good rising characteristic and a method of driving such a device.
In order to attain the objects, a light shutter device according to the present invention comprises: a light source which emits light of a plurality of colors switching from one to another in order; a plurality of light shutter elements made of a material with an electro-optical effect, said light shutter elements controlling in accordance with image data whether to transmit or not to transmit the light which has been emitted from the light source and is incident to the light shutter elements; and a driver for driving the light shutter elements, said driver altering a driving condition in synchronization with switch of the colors of the light source.
In the light shutter device according to the present invention, light of a plurality of colors is incident to a plurality of the light shutter elements with the colors switched from one to another in order, and a driving voltage is applied between each individual electrode and a common electrode in accordance with image data. In synchronization with switch of the colors, a driving condition of the light shutter elements is altered. Specifically, to the individual electrodes, a voltage is applied fixedly during radiation of light of all the three primary colors. The voltage is, for example, the highest of the respective half-wave voltages for red, green and blue, that is, the half-wave voltage Vr for red. On the other hand, to the common electrode, in synchronization with color switch away R, G and B, optimal voltage for the colors, for example, 0V, Vr-Vg and Vr-Vb are applied.
In the driving method according to the present invetion, merely by altering the potential of the common electrode within a low level, the voltage applied to the light shutter elements can be switched between optimal voltages (half-wave voltages) for the three primary colors at a high speed. Consequently, a full-color image of high quality can be formed.
In the light shutter device according to the present invention, preferably, the electric field acting on the light shutter elements is inverted at specified cycles. If a unidirectional electric field continuously acts on the light shutter elements, fatigue of the light shutter elements occurs, that is, the half-wave voltages of the light shutter elements vary. By inverting the electric field at specified cycles, such fatigue can be prevented.
Moreover, in the light shutter device according to the present invention, it is preferred to superimpose a spike pulse voltage at a start of applying a driving voltage to the light shutter elements. Thereby, the rising characteristic of the driving voltage can be improved, which brings a possibility of lowering the driving voltage and improves the picture quality.
These and other objects and features of the present invention will be apparent from the following description with reference to the accompanying drawings, in which:
Embodiments of a light shutter device and a driving method thereof are described with reference to the accompanying drawings.
Referring to
The color filter 3 is a rotary disk which has three filter sections which transmit light of the three primary colors, namely, R, G and B, respectively. The color filter 3 is driven to rotate in synchronization with one-line writing by use of light shutter elements, which will be described later. The optical fiber array 4 is a bundle of a large number of optical fibers. Light emitted from the light source 1 is incident to the optical fiber array 4 through its incidence end 4a via the heat filter 2 and is emergent therefrom linearly through the other end 4b. The polarizer 5 and the analyzer 7 are arranged to cross Nicol, and the plane of polarization of the polarizer 5 and the plane of polarization of the analyzer 7 are at 45 degrees to the direction of electric field applied to the light shutter elements.
The light shutter module 6 has a plurality of PLZT light shutter chips 12 and a plurality of driving circuits 13 on a ceramic substrate 11 with a slit or a glass substrate. In each of the light shutter chips 12, a large number of light shutter elements, each of which corresponds to a pixel, are formed. As
PLZT, as is well known, is a light-transmitting ceramic material which has a large Kerr constant and an electro-optical effect. Light which is polarized linearly by the polarizer 5 is incident to each of the light shutter elements 41. At this time, when the voltage applied to the light shutter element 41 is turned on, the plane of polarization is rotated, and the light is emergent from the analyzer 7. When the voltage is off, the plane of polarization is not rotated, and the light is cut by the analyzer 7.
Thus, by turning on and off the voltages applied to the light shutter elements 41 individually, the light is transmitted or cut pixel by pixel, and the light emergent from the analyzer 7 is imaged on a photosensitive member (not shown) via the imaging lens array 8. The light shutter elements 41 are turned on and off in accordance with image data (main scanning) line by line, while the photosensitive member is moved in a direction (sub scanning), and thereby, a two-dimensional image is formed on the photosensitive member.
As
Referring back to
The common electrode driving circuit 35 comprises a high-speed/high-voltage amplifier which amplifies a driving waveform inputted thereto with a specified gain. In this embodiment, the amplifier amplifies the inversion signal to the level of the driving voltage and applies the amplified signal to the common electrode 42. The common electrode driving circuit 35, at the time of non-inversion, grounds the common electrode 42 and, at the time of inversion, applies a driving voltage to the common electrode 42.
With the driving circuit 13 of this structure, when the inversion signal is off, the common electrode 42 has the ground potential, and in this state, by applying a driving voltage to the individual electrodes 43, the light shutter elements 41 are turned on. The electric field at this time is referred to as a normal electric field (non-inverted electric field). On the other hand, when the inversion signal is on, the individual electrodes 43 have the ground potential, and in this state, by applying a driving voltage to the common electrode 42, the light shutter elements 41 are turned on. The electric field at this time is referred to as a reverse electric field (inverted electric field).
In the example of
This driving method in which the electric field applied to the light shutter elements 41 is inverted at specified cycles are referred to as an electric field inversion method. On the other hand, it is possible to drive the light shutter elements 41 by applying a driving voltage to the individual electrodes 43 while connecting the common electrode 42 to the ground at all times. This driving method is referred to as a unidirectional electric field method.
As
First, the high-voltage driver which drives the individual electrodes is set to apply the highest voltage Vr of the half-wave voltages Vr, Vg and Vb (see
Thereby, to the light shutter elements, the voltage Vr is applied in writing R data, the voltage Vg is applied in writing G data, and the voltage Vb is applied in writing B data. In this way, high-speed voltage switch is possible.
In the pixels in which the image data are 0 (when the corresponding light shutter elements are to be turned off), voltages of Vg-Vr and Vb-Vr are applied to the light shutter elements in the duration of G data writing and in the duration of B data writing, respectively. However, as is apparent from
As
When a non-inverted electric field is to act, the voltage application is carried out in the same way as described in the first embodiment. When an inverted electric field is to act, to the high-voltage driver which drives the individual electrodes, the highest voltage Vr of the half-wave voltages Vr, Vg and Vb for the colors R, G and B is applied. Also, the inversion signal is turned on, so that the polarity of image data is inverted. The voltage applied to the common electrode is switched between Vr, Vg and Vb in synchronization with switching between R, G and B.
Thereby, to the light shutter elements, a voltage of −Vr is applied in writing R data, a voltage of −Vg is applied in writing G data and a voltage of −Vb is applied in writing B data. In this way, high-speed voltage switch is possible.
In the pixels in which the image data are 0 (when the corresponding light shutter elements are to be turned off), voltages of Vr-Vg and Vr-Vb are applied to the light shutter elements in the duration of G data writing and in the duration of B data writing, respectively. However, as has been described in the first embodiment, the voltages cause substantially no problems.
As
At the time of starting application of a driving voltage, a spike pulse voltage is applied. The waveform of the spike pulse voltage shall be designed to have a voltage within a range from 5V to 30V and to have a pulse width within a range from 0.1 μsec. to 10 μsec. in accordance with the specification of the light shutter module. By superimposing a spike pulse voltage in synchronization with a start of driving voltage application, the rising characteristic of the driving voltage can be improved, and it becomes possible to set the driving voltage to a lower value.
As
As
Thereby, to the light shutter elements, the voltage Vr is applied in writing R data, the voltage Vg is applied in writing G data and the voltage Vb is applied in writing B data. In this way, high-speed voltage switch is possible.
In the pixels in which the image data are 0, to the corresponding light shutter elements, a voltage of Vr-Vb is applied in the duration of R data writing, and a voltage of Vg-Vb is applied in the duration of G data writing. However, as has been described in connection with the first embodiment, the voltages cause substantially no problems.
As
Thereby, to the light shutter elements, the voltage Vr is applied in writing R data, the voltage Vg is applied in writing G data, and the voltage Vb is applied in writing B data. In this way, high-speed voltage switch is possible.
In the pixels in which image data are 0, to the corresponding light shutter elements, a voltage of Vr-Vg is applied in the duration of R data writing, and a voltage of Vb-Vg is applied in the duration of B data writing. However, as has been described in connection with the first embodiment, the voltages cause substantially no problems.
Although the present invention has been described in connection with the preferred embodiments above, it is to be noted that various changes and modifications are possible to those who are skilled in the art. Such changes and modifications are to be understood as being within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
11-266829 | Sep 1999 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4902111 | Matsubara et al. | Feb 1990 | A |
4932761 | Shingaki et al. | Jun 1990 | A |
5093676 | Matsubara et al. | Mar 1992 | A |
5155618 | Matsubara et al. | Oct 1992 | A |
6081321 | Miyagawa | Jun 2000 | A |
Number | Date | Country |
---|---|---|
10-175326 | Jun 1998 | JP |
10-333107 | Dec 1998 | JP |