The present document incorporates by reference the entire contents of Japanese priority document, 2006-070534 filed in Japan on Mar. 15, 2006.
1. Field of the Invention
The present invention relates to a light source device, an optical scanning device that includes the light source device, and an image forming apparatus that includes the optical scanning device.
2. Description of the Related Art
Optical scanning devices relating to laser printers or the like are widely known. Generally, in such an optical scanning device, a light beams emitted from a light source are deflected by a deflector. Through an optical scanning and imaging system such as an fθ lens, the light beams are directed to and focused on a surface to be scanned (hereinafter, “scanned surface”). Accordingly, a light spot is formed on the surface to scan the surface in the main-scanning direction. The surface is, for example, a photoconductive surface of a photoreceptor of an electronic imaging-forming apparatus.
An example of full-color image forming apparatuses includes four photoreceptors arranged along the direction in which a recording sheet is transferred, a plurality of light source devices that corresponds to the photoreceptors, and a plurality of optical scanning and imaging systems that corresponds to the photoreceptors. Light beams emitted from the light source devices are deflected by a deflector and then simultaneously scan scanned surfaces of the photoreceptors through the optical scanning and imaging systems. Accordingly, an electrostatic latent image is formed on each of the scanned surfaces. The electrostatic latent images are visualized by an image developer using developers of different colors such as yellow, magenta, cyan, and black. Thereafter, the resultant images are sequentially transferred onto a single recording sheet so that the images overlap, and then are stabilized. In this manner, a color image is obtained.
The imaging forming apparatus that includes at least two combinations of optical scanning devices and photoreceptors to obtain a two-color image, multi-color image or full-color image is known as tandem-type image forming apparatuses. The tandem-type image forming apparatus may include a single deflector that corresponds to all of a plurality of photoreceptors.
With respect to tandem-type image forming apparatuses each including a single deflector, for example, Japanese Patent No. 3295281 discloses an optical scanning device that includes a deflector and a plurality of optical scanning units that is arranged along the sub-scanning direction. The light beams substantially parallel and separated in the sub-scanning direction are incident on the deflector, and then, each of the light beams passes through a corresponding one of the optical scanning units to scan a corresponding one of scanned surfaces. Japanese Patent Application Laid-open Nos. 2001-4948, 2001-10107, and 2001-33720 disclose a technology in which a plurality of light beams directed toward different scanned surfaces is incident on one side of the deflector. After the light beams pass through lenses L1 and L2, each of the light beams passes through corresponding one of lenses L3.
When a single deflator that deflects a plurality of light beams is used instead of a plurality of deflectors, an image forming apparatus can be miniaturized.
The number of deflectors of an optical scanning device can be reduced in a full-color image forming apparatus that includes four scanned surfaces (photoreceptors) of different colors such as cyan, magenta, yellow, and black. However, the size of the deflector such as a polygon mirror increases in the sub-scanning direction because light beams directed to the photoreceptors are substantially parallel and separated in the sub-scanning direction when being incident on the deflector. In general, a polygon mirror costs high compared to other optical elements that constitute an optical scanning device. For such reasons, cost reduction and miniaturization of the optical scanning device are difficult.
For cost reduction, Japanese Patent Application Laid-open No. 2003-5114 discloses an optical scanning device of a color image forming apparatus having an oblique-incidence optical system that includes a single deflector. The deflector has a deflecting-reflecting surface on which each of a plurality of light beams is incident at an angle with respect to the sub-scanning direction.
In the oblique-incidence optical system, light beams are deflected and reflected on the deflecting-reflecting surface. Each of the light beams is directed to a corresponding one of the scanned surfaces through a corresponding one of deflecting mirrors. The angles, at which the light beams are incident on the deflecting-reflecting surface, allow the light beams to be separated by the deflecting mirrors.
The oblique-incidence optical system assures separation of adjacent light beams directed to the different scanned surfaces without an increase of the size of the deflector. In other words, an increase in the number of polygon mirrors and the thickness of the polygon mirror.
However, in the oblique-incidence optical system, large scanning line curvature may occur. The amount of the scanning line curvature varies depending on the angle of each light beam to the sub-scanning direction, at which the light beam is incident on the deflecting-reflecting surface. The curvature causes a difference in color of an image obtained by overlapping electrostatic latent images formed by the light beams and visualizing them using different color toners. The light beams are obliquely incident on a scanning lens, which increases wavefront aberration and deteriorates optical performance at a peripheral image height. Thus, a beam-spot diameter increases, which lowers image quality.
As a method of correcting the large scanning line curvature caused in the oblique-incidence optical system, for example, Japanese Patent Application Laid-open No. H11-14932 discloses an optical scanning and imaging system in which a lens-surface tilts in a sub-scanning direction is changed in a main-scanning direction to correct scanning line curvature. Japanese Patent Application Laid-Open No. H11-38348 discloses an optical scanning and imaging system in which a reflection-surface tilts in a sub-scanning direction is changed in a main-scanning direction to correct scanning line curvature.
Japanese Patent Application Laid-Open No. 2004-70109 discloses a technology in which a light beam obliquely incident on a deflector passes outside the axis of a scanning lens, and scanning lines are aligned with a surface by which the amount of asphericity of the non-generatrix of the scanning lens changes along the main-scanning direction. With the conventional technology, scanning line curvature can be corrected with a single scanning lens. However, Japanese Patent Application Laid-Open No. 2004-70109 does not refer to an increase in beam-spot diameter resulting from increase of wavefront aberration.
The skew rays of the oblique-incidence optical system tend to increase wavefront aberration, and thus, increase a beam-spot diameter near the ends of a scanning line. To perform scanning with beam spots in high density, the beam spots need to be prevented from being larger. While the conventional technologies are capable of correcting the scanning line curvature, the wavefront aberration is not sufficiently corrected.
As an optical scanning device for correcting both scanning line curvature and wavefront aberration, Japanese Patent No. 3450653 discloses an optical scanning device that includes an optical scanning and imaging system that includes a plurality of asymmetric-surface lenses. The shape of a generatrix that connects the vertices of non-generatrices on the lens surfaces of the rotating asymmetric lenses is curved in the sub-scanning direction.
However, because each of the lenses corresponds to each of light beams, an increased number of lenses are necessary when the optical scanning and imaging system is used for a tandem-type optical scanning device.
When a plurality of light beams directed to different scanned surfaces is incident on the same lens, scanning line curvature and wavefront aberration of one of the light beams can be prevented by curving the generatrix. However, it is difficult to reduce scanning line curvature and wavefront aberration caused by the other light beams.
Because of curvature of a lens in the sub-scanning direction, light beams incident on the lens may shift or tilt in the sub-scanning direction due to an error that occurs when the optical elements are processed or assembled. In such a case, the scanning line curvature is caused from refraction of the lens. Accordingly, prevention of color difference that is originally thought to be possible cannot be achieved.
It is also difficult to prevent wavefront aberration and obtain a preferred beam-spot diameter stably because the angles of the beams on the curved surface vary and thus the amount of skew of the light beams changes. Accordingly, the image quality deteriorates.
In addition, when the angles of incidence are changed as described, the light beams may not precisely pass through or be deflected by other optical elements such as scanning lenses or deflecting mirrors. Consequently, the beam-spot diameter is changed, and further, the light beams are prevented from reaching the scanned surfaces.
The above-described inconveniences are solved by accurately processing and assembling the optical elements. However, the accurate processing and assembly increase the cost of the optical elements and assembly time.
When the angles of incidence of the light beams on the deflecting-reflecting surface are increased in the oblique-incidence optical system, various types of aberrations are increased, which deteriorates optical performance. Specifically, the beam-spot diameter changes and the scanning line curvature increases. For this reason, it is preferable that the angles of incidence be smaller.
However, smaller angles of incidence make it difficult to cause each of light beams to be directed to a corresponding one of scanned surfaces. The light beams are separated with the minimum intervals at a separation point such that the light beams are directed to and incident on different deflecting-reflecting surfaces at smaller angles. However, when the angles of incidence are changed, some of the light beams may not precisely pass through or be deflected by the optical elements, and the beam-spot diameter increases. Even when the light beams precisely pass through or are deflected by the optical elements, the beam-spot diameter changes, and preferred beam spots cannot be obtained.
Japanese Patent Application Laid-open No. 2004-271906 discloses a light source device of,an oblique-incidence optical system. However, the light source device cannot prevent the change in angles of incidence due to the processing error or assembly error. Coupling lens can be adjusted in the sub-scanning direction after all optical elements are assembled. However, in this case, attachment or adjustment of the light source device is complicated, and the time required for adjustment increases.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
According to an aspect of the present invention, a light source device includes a plurality of light sources, each light source configured to emit a light beam, a plurality of lenses, each lens corresponding to each of the light sources, and a holding member that integrally holds the light sources and the lenses such that adjacent light sources are separated in a sub-scanning direction and adjacent light lenses are separated in the sub-scanning direction. The light beams emitted from the light sources are not parallel. The holding member holds the light sources and the lenses such that a positional relationship between each of the light sources and a corresponding one of the lenses is adjustable.
According to another aspect of the present invention, an image forming apparatus includes an image carrier that carries an image on a surface thereof, and an optical scanning device that includes a light source device. The light source device includes a plurality of light sources configured to emit light beams, a plurality of lenses corresponding to the light sources, and a holding member that integrally holds the light sources and the lenses such that adjacent light sources are separated in a sub-scanning direction and adjacent light lenses are separated in the sub-scanning direction. The light beams emitted from the light sources are not parallel, and scan the surface of the image carrier to form an image on the surface. The holding member holds the light sources and the lenses such that a positional relationship between each of the light sources and a corresponding one of the lenses is adjustable.
According to still another aspect of the present invention, an image forming apparatus includes an image carrier that carries an image on a surface thereof, and an optical scanning device including a plurality of light source devices that are separated in a sub-scanning direction, a deflector that includes a deflecting-reflecting surface for deflecting light beams emitted from the light source devices, and an optical scanning system that causes the light beams deflected by the deflecting-reflecting surface to be focused on different surfaces to be scanned. Each of the light source devices includes a plurality of light sources, each light source configured to emit a light beam, a plurality of lenses, each lens corresponding to each of the light sources, and a holding member that integrally holds the light sources and the lenses such that adjacent light sources are separated in a sub-scanning direction and adjacent light lenses are separated in the sub-scanning direction. The light beams emitted from the light sources are not parallel, and scan the surface of the image carrier to form an image on the surface. The holding member holds the light sources and the lenses such that a positional relationship between each of the light sources and a corresponding one of the lenses is adjustable.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments of the present invention are described below with reference to the accompanying drawings.
The light source device further includes a spring 7, a screw insertion hole 8, and a platy elastic member 9. The spring 7 is arranged in a wide portion 8a of the screw insertion hole 8, and is wound around the first screw 5a to urge the first screw 5a upward. The elastic member 9 is interposed between the attachment member 4 and the light-source holding member 2 fixed to the attachment member 4 with the second screw 5b. A step 10 is formed on the side of the light-source holding member 2 in a portion between the light-source holding member 2 and the attachment member 4. In the embodiment, a space 11 is formed in a portion where the elastic member 9 is interposed between the light-source holding member 2 and the attachment member 4. The step 10 can be provided on the side of the attachment member 4.
Each of the coupling lenses 6 faces a corresponding one of the semiconductor lasers 1 such that divergent light beams are emitted from the semiconductor lasers 1 in predetermined directions as desired luminous fluxes. Each of the coupling lenses 6 is fixed to the lens fixing member 3 by filling the lens fixing member 3 with ultraviolet (UV) curable adhesive in the hole 4a. Although each of the coupling lenses 6 is fixed to the lens fixing member 3 at one fixing point A in this embodiment, each of the coupling lenses 6 can be fixed at a plurality of points, for example, three points. The through holes 2a for holding the semiconductor lasers 1 are arranged at an angle, and separated in the sub-scanning direction.
The light-source holding member 2 is fixed to the attachment member 4 with the first screw 5a and the second screw 5b at two points along the sub-scanning direction. The second screw 5b is urged upwards because of the presence of the elastic member 9. Depending on the fastening force of the second screw 5b, the light-source holding member 2 can tilt in the sub-scanning direction. In this manner, the angles of the light beams emitted from the light source device in the sub-scanning direction are adjustable.
Even when the light-source holding member 2 tilts by adjustment, the light-source holding member 2 can be fixed to and held by the attachment member 4 via the spring 7 because the first screw 5a is urged upwards by the spring 7.
It suffices that the first screw 5a side without the elastic member 9 allows the light-source holding member 2 to tilt in the sub-scanning direction. For example, a portion of the light-source holding member 2 can have a smaller thickness and be flexible.
The effects of the mechanism for adjusting the angle of the light-source holding member 2 in the sub-scanning direction are described below.
In general, all optical element of the optical scanning device are hardly processed and assembled in an ideal state. For example, upon installation of the light source device, when a deflecting mirror in front of a deflector such as a polygon mirror tilts in the sub-scanning direction, angles of light beams from the light source device, which have already been adjusted, change in the sub-scanning direction.
As described, in an oblique-incidence optical system, oblique-incidence angle is preferably set to be small to prevent deterioration in wavefront aberration and scanning line curvature, and miniaturize the optical scanning device. The light beams are separated with the minimum intervals at a separation point such that the light beams are directed to different scanned surfaces.
For this reason, when the angles of the light beams in the sub-scanning direction change, the light beams may not be deflected precisely by deflecting mirrors, which direct the light beams to different scanned surfaces. The imprecise deflecting increases the sizes of beam spots and prevents achieving stable optical performance and image quality. The optical performance may be lowered as well when the light beams pass through a scanning lens at points largely different from predetermined points.
Such optical elements, for example, a deflecting mirror can be larger along the sub-scanning direction so as to correspond to changes in the angles of the light beams in the sub-scanning direction. However, the larger mirror results in increased cost of the mirror and increased size of the optical scanning device, and optical performance may deteriorate due to an increase in the oblique-incidence angle.
The above inconveniences can be solved easily in the light source device according to the embodiment because the angles of the light beams in the sub-scanning direction are adjustable by the fastening force of the screw. In other words, even when angles of the light beams change in the sub-scanning direction due to an error that occurs in assembly of optical elements, the light source device can be adjusted in a direction to offset the change. In this manner, stable optical performance can be realized without high assembling accuracy.
As described, a change in angles of incidence on the scanning lens causes deterioration in the wavefront aberration, and thus, a stable diameter of beam spots cannot be obtained. The change also causes scanning line curvature and color shift in an image in a tandem-type image forming apparatus described below, which lowers image quality.
The change in angles of incidence in the oblique-incidence optical system is larger than that in an optical system in which parallel light beams are incident on a deflecting-reflecting surface of a deflector. However, in the light source device according to the embodiment, the angles of the light beams in the sub-scanning direction can be adjusted easily, and hence, deterioration in the wavefront aberration and the increase of the scanning line curvature are prevented.
With the light source device according to the embodiment that includes the light-source holding member 2 holding the semiconductor lasers 1 as shown in
The angle adjustment is easier with the light source device shown in
As the elastic member 9, any elastic material such as a spring or rubber can be used as long as the desired effect is obtained.
As shown in
The characteristics of the oblique-incidence optical systems are described with reference to
Light beams L emitted from a plurality of light source devices (not shown) is obliquely incident on a deflecting-reflecting surface of the polygon mirror 22. The light beams L are incident on the deflecting-reflecting surface on both sides (regions A and B shown in
With a conventional simplex optical scanning device in which all light beams are parallel to the normal of the deflecting-reflecting surface, excellent optical performance can be realized easily. However, as shown in
In the optical scanning device according to the embodiment, because the light beams L are incident on the polygon mirror 22 at an angle (in the sub-scanning direction) with respect to the normal of a deflecting-reflecting surface of the polygon mirror 22. Accordingly, the polygon mirror 22 has a smaller height h. Thus, it is possible to obtain the polygon mirror 22 of a single polyhedron forming the deflation-reflecting surfaces having a smaller thickness in the sub-scanning direction. Hence, the inertia of the polygon mirror 22 can be reduced and the start time can be shortened.
According to the embodiment, the light beams L intersect in the sub-scanning direction near the deflecting-reflecting surface of the polygon mirror 22. Therefore, the adjacent light beams L are reflected on the deflecting-reflecting surface at spots close to each other in the sub-scanning direction. For this reason, the polygon mirror 22 can have the minimum height.
The smaller height can be realized also in a duplex optical scanning device shown in
In the optical-scanning device shown in
The optical elements in front of the defector of the simplex optical scanning system are described.
In the simplex optical scanning system, as shown in
For the light beams L, at least four light sources are necessary. If the light sources are arranged with a spacing in the sub-scanning direction, the semiconductor lasers 1 or the coupling lenses 20 interfere in the sub-scanning direction. Accordingly, the incidence angles increase, and thus it is difficult to miniaturize the optical scanning device and realize the stable optical performance.
For this reason, it is preferable in the embodiment that light source devices 28 and 29, each including two light sources arranged with a spacing in the sub-scanning direction as described in connection with
The light beams are emitted from the light sources preferably at combinations of angles (A) and (B) shown in
It is further preferable that all the light beams L intersect near the deflecting-reflecting surface.
The intersection of the light beams is described below with reference to
Specifically, each of reference numerals D1 and D1′ indicates a position of the deflecting-reflecting surface where a light beam L emitted from a semiconductor laser 1-1 reaches a point P1-1 on the scanned surface of the corresponding photoreceptor 25, the point P1-1 corresponding to a certain image height. Each of reference numerals D2 and D2′ indicates a position of the deflecting-reflecting surface where a light beam L emitted from a semiconductor laser 1-2 reaches a point P1-2 on the scanned surface of the corresponding photoreceptor 25, the point P1-2 corresponding to the image height.
The light beams L are incident on the polygon mirror 22 while being separated by Δα° as shown in
The light beams L shown in
Meanwhile, the light beams L that intersect near the deflecting-reflecting surface are directed along substantially the same light path, and accordingly, all the light beams L have similar optical characteristics. Even when the optical elements, on which the light beams L are incident after being incident on the polygon mirror 22, are not positioned appropriately and thus the writing positions of the light beams L changes in the main scanning direction, the amounts of the change are almost the same. Accordingly, it is possible to prevent offset in the writing positions of the light beams L in the main scanning direction.
As shown in
The optical scanning device according to the embodiment can include, as a light source, a multi-beam light source device that emits a plurality of light beams which simultaneously scans corresponding scanned surfaces. Examples of the multi-beam light source device include a semiconductor laser array having a plurality of light emitting points, and a multi-beam light source device that includes multiple light sources, each having a single light emitting point or a plurality of light emitting points. With the multi-beam light source device, a high-speed and high-density optical-scanning device and an image forming apparatus can be realized.
As shown in
The base member 33 includes a pair of semicircular attachment-guiding surfaces 33-1. Collimating lenses 37 and 38 are attached with their circumferential surfaces along the attachment-guiding surfaces 33-1, respectively, to adjust the direction, in which light beams are directed, such that divergent light beams that are emitted from light emitting points are parallel.
By arranging a plurality of the base members 33 to be held by the light-source holding member 2 shown in
The base member 33 can have the mechanism of the light-source holding member 2 so that angles of both the base member 33 and the light-source holding member 2 in the sub-scanning direction can be adjusted.
The semiconductor laser used in the embodiment can be an array of semiconductor lasers, each having a light emitting point, or a single semiconductor laser that emits a plurality of light beams.
An image forming apparatus that includes the optical scanning device according to the embodiment is described with reference to
The image forming apparatus includes a sheet cassette 41 that are horizontally arranged at a lower part of the image forming apparatus, and a transfer belt 42. A transfer sheet (not shown) that is fed from the sheet cassette 41 is transferred by the transfer belt 42. Above the transfer belt 42, photoreceptors 43Y for yellow, 43M for magenta, 43C for cyan, and 43K for black are arranged at equal intervals in this order from the upstream side in the direction in which the transfer sheet is transferred. The photoreceptors 43Y, 43M, 43C and 43K have the same diameter. Around the photoreceptors 43Y, 43M, 43C and 43K, processing units for electrographic process are arranged in order. For example, around the photoreceptor 43Y, a charger 44Y, an optical scanning system 45Y, a developing device 46Y, a transfer charger 47Y and a cleaning unit 48Y are arranged in order. Similarly, such processing units are arranged on each of the photoreceptors 43M, 43C and 43K.
In the embodiment, the surfaces of the photoreceptors 43Y, 43M, 43C and 43K are scanned or radiated for respective colors, and optical scanning systems 45Y, 45M, 45C and 45K are arranged in one-to-one correspondence with the photoreceptors 43Y, 43M, 43C and 43K. Note that a scanning lens L1 is commonly used in the optical scanning systems 45Y, 45M, 45C and 45K.
Around the transfer belt 42, resist rollers 49 and a belt charger 50 are arranged in the upstream of the photoreceptor 43Y in the rotation direction of the transfer belt 42. In the downstream of the photoreceptor 43K, a belt separation charger 51, a discharging charger 52 and a cleaning unit 53 are arranged in order. A fixing unit 54 is arranged in the downstream of the belt separation charger 51. A sheet-discharging roller 56 is arranged to discharge a transfer sheet that has an image fixed thereon to a tray 55.
In the image forming apparatus, full-color mode printing (a plurality of colors is used) is performed in the following manner. Light beams L are emitted from the optical scanning devices 45Y, 45M, 45C and 45K according to image signals corresponding to colors of yellow, magenta, cyan and black. Each of the light beams L scans a corresponding one of the surfaces of the photoreceptors 43Y, 43M, 43C and 43K, and thus, latent images are formed on the surfaces. The latent images are then developed by developing units, such as the developing device 46Y, to form toner images with color toners. Thereafter, the toner images are sequentially transferred to a transfer sheet that is transferred on the transfer belt 42 by transfer chargers, such as the transfer charger 47Y, and the like. Accordingly, the toner images overlap and a full-color image is formed on the transfer sheet. The full-color image is fixed by the fixing unit 54 and is then discharged to the tray 55 by the sheet-discharging roller 56.
When the optical scanning systems 45Y, 45M, 45C and 45K has the configuration of the oblique-incidence optical system according to the embodiment that is advantageous for cost reduction, low power consumption and the miniaturization of the optical scanning device, changes in the angles of light beams in the sub-scanning direction resulting from the influence of assembly error or processing error can be reduced. Thus, the scanning line curvature and deterioration in wavefront aberration can be reduced as well. Accordingly, the image forming apparatus can achieve excellent and stable image quality.
Incidentally, a duplex scanning device has the same configuration as previously descried for the simplex scanning device in the embodiment.
As set forth hereinabove, according to an embodiment of the present invention, the angles of light beams in a sub-scanning direction are adjustable by simply tilting a light-source holding member with respect to the sub-scanning direction. Thus, stable optical performance can be realized.
Moreover, changes in the angles of the light beams can be reduced, which suppresses the scanning line curvature and deterioration in wavefront aberration. Thus, an optical scanning device can be miniaturized while excellent and stable optical performance is achieved.
Furthermore, an image forming apparatus with low power consumption can be realized at low cost, which achieves excellent and stable image quality.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-070534 | Mar 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6621512 | Nakajima et al. | Sep 2003 | B2 |
6813051 | Suzuki et al. | Nov 2004 | B2 |
6987593 | Hayashi et al. | Jan 2006 | B2 |
7050082 | Suzuki et al. | May 2006 | B2 |
7050210 | Atsuumi et al. | May 2006 | B2 |
7088484 | Hayashi et al. | Aug 2006 | B2 |
7154651 | Atsuumi et al. | Dec 2006 | B2 |
7161724 | Miyatake | Jan 2007 | B1 |
20030011830 | Miyatake | Jan 2003 | A1 |
20040184127 | Nakajima et al. | Sep 2004 | A1 |
20040240000 | Miyatake et al. | Dec 2004 | A1 |
20050093962 | Miyatake et al. | May 2005 | A1 |
20050094234 | Miyatake et al. | May 2005 | A1 |
20050200910 | Kanoshima et al. | Sep 2005 | A1 |
20060000990 | Hayashi et al. | Jan 2006 | A1 |
20060203264 | Miyatake | Sep 2006 | A1 |
20070002417 | Hirakawa et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
09-054263 | Feb 1997 | JP |
10-073778 | Mar 1998 | JP |
11-014932 | Jan 1999 | JP |
11-038348 | Feb 1999 | JP |
2001-010107 | Jan 2001 | JP |
2001-033720 | Sep 2001 | JP |
2003-5114 | Jan 2003 | JP |
2001-4948 | Jul 2003 | JP |
2004-070109 | Mar 2004 | JP |
2004-271906 | Sep 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070216754 A1 | Sep 2007 | US |