This invention relates generally to a color flat panel display (FPD). More particularly, a light source system for a color FPD is provided.
Color FPDs having integral light sources are known as FPD modules. Specifically, there are three general categories of color FPDs: reflective color FPDs, transmissive color FPDs, and transreflective color FPDs.
Reflective color FPDs typically require a front light source or front light pipe in order to be viewed in low-light conditions. Such front light sources, however, typically decrease the overall reflection of the FPD, thus causing the FPD to appear “washed out.” In addition, such light sources add to the overall thickness of the FPD module, again making them non-ideal for use in small electronic devices, such as mobile devices.
Transmissive color FPDs typically require a rear light source, which remains continuously on while the FPD is in use. Transmissive color FPD modules thus consume relatively large amounts of power and add a significant amount of overall thickness to the FPD module. Moreover, transmissive color FPD modules are typically difficult to read in strong ambient lighting conditions, such as sunlight.
Transreflective color FPDs combine the performance of reflective and transmissive displays. They can reflect ambient light as well as transmit light from a rear light source. Transmissive color FPDs similarly require a rear light source. The rear light source in a transreflective color FPD module, however, is typically only turned on in low-light conditions. Nonetheless, the rear light source in a transreflective color FPD module adds to the overall thickness of the FPD module.
It is also known to use an electroluminescent (EL) light source with a monochrome FPD. In comparison to the light sources typically used for color FPDs, an EL light source is thin and inexpensive.
A transreflective FPD module with low light emission characteristics is generally considered difficult to view in low light conditions, but is generally acceptable with moderate ambient lighting conditions.
A system for operating a color flat panel display (FPD) is provided that includes a color FPD, a rear light source, and a display processing device. The color FPD has an adjustable color depth and is configured to reflect ambient light. The light source transmits light through the bottom surface of the color FPD. The display processing device is coupled to the color FPD and decreases the color depth of the color FPD when the light source is activated and increases the color depth of the color FPD when the light source is turned off. The system provides a transreflective FPD with an improved viewing performance under low-lighting conditions while approaching the advantages of a reflective FPD.
Referring now to the drawing figures,
The user interface 24 is coupled to the light source 14 so that the light source 14 may be activated for viewing under low-light conditions. When the light source 14 is activated, the controller 22 signals the color FPD module 12 to decrease the color depth to substantially monochrome. In an alternative embodiment, the color depth is reduced to a smaller set of colors, for example, from a full color depth of thousands or millions of colors to a color depth of 8 colors. In addition, when the light source 14 is active, the displayed font size may be increased from a first font size to a larger second font size in order further improve readability in low-light conditions. Then, when ambient light conditions improve, the device user may use the interface 24 to deactivate the light source 14. When the light source 14 is deactivated, the displayed font size and color depth are returned to their original settings.
The user interface 24 may also enable the device user to selectively adjust the color depth of the FPD module 12 to a preferred setting. The color depth may be adjusted, for example, while the FPD module 12 is in reflective mode, low-light mode, or when the user initially sets up the device parameters. Similarly, the user interface 24 may enable the device user to selectively change the font size of the FPD module 12. In one alternative embodiment, the user interface 24 may enable the device user to turn the light source 14 on, and then independently provide the user the options to increase the font size and/or reduce the color depth of the FPD module 12 to substantially monochrome.
In step 36, the device monitors the system for input from the user. If a second occurrence of the pre-selected user input associated with activating the light source is detected at step 36, then the device increases the font size of the FPD from a first font size to a larger second font size in step 38 in order to further improve readability on the FPD. In addition, the device may further increase the font size of the FPD to a third font size larger than the second and first font sizes with a successive occurrence of the pre-selected input. With each successive occurrence of the pre-selected input the font size may further increase. The device then remains in this low-light mode, where the light source 14 is activated, (step 36) until a pre-determined period has passed without the detection of any user input (either the pre-selected input or some arbitrary input). After the pre-determined period of inactivity, the device automatically shuts off the light source, adjusts the display from monochrome to full color and decreases the font size to the first font size in step 40. In addition, the light source may also be shut off by some specific input by the user indicating that the user desires to return the FPD to its normal reflective mode of operation.
When there is sufficient ambient light 19, the LCD 12 may operate in reflective mode, where the light source 14 is deactivated. In reflective mode, ambient light 19 is then reflected off the reflector 16 to be viewed by a device user 13. The liquid crystal 1 is driven, typically by a controller, to display different colors through the color filter 2 at different pixel locations on the LCD 12 and hence to display an image to a user.
When the ambient light 19 is insufficient to comfortably view the LCD 12 in reflective mode, the EL light source 14 may be activated to operate the LCD 12 in a low-light mode. When activated, the EL light source 14 radiates light 15 that is transmitted through the LCD 12. In order to optimize performance of the LCD 12 in low-light mode, the reflector 16 may be configured to allow for more reflection of ambient light 19 than transmission of light 15 from the EL light source 14. In addition, to compensate for diminished aesthetics caused by the low intensity light typically emitted by an EL light source 14, the LCD 2, driven by the controller, changes the color depth of the LCD 12 to monochrome when the EL light 14 is activated. The controller decreases the number of signals across the LCD 12 to decrease the number of colors that are visible. In addition, a first font size displayed by the LCD 12 may be increased to a second font size while the EL light 14 is activated to further assist the device user 13 in viewing the LCD 12.
In an alternative embodiment, the FPD may be an inherently reflective display with very low transmission, such as digital paper. A thin, dim, rear light source could be employed to keep the overall display module thin. The techniques of decreasing color depth and increasing font size of the display when the light source is activated could be employed to improve readability in a dark environment.
The processing device 82 controls the overall operation of the mobile device 20. Operating system software executed by the processing device 82 is preferably stored in a persistent store, such as a flash memory 100, but may also be stored in other types of memory devices, such as a read only memory (ROM) or similar storage element. In addition, system software, specific device applications, or parts thereof, may be temporarily loaded into a volatile store, such as a random access memory (RAM) 102. Communication signals received by the mobile device 20 may also be stored to RAM.
The processing device 82, in addition to its operating system functions, enables execution of software applications on the device 20. A predetermined set of applications that control basic device operations, such as data and voice communications, may be installed on the device 20 during manufacture. In addition, a personal information manager (PIM) application may be installed during manufacture. The PIM is preferably capable of organizing and managing data items, such as e-mail, calendar events, voice mails, appointments, and task items. The PIM application is also preferably capable of sending and receiving data items via a wireless network 118. Preferably, the PIM data items are seamlessly integrated, synchronized and updated via the wireless network 118 with the device user's corresponding data items stored or associated with a host computer system. An example system and method for accomplishing these steps is disclosed in “System And Method For Pushing Information From A Host System To A Mobile Device Having A Shared Electronic Address,” U.S. Pat. No. 6,219,694, which is owned by the assignee of the present application, and which is hereby incorporated into the present application by reference.
Communication functions, including data and voice communications, are performed through the communication subsystem 84, and possibly through the short-range communications subsystem 86. If the mobile device 20 is enabled for two-way communications, then the communications subsystem 84 includes a receiver 76, a transmitter 74, and a processing module, such as a digital signal processor (DSP) 110. In addition, the communication subsystem 84, configured as a two-way communications device, includes one or more, preferably embedded or internal, antenna elements and local oscillators (LOs) 116. The specific design and implementation of the communication subsystem 84 is dependent upon the communication network in which the mobile device 20 is intended to operate. For example, a device destined for a North American market may include a communication subsystem 84 designed to operate within the Mobitex™ mobile communication system or DataTAC™ mobile communication system, whereas a device intended for use in Europe may incorporate a General Packet Radio Service (GPRS) communication subsystem.
Network access requirements vary depending upon the type of communication system. For example, in the Mobitex and DataTAC networks, mobile devices are registered on the network using a unique personal identification number or PIN associated with each device. In GPRS networks, however, network access is associated with a subscriber or user of a device. A GPRS device therefore requires a subscriber identity module, commonly referred to as a SIM 10 card, in order to operate on a GPRS network.
When required network registration or activation procedures have been completed, the mobile device 20 may send and receive communication signals over the communication network 118. Signals received by the antenna 50 through the communication network 118 are input to the receiver 76, which may perform such common receiver functions as signal amplification, frequency down conversion, filtering, channel selection, and analog-to-digital conversion. Analog-to-digital conversion of the received signal allows the DSP to perform more complex communication functions, such as demodulation and decoding. In a similar manner, signals to be transmitted are processed by the DSP 110, and are the input to the transmitter 74 for digital-to-analog conversion, frequency up-conversion, filtering, amplification and transmission over the communication network via the antenna 51.
In addition to processing communication signals, the DSP 110 provides for receiver 76 and transmitter 74 control. For example, gains applied to communication signals in the receiver 76 and transmitter 74 may be adaptively controlled through automatic gain control algorithms implemented in the DSP 110.
In a data communication mode, a received signal, such as a text message or web page download, is processed by the communication subsystem 84 and input to the processing device 82. The received signal is then further processed by the processing device 82 for output to a display 98, or alternatively to some other auxiliary I/O device 88. A device user may also compose data items, such as e-mail messages, using a keyboard 92, such as a QWERTY-style keyboard, and/or some other auxiliary I/O device 88, such as a touchpad, a rocker switch, a thumb-wheel, or some other type of input device. The composed data items may then be transmitted over the communication network 118 via the communication subsystem 84.
In a voice communication mode, overall operation of the device is substantially similar to the data communication mode, except that received signals are output to a speaker 94, and signals for transmission are generated by a microphone 96. Alternative voice or audio 110 subsystems, such as a voice message recording subsystem, may also be implemented on the device 20. In addition, the display 98 may also be utilized in voice communication mode, for example to display the identity of a calling party, the duration of a voice call, or other voice call related information.
The short-range communications subsystem 86 enables communication between the mobile device 20 and other proximate systems or devices, which need not necessarily be similar devices. For example, the short-range communications subsystem 86 may include an infrared device and associated circuits and components, or a Bluetooth™ communication module to provide for communication with similarly-enabled systems and devices.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art.
This is a continuation of U.S. application Ser. No. 12/352,710, filed Jan. 13, 2009 (now U.S. Pat. No. 8,111,210), which is a continuation of U.S. application Ser. No. 11/244,548, filed Oct. 6, 2005 (now U.S. Pat. No. 7,495,649), which is a continuation of U.S. application Ser. No. 10/146,075, filed May 15, 2002 (now U.S. Pat. No. 6,967,657), which claims priority of U.S. Provisional Application No. 60/291,216, filed May 15, 2001, each of the above applications hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3272629 | Hills | Sep 1966 | A |
4637687 | Haim et al. | Jan 1987 | A |
5181105 | Udagawa et al. | Jan 1993 | A |
5202692 | Huguenin et al. | Apr 1993 | A |
5451980 | Simon et al. | Sep 1995 | A |
5504501 | Hauck et al. | Apr 1996 | A |
5592215 | Kuga | Jan 1997 | A |
5920367 | Kajimoto et al. | Jul 1999 | A |
5920401 | Street et al. | Jul 1999 | A |
6032392 | Gordon | Mar 2000 | A |
6157396 | Margulis et al. | Dec 2000 | A |
6184875 | Matsuura | Feb 2001 | B1 |
6243059 | Greene et al. | Jun 2001 | B1 |
6377229 | Sullivan | Apr 2002 | B1 |
6392689 | Dolgoff | May 2002 | B1 |
6456340 | Margulis | Sep 2002 | B1 |
6466185 | Sullivan et al. | Oct 2002 | B2 |
6501521 | Matsushita et al. | Dec 2002 | B2 |
6517212 | Satou | Feb 2003 | B2 |
6600470 | Tsuda | Jul 2003 | B1 |
6639577 | Eberhard | Oct 2003 | B2 |
6703599 | Casebolt et al. | Mar 2004 | B1 |
6707516 | Johnson et al. | Mar 2004 | B1 |
6791531 | Johnston et al. | Sep 2004 | B1 |
6828984 | Samra | Dec 2004 | B2 |
6847376 | Engeldrum et al. | Jan 2005 | B2 |
6847732 | Sakatani | Jan 2005 | B1 |
6909419 | Zavracky et al. | Jun 2005 | B2 |
6928461 | Tuli | Aug 2005 | B2 |
6933922 | Casebolt et al. | Aug 2005 | B2 |
6947575 | Wallace et al. | Sep 2005 | B2 |
6967657 | Lowles et al. | Nov 2005 | B2 |
6976626 | Schmidt et al. | Dec 2005 | B2 |
7057790 | Selbrede | Jun 2006 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
7114174 | Brooks et al. | Sep 2006 | B1 |
7155068 | Zhang et al. | Dec 2006 | B2 |
7339595 | Hilliard et al. | Mar 2008 | B2 |
7362316 | Willis | Apr 2008 | B2 |
7495649 | Lowles et al. | Feb 2009 | B2 |
7696965 | Cok | Apr 2010 | B2 |
7796132 | Nakagawa | Sep 2010 | B1 |
20010052948 | Okamoto et al. | Dec 2001 | A1 |
20020041287 | Engeldrum et al. | Apr 2002 | A1 |
20020050518 | Roustaei | May 2002 | A1 |
20020080168 | Hilliard et al. | Jun 2002 | A1 |
20020113752 | Sullivan et al. | Aug 2002 | A1 |
20020126135 | Ball et al. | Sep 2002 | A1 |
20020130820 | Sullivan | Sep 2002 | A1 |
20020163482 | Sullivan | Nov 2002 | A1 |
20020171618 | Lowles et al. | Nov 2002 | A1 |
20020181742 | Wallace et al. | Dec 2002 | A1 |
20030095135 | Kaasila et al. | May 2003 | A1 |
20030201990 | Aldrich et al. | Oct 2003 | A1 |
20040070588 | Harrington et al. | Apr 2004 | A1 |
20040201598 | Eliav et al. | Oct 2004 | A1 |
20050122294 | Ben-David et al. | Jun 2005 | A1 |
20050237596 | Selbrede | Oct 2005 | A1 |
20060028425 | Lowles et al. | Feb 2006 | A1 |
20060055934 | Sunshine et al. | Mar 2006 | A1 |
20060164230 | DeWind et al. | Jul 2006 | A1 |
20070018919 | Zavracky et al. | Jan 2007 | A1 |
20080062158 | Willis | Mar 2008 | A1 |
20080266389 | DeWind et al. | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120105504 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
60291216 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12352710 | Jan 2009 | US |
Child | 13342494 | US | |
Parent | 11244548 | Oct 2005 | US |
Child | 12352710 | US | |
Parent | 10146075 | May 2002 | US |
Child | 11244548 | US |