Light stabilizer composition

Information

  • Patent Application
  • 20030087998
  • Publication Number
    20030087998
  • Date Filed
    September 06, 2002
    22 years ago
  • Date Published
    May 08, 2003
    21 years ago
Abstract
The invention relates to a light stabilizer composition obtainable by the process comprising the steps of
Description


[0001] The invention relates to stabilizer compositions as well as to a method for enhancing the light stability of polymers, in particular polyolefins.


[0002] It is the object of the present invention to provide an improved stabilizer composition for stabilizing polymers, in particular polyolefins, against the damage effected by light.


[0003] This object is achieved with the stabilizer composition as hereinunder described. It has surprisingly been found that masterbatch compositions of polyalkylpiperidines prepared in the presence of a free radical generator, exhibit an increased stabilization activity compared to the stabilization activity of masterbatch compositions according to the prior art which are produced without the addition of a free radical generator.


[0004] Accordingly, the present invention provides a light stabilizer composition obtainable by the process comprising the steps of


[0005] a) mixing a polymer with at least one polyalkylpiperidine and at least one free radical generator


[0006] b) melt-blending of that mixture at a temperature above the melting point of the polymer and above the decomposition temperature of the free radical generator and at shear conditions sufficient to blend the components.


[0007] The melt-blending temperature varies with the type of polymer and the type of the free radical generator. The skilled person can readily ascertain the appropriate temperature but a typical temperature range comprises the range from about 130° C. to about 300° C., preferably the range from about 150° C. to about 230° C.


[0008] The free radical generator is preferably a peroxide or hydroperoxide compound, in particular an organic peroxide compound. Suitable free radical generators are selected from the group consisting of dicumyl peroxide; 2,5-bis-tert.-butylperoxy-2,5-dimethylhexane; di-tert.-butyl-peroxide; isopropyl-tert-butyl peroxy carbonate; bis-(tert.-butyl-2-peroxyisopropyl)-1,3-benzene; dimethyl-2,5-bis-(tert.-butylperoxy)-2,5-hexane; dimethyl-2,5-bis-(tert.-butylperoxy)-2,5-hexine-3; tert.-(butylcumyl peroxide, bis-(tert.-butyl)-3,3-ethyl butyrate.


[0009] The polyalkylpiperidine is an oligomeric or a high molecular-weight polyalkylpiperidine or a low molecular-weight polyalkylpiperidine or a polymer bound polyalkylpiperidine.


[0010] Preferably, the oligomeric or high molecular-weight polyalkylpiperidine is selected from the group consisting of compounds of formulae (I) to (VIII):
1


[0011] poly-{[6-[(1,1,3,3-tetramethylbutyl)-imino]-1,3,5-triazine-2,4-diyl][2-(2,2,6,6-tetra-methylpiperidyl)-amino]-hexamethylene-[4-(2,2,6,6-tetramethylpiperidyl )-imino]} (I)


[0012] [Commercially available for example as Chimassorb (registered trademark) 944 (Ciba Specialty Chemicals Inc.)]
2


[0013] 1,3,5-triazine-2,4,6-triamine, N,N′″-1,2-ethanediylbis[N-[3-[[4,6-bis[butyl(1,2,2,6,6-pentamethyl-4-piperidinyl)amino]-1,3,5-triazin-2-yl]methylamino]propyl]-N′,N″-dibutyl-N′,N″-bis-(1,2,2,6,6-pentamethyl-4-piperidinyl)- (II)


[0014] [Commercially available for example as Chimassorb (registered trademark) 119 ((Ciba Specialty Chemicals Inc.)]
3


[0015] poly[(6-morpholino-s-triazine-2,4-diyl)[2,2,6,6-tetramethyl-4-piperidyl)-imino]-hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl)imino] (III)


[0016] [Commercially available for example as Cyasorb (registered trademark) UV 3346 (American Cyanamid Inc.)]
4


[0017] poly-(N-β-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxy-piperidyl-succinate) (VI)


[0018] [commercially available for example as Tinuvin (registered trademark) 622 (Ciba Specialty Chemicals Inc.).
5


[0019] polymethylpropyl-3-oxy-[4(2,2,6,6 tetramethyl)-piperidinyl]-siloxane (V)


[0020] [Commercially available for example as Uvasil (registered trademark) 299 (Great Lakes Chemical Corp.)]


[0021] Oligomer obtained by the reaction and subsequent oligomerization of 2,2,4,4-tetramethyl-21-oxo-7-oxa-3,20-diazadispiro-[5.1.11.2]-heneico- (VI) sane or its hydrochloride with epichlorohydrine.


[0022] [Commercially available for example as Hostavin (registered trademark) N-30 (Hoechst)]
6


[0023] 1,3-propanediamine, N,N″-1,2′-ethanediyl-bis-, polymer with N-butyl-2,2,6,6-tetramethyl-4-piperidinamine and 2,4,6-trichloro-1,3,5-triazine (VII)


[0024] [commercially available for example as Uvasorb (registered trademark) HA-88]
7


[0025] poly-[3-eicosyl(-tetracosyl)-1-(2,2,6,6-tetramethylpiperidine-4-yl)-pyrrolidine-2,5-dione] (VIII)


[0026] [commercially available for example as Uvinul 5050 H]


[0027] Preferably, the low molecular-weight polyalkylpiperidine is selected from the group consisting of compounds of formulae (IX) to (XIII)
8


[0028] bis-2,2,6,6-tetramethyl-4-piperidyl-sebacate (IX)


[0029] [commercially available for example as Tinuvin (registered trademark) 770 (Ciba Specialty Chemicals Inc.)]
9


[0030] propanedioic acid, [(4-methoxyphenyl)-methylene]-bis(1,2,2,6,6-pentamethyl-4-piperidinyl)-ester] (X)


[0031] [Commercially available for example as Sanduvor (registered trademark) PR 31 (Clariant)]
10


[0032] a mixture of esters of 2,2,6,6-tetramethyl-4-piperidinol and higher fatty acids (mainly stearic acid) (XI)


[0033] [commercially available for example as Dastib (registered trademark) 845 or Cyasorb (registered trademark) UV 3853]
11


[0034] 2,2,6,6-tetramethyl-21-oxo-7-oxa-3,20-diazadispiro[5.1.11.2]-heneicosane (XII)


[0035] [commercially available for example as Hostavin (registered trademark) N-20 (Hoechst)]
12


[0036] 2,2,4,4-tetramethyl-21-oxo-7-oxa-3,20-diazadispiro[5.1.11.2]-heneicosan-20-propanoic-acid-dodecylester (XIII)


[0037] [commercially available for example as Hostavin (registered trademark) N-24 (Hoechst)].


[0038] The polyalkylpiperidine is typically used in an amount of from 0.1 to 70% by weight, preferably from 5 to 30% by weight based on the weight of the polymeric composition.


[0039] Typical quantities of the free radical generator is from 0.01 to 10% by weight, preferably from 0.1 to 2% by weight based on the weight of the polymeric composition.


[0040] All compounds of formulae (I) to (XIII) are known or may be made from known compounds by known methods.


[0041] The polymer of the stabilizer composition according to the invention is a thermoplastic organic polymer, preferably selected from polyolefins and copolymers and blends thereof.


[0042] Further additives, which may be added, if appropriate, include antioxidants, UV-absorbers, pigments, dyes, nucleating agents, fillers, and property modifiers and several others commonly used.


[0043] A further object of the invention is a method for enhancing the light stability, preferably UV light stability, of polymeric materials, preferably thermoplastic organic polymers, which are identical or compatible with the polymer component of the stabilizer composition according to the invention. This method comprises incorporating before or during processing a stabilizing quantity of the stabilizing composition according to the invention into the polymeric material to be stabilized. The quantity of the light stabilizer composition according to the invention needed to confer an appreciable extent of stabilization varies with the amount of the polyalkylpiperidine compound as well as with the type of the polymer and the end use of the finished article. The skilled person can readily ascertain the appropriate quantity for the diverse fields of applications.


[0044] List of the Suitable Free Radical Generators
13


[0045] The invention is further illustrated by means of the following examples in which all parts are expressed by weight.






EXAMPLE 1

[0046] 15%-compositions of polyalkylpiperidines in polypropylene (MFI=0.7 g/10 min at 230° C. and 2.16 kg) were prepared with different amounts of the free radical generator (FRI) 2,5-dimethyl-2,5-di-(t-butylperoxy)-hexane, as shown in Table 1. The compositions were first dry blended and then melt processed in a Brabender kneader at 200° C. during 10 minutes and at a main shaft rotation speed of 75/min. The melt blending in the Brabender kneader was done under a nitrogen atmosphere.
1TABLE 1Ligth stabilizer compositionsSample No.HALSFRI concentration [pph]MB 115% C-9440MB 215% C-9440.1MB 315% C-9440.5MB 415% C-9441.5MB 515% T-7700MB 615% T-7700.5MB 715% PR-310MB 815% PR-310.5C-944 = Chimassorb ® 944, T-770 = Tinuvin ® 770, PR-31 = Sanduvor ® PR-31


[0047] The prepared compositions were used for light stabilization of polypropylene (MFI=0.7 g/10 min at 230° C. and 2.16 kg) The PP powder was dry blended with 1% of ground composition (i.e. 0.15% concentration of HALS in the final stabilized PP polymer) and with 0 1% calcium stearate and 0.05% phenolic antioxidant (Irganox 1010).


[0048] These compositions were then melt homogenized by two extrusions in a single screw laboratory extruder at 210° C. and 270° C., respectively. The obtained stabilized polypropylene pellets were pressed at 230° C. to give 0.1 mm polymer films that were exposed to accelerated weathering test according to ASTM D-5208. The light stability of the individual samples was assessed according to development of carbonyl oxidation products in the exposed polymer films as measured by infrared spectroscopy.


[0049] The results of the carbonyl absorption measurements (Aco) after 1000 hours exposition to accelerated weathering (UV-A) are given in Table 2.
2TABLE 2Carbonyl index values of UV-stabilized PP-samplesSample No.Light stabilizationAco after 1000 hoursLS 11% MB 10.42LS 21% MB 20.33LS 31% MB 30.29LS 41% MB 40.25LS 51% MB 50.132LS 61% MB 60.119LS 71% MB 70.34LS 81% MB 80.28



EXAMPLE 2

[0050] Substrate: Polypropylene, type Profax 6508 (producer Himont, USA), base stabilized with 0.0114% Irganox 1076.


[0051] Prior to addition to this polymer, a masterbatch consisting of 15 weight-% of the commercially available HA(L)S-based stabilizer Sanduvor 3944 in polypropylene (Profax 6508) has been prepared at 200° C. using a kneader, type Brabender Plasticorder PLE 651 at 75 rpm under nitrogen.


[0052] Pre-extrusion of polypropylene with 1 weight-% of this masterbatch, 0.05 weight-% Irganox 1010, 0.10 weight-% Ca stearate and individually dosed amounts of the peroxide DBHP=Trigonox 101 is performed in a lab-extruder type T4 Händle KPS 25 at T=210° C./80 rpm whereas the final extrusion is carried out in an extruder, type T3 Göttfert at 270° C./50 rpm with a die diameter of 2 mm.


[0053] PP granules produced by means of this procedure have been used to prepare films of the dimension 140×140×0.1 mm using a lab press, type FontjneTP 600, at a temperature of T=230° C. and a pressure of 120 kN during 90 seconds. These films are submitted to artificial weathering tests by means of both Uvicon (UV-A) and Weather-o-meter CAM-7. The UV-A test is realized according to ASTM G 53 at a wavelength λmax=340 nm with exposure intervals of 20 hours followed by a dark period of 4 hours. Measuring parameter is the time/hours to reach a carbonyl absorption of 0.5. The CAM-7 experiment is conducted according to DIN 53 385A using an UV-lamp with a power output of 6500 Watt. Dry periods of 102 minutes are followed by wet periods of 18 minutes. Measuring parameter is the time/hours to reach a carbonyl absorption of 0.3. Resulting data are summarized in table 1.
3TABLE 1UV-A, time toCAM-7, time todelta C═O = 0.5/delta C═O = 0.3/FormulationhourshoursBS + 0.15% Sanduvor 394412081682w/o Trigonox 101BS + 0.15% Sanduvor 3944 +126417830.1% Trigonox 101BS + 0.15% Sanduvor 3944 +136118270.5% Trigonox 101BS + 0.15% Sanduvor 3944 +148619141.5% Trigonox 101BS (base stabilization): 0.05% Irganox 1010 + 0.10% CaSt


Claims
  • 1. A light stabilizer composition obtainable by the process comprising the steps of a) mixing a polymer with at least one polyalkylpiperidine and at least one free radical generator b) melt-blending of that mixture at a temperature above the melting point of the polymer and above the decomposition temperature of the free radical generator and at shear conditions sufficient to blend the components.
  • 2. A light stabilizer composition according to claim 1 wherein the free radical generator is a peroxide or hydroperoxide compound, preferably an organic peroxide compound
  • 3. A light stabilizer composition according to claim 1 or 2 wherein the free radical generator is selected from the group consisting of dicumylperoxide; 2,5-bis-tert.-butyl-peroxy-2,5-dimethylhexane; di-tert.-butylperoxide; isopropyl-tert.-butyl peroxy carbonate; bis(tert.-butyl-2-peroxyisopropyl)-1,3-benzene; dimethyl-2,5-bis-(tert-butylperoxy)-2,5-hexane; 2,5-dimethyl-2,5-bis-(tert.-butylperoxy)-hex-3-yne; tert.-butyl-cumylperoxide; bis-(tert.-butyl )-3,3-ethyl-butyrate.
  • 4. A light stabilizer composition according to claim 1 wherein the polyalkylpiperidine is an oligomeric or a high molecular-weight polyalkylpiperidine or a low molecular-weight polyalkylpiperidine or a polymer bound polyalkylpiperidine.
  • 5. A light stabilizer composition according to claim 4 wherein the oligomeric or high molecular-weight polyalkylpiperidine is selected from the group consisting of compounds of formulae (I) to (VIII)
  • 6. A light stabilizer composition according to claim 4 wherein the low molecular-weight polyalkylpiperidine is selected from the group consisting of compounds of formulae (IX) to (XIII):
  • 7. A light stabilizer composition according to any preceding claim wherein the amount of the polyalkylpiperidines is from 0.1 to 70% by weight, preferably from 5 to 30% by weight based on the weight of the polymeric composition.
  • 8. A light stabilizer composition according to any preceding claim wherein the amount of the free radical generator is from 0.01 to 10% by weight, preferably from 0.1 to 2% by weight based on the weight of the polymeric composition.
  • 9. A light stabilizer composition according to any preceding claim wherein the polymer is a thermoplastic organic polymer, preferably selected from polyolefins and copolymers and blends thereof
  • 10. A light stabilizer composition according to any preceding claim wherein the polymeric composition comprises further additives, preferably selected from the group consisting of antioxidants, UV-absorbers, pigments, dyes, nucleating agents, fillers, and property modifiers.
  • 11. A method for enhancing the light stability of polymers comprising incorporating therein before or during processing a stabilizing quantity of the stabilizer composition according to claim 1.
Priority Claims (1)
Number Date Country Kind
00005629.1 Mar 2000 GB
PCT Information
Filing Document Filing Date Country Kind
PCT/IB01/00332 3/9/2001 WO