The current disclosure relates generally to horticulture houses, and more particularly to light traps for horticulture houses, the traps having increased light reduction.
Light traps, e.g. those for horticulture, are known in the art in general functional terms, light traps block natural light, while allowing air to flow through. As such, they can be used in combination with artificial lights to create an artificial diurnal cycle inside a structure. In horticulture houses, a diurnal cycle may be important for a variety of reasons. Some horticulturists may use the cycle to control air and soil temperatures.
As noted, light traps are constructed to allow airflow through the trap. The flow of air through the trap and into the horticulture house is important for a variety of reasons including air exchange and temperature control. For example, air flow decreases humidity therefore minimizing soil moisture.
Applicant believes that existing light trap require users to compromise either resistance to light transmission or resistance to airflow.
It is to at least one or more of these additional problems that the current disclosure is directed.
By way of brief summary, the current disclosure is directed to light traps, e.g. light traps for horticulture houses, having light deflective patterns (LDPs) positioned on panels of the trap. The current disclosure is also directed to panel for light traps, wherein the panels include LDPs Using LDPs, applicant has discovered that resistance to light transmission can be increased.
The above summary was intended to summarize certain examples of the present disclosure. Systems and panels will be set forth in more detail, along with examples demonstrating efficiency, in the figures and detailed description below.
In this example, trap 12 includes a plurality of panels 12. Each panel 14 is described as having a width W and a length L. Panels 14 define a waveform 12a for at least s portion. As seen, waveform portions 14a travel in the width direction of the panel. Waveform portions include a plurality of peaks (P), including at least one positive peak and at feast one negative peak. Positive and negative are used indicate relative direction. In this example, each panel 14 may be considered to have two positive peaks (P+) and one negative peak (P−) for reference only.
Panels may be completely waveform, or may have other non-waveform portions, e.g., interface edges 14b, may be straight for example. Straight portions, e.g., 14b may be used for mounting purposes, etc, Non-waveform portions may also be located in other locations between the edges. Trap examples including a plurality of panels defining a waveform for at least a portion in addition to at least one panel not defining a waveform, are still considered to fail within the scope of the disclosure. The distance D between panels can vary from trap to trap, based on, for example, peak-to-peak amplitude, with greater amplitudes allowing for D.
A variety of different waveforms may be used for traps disclosed herein. Referring to
Referring back, to primarily FIG, 3, in terms of trap construction, panels 14 are positioned and are spaced a distance D apart such as their wave form portions define a plurality of non-linear air-passages 16 for allowing an airflow (AF) in or out of fee horticulture house at a velocity (V). As used herein, non-linear is intended to mean that, for at least one air-passage, a straight line cannot be drawn from and light trap entrance to a light trap exit. The distance D between panels can vary from trap to trap, based on, for example, peak-to-peak amplitude, with greater amplitudes allowing for greater D. In some examples, D may be in the range of about 0.5 to about 2 inches from the center of one panel to the center of an adjacent panel. In many examples, D will be about 0.75 inches from the center of one panel to the center of the next panel. The resultant air-passages have a resistance to airflow (RAF) and light reduction factor (LRF). In some examples, D may be correlated with a desired LRF, for example, D may be greater if a lower LRF is acceptable. Spacing between panels may be achieved, for example, by housing, e.g., housing 15, having recesses, flanges, slots, etc. for securing an interface edge of the panel in some examples, panels may be secured directly to the structure, e.g., without a housing, by individually fastening a portion of the panel to the structure. Such examples may also be considered light traps, as used herein.
Panels 14, e.g., waveform portions of panels, have a plurality of light deflecting patterns (LDP's) 20 as illustrated in the cross-sectional enlargement 3a, surface enlargement 4a and detail A of
Regarding the shape of the LDW, it may vary. In some examples, the LDPs may be rectangular shaped, e.g. as illustrated in
Regarding height, in some examples, LDPs have a pattern density in the range of about 95% to about 100%.
Regarding positioning, in some samples, LDPs will be positioned on the entire waveform portion and on the top surface of the waveform. In other examples, LDPs will be positioned on lesser portions of the waveform. For example, some waveform portions include LDPs positioned on at least one of: at least 25% of a wavelength; at least 50% of a wavelength; at least 75% of a wave length; and about 100% of the wavelength. Further, in many examples, panels will be position such that the LDPs of one panel overlap, at least partially, with the LDPs of an adjacent panel. For example in
Regarding orientation, LDPs will typically be oriented on the top surface of the waveform. For example, LDPs 20 in cross-sectional enlargement 3a and LDPs 20 in surface enlargement 4a are shown on the top surface of the waveform.
Regarding concentration, LDP's may be positioned in a variety of concentrations of the hair cell pattern. For example, LDPs may be positioned at a concentration chosen from at least one from about 95% to about 100% of the surface area of the panel.
In terms of construction, LDPs may be created in a variety of ways. For example, LDPs may be defined by the panel itself, e.g., by extrusion. Somewhat similarly, LDPs may be formed by vacuum forming plastic sheets.
Using light traps as disclosed herein, LRF may be improved. For example, LRF may be increased by a factor chosen from various density of pattern. Other examples may provide other improvements.
In addition to significant improvements in LRF, many examples will not significantly increase RAF. For example, RLF may be increased without increasing RAF by greater than 0.25 inches H2O, or greater than 0.010 inches H2O, at a velocity of 600 fpm.
Further some panels may have an antistatic component, e.g. an additive in the panel itself or a coating applied to the panel, to inhibit particles from bonding to panels. Applicant believes that antistatic component will provide for improved RAF. Examples including antistatic components include traps having LDPs as well as panels without LDPs.
Using the teachings contained herein, any of a variety of benefits may be achieved. For example, LRF may be significantly increased without sacrificing RAF further, existing traps can be replaced, e.g. similar to the trap in
The following experimental data is for purposes of illustrating efficacy, not limitation.
Experimental Trap A (Etrap a) reference in the experiments below refers to a trap having the specifications illustrated in FIGS, 5 and 6 and their accompanying description.
Control Trap referenced in Experiments below refers to a trap having specifications similar to Etrap with the exceptions of the LDPs, which are lacking in the control.
The traps were mounted in a 48″×48″ opening in a light blocking wall. Four 1500 W halogen lamps were place on one side of the trap so simulate direct sunlight. Light measurements were taken outside the trap and inside the trap using an international light IL-1710 light meter. The light reduction factor (LRF) was calculated by dividing the outside light intensity by the inside light density. A higher LRF indicates a greater resistance to light transmission.
1. Light Intentsity Outside (fc)
Readings: 5460, 5000, 6350, 6440, 5660, 6110
Mean: 5837
2. Light Intensity Inside (fc)
Readings: 0.00055, 0.00055, 0.00057, 0.00075, 0.00038, 0.00064
Mean: 0.000563
3. Light Reduction Factor (LRF) (Outside/inside)=10,400,000
1. Light Intensity Outside (fc)
Readings: 5290, 6210, 5530, 5450, 5630, 4380
Mean: 5415
2. Light intensity Inside (fc;
Readings: 0.00022, 0.00031, 0.0002, 0.0003, 0.0035, 0 . . . 23
Mean: 0.000268
3. Light Reduction Factor (LRF) (Outside/Inside)=20, 180, 000
As seen, the invention example provides greater than 2.5× improvements in light reduction relative to the control.
Traps were mounted in a 48″×48″ opening in a BESS Lab airflow measurement chamber. Static pressure was measured in inches of water (“in water”) at velocities ranging from approximately 200 feet per minute (fpm) to approximately 100 fpm.
At a given face velocity, a lower static pressure indicates less airflow resistance.
As seen, the invention examples provide virtually identical resistance to airflows patterns. Numerous characteristics and advantages have been set forth in the foregoing description, together with the details of structure and function. The disclosure, however, is illustrative only, and changes may be made m detail, especially in matters of shape, size, and arrangements of parts, within the principle of the invention, to the full extend indicated by the broad general meaning of the terms in which the general structural examples below are expressed.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains errors resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein, are to be understood to encompass any and ail sub ranges subsumed therein, and every number between the endpoints. For example, a stated range of “1 to 10” should be considered to include any and all sub ranges beginning with a minimum value of 1 or more, e.g. 1 to 6.1, and ending with a maximum value of 10 or less, e g. 5.5 to 10, as well as all ranges beginning and ending within the endpoints, e.g. 2 to 9, 3 to 8, 3 to 9, 4 to 7, and finally to each number 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 contained within the range. Additionally, any reference referred to as being “incorporated herein” is to be understood as being incorporated in its entirety.
It is further noted that, as used in this specification, the singular forms “a”, “an”, and “the” include the plural referent.