The present invention relates to mobile firefighting vehicles, which utilize high-pressure water as a firefighting agent in general, and small lightweight all-terrain vehicles in particular.
The typical fire engine is a truck to which is mounted a water tank, a water pump and a fire hose. The typical fire engine is a large over the road truck which is used for fighting fires principally in urban settings. It has long been known that high-pressure water at 1,100 to 1,500 PSI produces a water fog which is very effective for fighting fires. The water fog greatly increases the firefighting capabilities of a given amount of water, and allows water to be used in fighting liquid hydrocarbon and electrical fires. The combination of a small relatively lowcost vehicle which can operate in rough terrain and which has a relatively large effective water supply which can fight all types of fires makes this type of vehicle a cost-effective solution for a wide range of uses from rapid first response to machine fire fighting to bush firefighting. However, firefighting equipment of this type which is well integrated with the vehicle as well as being highly reliable and easily repaired is needed.
The firefighting apparatus of this invention has a small all-terrain utility vehicle with a rear skid bed to which is mounted a U-shaped water tank closely spaced to the driver's cab, a high-pressure hose and a reel mounted in the U of the water tank. A high-pressure pump and pump engine are mounted behind the water tank to the skid bed. Also mounted to the skid bed is a water management system, which directs low-pressure water from the water tank through an 80 mesh prefilter along a low-pressure supply pipe to the high-pressure water pump. The high-pressure water pump has a pressure valve which sets the engine idle when the high-pressure water nozzle is closed. The output of the high-pressure water pump flows to a high-pressure manifold. The high-pressure manifold has a high-pressure hose connected to a ball valve which in turn is connected to the water tank. The ball valve is mounted to a control panel and during starting of, the high-pressure pump the ball valve is open to return water to the water tank. The high-pressure manifold connects to a pressure unloader valve which supplies is water from the high-pressure manifold to the hose reel when closed but when opened, because the hose nozzle is closed and the back pressure exceeds a set point, allows water from the high-pressure manifold to recirculate to the high-pressure pump inlet. A check valve in the low-pressure supply pipe prevents water from backing up through the low-pressure prefilter and into the water tank. When the hose nozzle is closed a pressure sensor valve is actuated to place the pump engine in idle. When the hose nozzle is open the engine returns to speed, and the unloader valve closes. A 1½ inch hose connection is mounted to the control panel. The hose connection can be used to take in water from a pumper truck, a fire hydrant, or water reservoir to the water tank or directly to the high-pressure pump. When not in use the hose connection is closed by a 2 inch ball valve.
It is an feature of the present invention to provide a low-cost easily maintained ultrahigh pressure firefighting skid unit mounted to an all-terrain vehicle.
It is a further feature of the present invention to provide a highly maintainable water manifold for the ultrahigh pressure firefighting skid unit.
It is another feature of the present invention to provide an easily operated simple control system for a ultrahigh pressure firefighting skid unit.
It is another feature of the present invention to provide a low idle power usage system ultrahigh pressure firefighting skid unit.
Further features and advantages of the invention will be apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Referring more particularly to
The ultrahigh pressure firefighting skid unit 26 comprises a 70 gallon water tank 28 formed of heavy gauge (¾ inch) welded polyethylene, which supports the hose reel 30. The water tank 28 incorporates a fill port 62 and a vent 63 and to minimize slosh moments which are created by acceleration-induced waves in the water tank a plurality of vertical anti-slosh baffles divide the larger water tank into connected but dynamically separate smaller tanks. The tank 28 is U-shaped i.e., has a base region which extends to a first height, and two wing regions which extend above the first height, and the tank extends across the width of the skid platform 22. A high-pressure hose reel 30 containing 150 feet of lightweight high-pressure hose 32 is mounted in the U of the water tank helping to move the CG of the skid unit towards the forward end 34 of the vehicle 20. The water tank 28 incorporates a translucent panel 36 which allows assessment of the amount of water in the tank. Mounted behind the tank 28 in the left quadrant of the skid platform 22 is a high-pressure water pump 38 with an output of 0.25 to 22 gallons per minute at 850 to 1,200 psi. The high-pressure water pump 38 can be procured from Cat Pumps and is driven by an engine 39 through a timing belt.
A sheet metal enclosure 40 encloses the water pump 38, and is mounted with vibration snubber or shock mounts to the skid platform 22. The metal enclosure 40 provides shock mounting to the pump drive engine 39 such as a 24 hp Honda GX 670. Adjacent to the sheet metal enclosure 40 is a hydraulic system enclosure 42, and control panel 44. Within the enclosure 42 are the components making up a hydraulic control system 46. Reference is made to
The pump 38 has a high-pressure side 78 which supplies high-pressure water between the about 850-1,250 psi through the first high-pressure hose 80 to a cylindrical high-pressure manifold 82. Connected to the high-pressure side 78 of the pump 38 is an engine idle control valve 86. The engine idle control valve 86 is set at about 1,500 psi and sets the engine 39 to idle when pump output pressure exceeds 1500 psi. The high-pressure manifold 82 is connected to a high-pressure relief valve 84 set to about 1750 psi, and to a pressure gage 89 by a pressure hose 91. The high-pressure manifold 82 is connected by a second high-pressure hose 90 to a start/run ball valve 92 which is connected by a third high-pressure hose 94 to the water tank 28. Also connected to the high-pressure manifold 82 is a pressure unloader valve 96 which is set to 1,600 psi. When the valve is closed water flows through a fourth high-pressure hose 100 which connects to plumbing leading to a high-pressure hose reel 30 and a high-pressure hose 32. When the unloader valve 96 is open the high-pressure manifold 82 is connected to a recirculation pressure hose 98 which connects to the high-pressure water bypass inlet 76.
To operate the ultrahigh pressure firefighting skid unit 26 the high-pressure fog nozzle 102 which terminates the high-pressure hose 32 is closed, and the desired amount of hose 32 is unwound. The run/start valve 92 is set in the open or start position as shown in
The arrangement of the hydraulic control system 46 as shown in
The skid unit 26 includes its own battery 104 which provides the electric start for the engine 39 and is also used to drive on electric rewind (not shown) on the high-pressure hose reel 30. The high-pressure hose 32 is guided between rollers 106 and captains 108 mounted to the hose reel 30, and a roller 110 and captains 112 mounted on the cover 114 of the hydraulic enclosure 42.
The Ranger 4×6 700 cc all-terrain vehicle 20 has a dry weight of about 1,185 lbs, but it is built to carry 1,000 lbs in the bed or skid platform 22. The ultrahigh pressure firefighting skid unit 26 weighs about 875 lb with a full water load of about 70 gals.
It should be understood that the skid unit can be mounted to a variety of small lightweight all-terrain vehicles, for example a Ranger 4×4 which may have wheel replacement tracks such as those disclosed in D505,136 and sold under the Mattracks trademark.
It is understood that the invention is not limited to the particular construction and arrangement of parts herein illustrated and described, but embraces all such modified forms thereof as come within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2533772 | De Frees | Dec 1950 | A |
4278132 | Hostetter | Jul 1981 | A |
4345654 | Carr | Aug 1982 | A |
4446591 | Wiedemann | May 1984 | A |
4917193 | Ockler | Apr 1990 | A |
5054545 | Ghaemian | Oct 1991 | A |
6289995 | Fuller | Sep 2001 | B1 |
6340177 | Granderson et al. | Jan 2002 | B1 |
20060254291 | Allen et al. | Nov 2006 | A1 |
20070173987 | Rowe et al. | Jul 2007 | A1 |
20090008105 | Price et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
3813419 | Nov 1989 | DE |
11-313902 | Nov 1999 | JP |
2001-087408 | Apr 2001 | JP |
2007-503880 | Mar 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20100270041 A1 | Oct 2010 | US |