The present invention relates to a case half for a differential which is reduced in weight from known devices while having improved structural integrity, and increased internal capacity for lubricant in order to better lubricate the differential components located inside the case.
The present invention relates to a differential case comprising an output shaft hub for mounting a differential bearing, and a flange having a plurality of fastener apertures for mounting a ring gear. In between the output shaft hub and the flange is a portion having an inner and outer surface. At least the inner surface of the portion between the output shaft hub and the flange has a plurality of depressions which alternate with an equal number of substantially hollow ribs. Each depression connects an internal spider support and a pinion thrust surface to a segmented side gear internal thrust surface, and the like number of substantially hollow ribs form one or more lubricant reservoirs.
The structure and operation of the invention, together with further advantages thereof, may best be understood by reference to the accompanying drawings and the following descriptions.
While the invention may be susceptible to different embodiments, there is shown in the drawings and the following detailed discussion, a preferred embodiment with the understanding that this present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the invention to that as illustrated and described herein.
The present invention is primarily concerned with a lightweight differential case 10. The case houses a differential mechanism which forms a portion of a vehicle drivetrain, such as a truck drivetrain.
The subject differential case 10 affords a number of advantages, besides lighter weight, over conventional differential cases. For example, the novel configuration of the differential case provides an increased interior volume, a portion of which volume is available to contain additional lubricant, thus improving the lubrication of the differential gears and other components housed in the subject differential case 10. Preferably, the internal volume of the differential case which is available for gearing and lubricant is approximately 40% of the total exterior volume of the differential case 10 where the total exterior volume is defined as the volume enclosed by a revolved surface that is the projected side view external envelope of the differential case.
Such advantages are accomplished by a differential case 10 generally having a configuration defined by: an output shaft hub 12 at one extremity, a flange 14, having a plurality of fastener apertures 16 therein at the other extremity, and therebetween, a differential case body portion 18. As best seen in
As best seen in
With continuing reference to
Similarly, as illustrated in
As light weight is an objective of the present invention, the type of material utilized to form the differential case 10, the method by which the case is formed, and the amount of material contained in the differential case 10 must all be considered.
With regard to material, the differential case 10 may be produced from any suitable material, for example, steel, iron, aluminum, and composite material, such as carbon fiber and resin.
Where the material of the differential case 10 is a metal, the case may be forged or cast. The configuration of the differential case 10 of the present invention allows forging or casting, without a need for substantial post-production machining. By way of example, only 20-50% of the side gear thrust surface area, out of the full 360° annular surface area of the interior surface area of the present differential case 10 requires postproduction machining. Minimal machining results in a substantial cost savings in the manufacturing process.
The use of modern casting and forging techniques, in turn, allows precise control over the wall thickness of the subject differential case 10. Variations of no more than ±50% from the average wall thickness of the case are necessary to produce the present differential case 10. This may be contrasted to conventional differential cases, where such variation may be ±75% from average wall thickness, in addition to an average that is thicker than the present invention.
The subject differential case 10 may be said to have surface draft, by which term is meant, the taper of the inner and other surfaces of a part to be cast or forged utilizing a two-piece mold, such that the part will readily release from the mold when the casting or forging process is complete.
The subject differential case 10, despite its lighter weight is still stronger than conventional differential cases such as is shown in
A further advantage of the present differential case 10 is that the external depressions 20 formed by the internal hollow ribs 22 provide a means for output shaft hub 12 bearing puller access 38, which is often not provided on conventional differential cases.
As best seen in
While a preferred embodiment of the present invention is shown and described, it is envisioned that those skilled in the art may devise various modifications of the present invention without departing from its spirit and scope.
Number | Name | Date | Kind |
---|---|---|---|
1097843 | Brown | May 1914 | A |
1658571 | Ormsby | Feb 1928 | A |
4455889 | Hauser | Jun 1984 | A |
4959043 | Klotz et al. | Sep 1990 | A |
5562561 | Gillard | Oct 1996 | A |
5857936 | Ishikawa | Jan 1999 | A |
5897453 | Mimura | Apr 1999 | A |
5989147 | Forrest et al. | Nov 1999 | A |
6014915 | Evans | Jan 2000 | A |
6061907 | Victoria | May 2000 | A |
6413183 | Ishikawa et al. | Jul 2002 | B1 |
7232399 | Valente | Jun 2007 | B2 |
20050137047 | Hay | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 0023731 | Apr 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20070093348 A1 | Apr 2007 | US |