1. Field of the Invention
This invention relates generally to building exterior roof tiles and specifically to an improved building roof tile that is featherweight, hurricane proof, yields a high R-value for insulation, offers low thermal transference into attic space, is able to be retrofitted to any sloped roof without structural build-up, is molded into single or triple sized units, can produce solar energy, is easy to transport and install, cannot break under foot or when extreme pressures are applied and can be molded to look like slate, wood, flat or roll tile.
2. Description of the Prior Art
Exterior sloped building roofs have used different materials such as asphalt-based products, metal, clay, cement, wood, slate, and rubber, for protecting a building from inclement weather such as rain, ultraviolet rays, heat, cold, snow, ice, and wind damage.
Typical roofs are made of plywood, tarpaper and shingles. Tiles are also used to cover the plywood and tarpaper. Traditional tiles are made in small pieces and are made of terra cotta, clay or other heavy, cementious materials. Traditional tiles create a great weight on the building structure requiring a more sturdy, costly construction of the building. Installing traditional tile is material and labor-intensive and requires hauling and lifting heavy loads of tile pieces and concrete for the setup work and throughout the installation and finishing process. Workers must cut traditional tiles with diamond blades powered by gasoline driven tools causing hazardous airborne particles to lungs and eyes.
The present invention overcomes several compounding problems of previously used tiles made of cement and ceramic materials by providing a 2 or 3-lb closed cell, featherweight poly foam-based, molded tile that is durable, has exceptional high wind resistance (over 225-mph), has excellent R-value for insulation so the invention does not retain and transfer heat or cold to the undersides of the roof or better termed “attic space” and is far easier and inexpensive to install on a building's exterior slope or pitched roof deck.
Traditional concrete and terra cotta roof tiles are easily fractured and broken from the moment the tiles are de-molded until the time the tile installation is completed. Broken tiles are an expense that is passed on to the end user. Average breakage ranges between 5-10% each time tiles are loaded, transported and unloaded. Pallets of tile are all subject to this moving process no less than twice after manufacturing, yielding high waste and higher prices. The invention will solve this problem by formulating “roof tiles” out of polyurethane, mineral fiber or fiberglass, sturdy, completed and ready for palletizing immediately after de-molding, without the possibility of fracture thereby eliminating breakage due to its core composition coupled with distinguishing design characteristics.
Traditional tiles are subject to deterioration due to the composition of the products and the effect of the elements. This degradation causes tiles to become brittle and routinely fracture and break when basic maintenance is performed causing puncture points in the substrate. The invention solves this problem by incorporating a thick-bodied, fully heavy-duty wedge design foundation, which brings the underside of the tile fully into contact with the substrate/roof deck creating a wholly supported platform so roof tiles will not/cannot, break under foot but has 1/17 the weight of traditional tiles (volume-to-volume), yet will not crack/break during usual shipping and handling due to its durable closed cell, poly-blend core and its long-lasting, impact resistant top coating.
Polyurethane based foams are the most insulating roofing systems available today. These products cure in seconds and are currently used only on flat roofs. Because of application limitations from on-site spray procedures, polyurethane based foams are unacceptable on pitched roofs because they cannot be satisfactorily finished, once cured. Also the flammability ratings of standard coatings or top layering for urethane flat roof systems that are applied after spray foam applications, are not approved for usage on a roof pitch over 2″ on 12″ low sloped. Applicant's tile manufacturing process and closed in-mold configuration, solves the fire resistance problem by initially robotically spraying the open tile mold cavities with a flame resistant Aliphatic top layer/surface coat mixture and then a flame retardant Aromatic sub-layer before closing the mold and injecting the polyurethane, allowing all in-mold products to simultaneously bond while curing, for a fire resistant roof tile. Once the tile is removed from the mold, the tile is immediately ready for installation on any 3″ on 12″ slopes or greater.
Direct sunlight on hot days raises roof material temperatures well over 200 degrees and cool nights rapidly decrease roof material temperatures below 80 degrees. During these weather conditions, on the underside of the tile, condensation daily drips down onto the substrate causing rapid substrate deterioration. Therefore tile roof systems need frequent maintenance and often leak after a short service time due to constant moisture. The Applicant's tile solves this problem by the product's high thermal insulating core that eliminates thermal transfer from the top to the bottom side of the roof tile yielding a much greater lifecycle to the substrate due to the fact that the Applicant's tile temperature only fluctuates on its exposed surface area. If the temperature outdoors is 85 degrees Fahrenheit, then the surface area of the Applicant's tile core will represent substantially that intensity even in direct sunlight, thereby virtually eliminating contrary temperature elevations and their transference to the undersides of the roof or better termed “attic space” preventing unbearable conditions just above the living or working space of a residential or commercial property.
Available tile roof systems need frequent maintenance and leak after a short service time due to rain/water penetration between roofing tiles that flows down onto the substrate also causing rapid substrate deterioration. The Applicant's tile solves this problem by the product's multi-casting pieces into (3-in-1) increased area per tile or triple/tri-tiles that reduce side lapping by over 60% on the roof lay-outs and by overlapping the tiles in a manner that inter band in a building block fashion which makes water penetration much more difficult if not mostly impossible.
Available pitched roof systems cannot hold up against category five (cat-5) hurricane winds. The Applicant's tile solves this problem by testing and achieving over a 200+ mph wind uplift rating without suffering any damage. This rating demonstrates that the invention can withstand any hurricane force wind and protect the structure it is properly installed on greatly minimizing storm damage and insurance claims plus premiums.
Hailstorms can damage most roof systems and sometimes facilitates major water penetration into the building and massive damage to building's interior. The Applicant's tile roof solves that problem because of each tile's pliable/crack resistant top layer and sub-layer coatings, plus the thickness and density of the Applicant's tile's core. When a tile is struck, even if hard enough to dent the tile, tile will not permit water penetration. Applicant's tiles can be easily repaired or replaced individually if damaged.
Traditional tile roof systems are highly material and labor intensive. The Applicant's invention solves these problems because the roof tiles are extremely lightweight. Roof tile installation is not complex, and requires far lesser amounts (±35%) of poly foam adhesive and caulking to install. The need for additional mechanical roof tile fasteners that create leaking points due to nail or screw penetrations into/through the substrate beyond the bottom/start row on any structure's sloped roof is eliminated.
Solar panels are attached to roofs to generate electricity. Solar panel brackets are attached to metal legs or stands that penetrate roof systems thus requiring special flashings and patching points. Solar panels create additional weight on structures plus their brackets, metal framing and bases, require separate installation, add no insulation, and create potential drafting and leak points in a roof surface. A typical solar panel uses a series of photovoltaic cells permanently mounted together that cannot be upgraded or renewed to meet significant improvements in solar cells without replacing entire panels. The Applicant's roof solves these issues by recessing/embedded solar photovoltaic cells encapsulated within a durable tile-sized “Module” eliminating leaky metal brackets, and heavy metal framing and bases. Individual tiles and/or their individual “Modules” are easy to upgrade. Simply detach “Modules” using common fastening methods (screws), unplug and sporadically replace a few “Modules” in the future, thereby making solar energy generating roof tiles very easy and affordable to boost power with tomorrow's advancements and eliminate the need to ever consider replacing costly large solar panels on a rooftop.
Solar panels installed on brackets that are attached to metal legs or stands, require removing said panels to replace the roofing material every 15-30 years (depending on the type of roof system) and then separately re-installed again, creating a variety of potential problems from panel breakage, to additional labor costs, to incorrect electrical and/or securing mechanical fastenings. The Applicant's roof solves these issues by greatly increasing the roof tiles life expectancy (70+ years) and recessing/embedded solar cells encapsulated within a durable “Module” that is easily replaced by substituting the solar module back into the roof tile with simple fasteners, thus eliminating the need to remove and replace any large solar panels due to dissimilar roofing material degradation or an accelerated short term life span. Simply replace the tile if the solar “Module” is stationary or permanently set in the tile.
Solar panels that are the interlocking, surface mounted type (installed without brackets and metal legs) are mechanically fastened directly to the roof deck and double as the main barrier between the weather and the structure. Pre-existing rooftops must be exactly the same size in length and width as the installed combination of these types of solar panels or they must be interwoven with other roofing material types to protect balance roof areas not covered by the panels. Inter mixing different roofing materials creates potential drafting and leak points in a roof surface. The invention solves these issues by perfectly retrofitting any sloped roof deck end to end (like traditional roof tiles) without the need for additional structural build-out and extra engineering costs due to invention's featherweight core and easy installation advantages. The total installed weight of the invention per square foot with any desired substrate, equals the same or less installed weight as any regular or heavy duty asphalt shingle that are universally approved for usage on every pitched roof over a 3-on-12 slope.
An array of highly insulated, pre-molded featherweight poly foam tiles configured to fit together to complete a building exterior roof covering that is aesthetically similar to a traditional tile roof, withstands any hurricane force winds, yields high R-values, offers low thermal conduction through tiles into an attic space and retrofits onto any sloped roof without structural build-up. The individual tiles can be molded into single area or triple area units. Each tile does not break under foot or when extreme downward compression forces are applied. In an alternate embodiment, each tile includes a solar photovoltaic cell “Module” that can produce solar energy. The tiles are lightweight and therefore easy to transport and install. The tiles can be factory molded to look like slate, wood, flat or roll tile.
Each molded tile is configured for placement at a predetermined location on the roof structure such as the roof peak or top, the start/first row of tiles along the bottom row of the roof and the field tiles, which are tiles that are installed between the roof peak and the bottom row of tiles. The hip and ridge tiles are installed at the roof's peak and the rake tiles are installed at the roof's side/gable ends.
The tiles of the present invention are molded from poly foam or comparable material from which each of the tile pieces are made in separate molds. There is a different mold for the field tiles, a different mold for the start row tiles, a different mold for the solar tiles, a different mold for the hip or ridge tiles, and a different mold for the rake tiles. All of the tile pieces for the roof are uniquely manufactured and can be manipulated to appear like any roof product desired.
In one embodiment the composition of the tile that is molded uses a complementary system of polymeric isocyanate “A”-component and a composite water-based (HCFC-245fa) blown “B”-component. Using these ingredients, the mixture produces a tile that has lightweight and excellent thermal insulation characteristics. Other compositions for specific roof applications involve modifications to the polyurethane A and B mix as well as mineral fiber and fiberglass cores. Additives for mold control are examples of modifications. Each tile can also include a finish coat that may include gelcoat and similar additives. Each tile can also include one or more outer sub-coats for additional fire resistance.
There is a rigid metal “Z” bar, which is mechanically fastened at the top of a completed bottom row of tile to prevent vertical tile slippage so other tiles (called field tiles) installed above the bottom start row can be immediately installed without worry of downward tile displacement/compromises prior to full curing of tile adhesive bond to substrate.
All of the tile pieces for the roof are pre-molded with top layer coatings before being delivered to distributor or building site where they are attached to the roof as described herein.
As an example, a commercial or residential building may have a wooden frame with a plywood sheet roof. A substrate may be prepared and applied to the roof with a hot or cold mop or peal-n-stick with granular type material or any other type of suitable substrate to which the tiles will be attached for high wind areas. Once a substrate has been installed and cured, customary poly foam adhesive (different than the tile composition) is used to attach all tiles to the substrate.
Both the field and start row tiles have on their back sides recessed or domed areas having grooves that are of a predetermined pattern that accesses the tiles' polyurethane foam core. The molded roof tile having a substantially flat bottom surface that rests into full contact with roof slope, said bottom surface including a recessed area of a predetermined shape that includes poly adhesive receiving grooves/channels that increase adhesive area by 23%, said recessed area not having a layer of fire retardant material and not having a layer of fire resistant UV blocking material thereby exposing the core body composition of the roof tile for engagement with the poly adhesive used to attach the roof tile to the roof substrate. These recessed areas receive the poly foam adhesive that is applied to the roof substrate. The tile core from production will be temporarily exposed (without top or sub layer coatings) at the tile underside only within the recessed, single dome/depression like area until adhesive foam is added by a roof installer, thereby establishing 100% filled core area and full tile foam to adhesive foam contact for maximum holding/bonding power.
Individual foam roof tiles are manually placed on the roof substrate and are allowed to have the poly foam adhesive harden firmly, thereby attaching the closed cell foam roof tiles to the poly foam adhesive and to the roof substrate. The roof tiles are installed on the roof in semi conventional fashion due to the fact that start and field tiles are available in triple area sizes, something traditional tiles could never offer due to conventional tiles extreme weight and easy breakage during shipping and installation even if outfitted with wire mesh during the manufacturing process.
Triple area sized tiles or tri-tiles expedite installation for installers saving time and money while adding overall weight to the tripled area tile for better bonding, The start tile is installed at the bottom roof edge and offers a lip or butt that aligns and overlays the bottom edge for moisture run-off without moisture reaching the roof's edge, averting certain water damage over long periods of time. Tri-field (three times wider than a single tile) and single field tiles attached in horizontal rows, are then overlapped row by row from roof bottom to roof peak. Rake tiles are installed at the start row's and field row's end and serve more as ornamental in nature. At the very peaks of the roof, the hip or ridge tiles are adhered to the roof using poly foam adhesive. Note that the field tiles and the bottom row tiles have top and bottom plus side-overlapped segments that inter band in a building block fashion for straight, mistake free application. The tiles are staggered to provide brick like format from row to row for efficient moisture run-off.
It is an object of this invention to provide an improved molded roof tile made of a specific polyurethane foam (preferably corporations and product types approved by Miami Dade Code Compliance Center) that is featherweight, can withstand category five hurricanes, yield a high R-value for insulation, offer low thermal conduction into an attic space, retrofits any sloped roof without structural build-up, can be molded into single or triple area units, cannot break under foot or when extreme pressures are applied, can include removable/replaceable solar “Modules” that produce electricity, is easy to install and can be molded to look like slate, wood, flat or roll tile.
Referring now to the drawings and in particular
An alternate embodiment such as molded tri-solar module field tile is shown in
Tile 30 shown in
When applied, poly foam adhesive is setting up in the semi fluid stage to allow several hours to dry. To attach the tiles 10, 20, 40, and 60 to a roof substrate, the tiles' bottom flat wedge surface 13 is placed in direct contact with a substrate (not shown) and with the domed pattern 12 filled with foam adhesive that binds the tile bottom 22 to the roof substrate. The poly foam adhesive is measurably applied to the tile dome pattern 12 thus filling the empty depression and rectangular grooves that increase contact areas to the tiles' foam core for analogous core to adhesive bonding for a weld-like bond.
After the tile dome 12 is filled with poly foam adhesive and during the adhesive foam setup, the tile is to be flipped and pressed in place against the roof substrate. The foam adhesive continues to sets up and cures until the tile is firmly attached to the roof substrate. The dome pattern 12 could be ⅝ inch deep, or sufficiently deep to attach the tile to the substrate. The tiles 10, 20, 40, 60 shown in
Tile 40 shown in
Tile 50 shown in
The tile 50 also includes the side edge return portion 15 that is used to create a gutter-like system with an adjacent tile having a reversed portion 16 so that the tiles inter band in a side-by-side row building block fashion. The bottom surface 22 of the bottom roof tile is shown.
Tile 60 as shown in
Tile 60 shown in
Referring now to
Tile 80 in
Referring now to
Tile 100 in
Tile 120 in
Tile 120 shown in
Solar module 140 in
Using the tri-field tile 10
Tile 160
Traditional tile roof systems need frequent maintenance and leak after a short service time. The invention solves this problem by overlapping the tiles in a manner which makes water penetration much more difficult if not altogether impossible.
The instant invention has been shown and described herein in what is considered to be the most practical and preferred embodiment. It is recognized, however, that departures may be made there from within the scope of the invention and that obvious modifications will occur to a person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US10/46290 | Aug 2010 | US | national |
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 12/858,980, filed Aug. 18, 2010, which claims the benefit of priority to U.S. provisional patent application Ser. No. 61/255,629, filed Oct. 28, 2009.
Number | Date | Country | |
---|---|---|---|
61255629 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12858980 | Aug 2010 | US |
Child | 13458277 | US |