The present invention relates to a lighting apparatus capable of dimming a semiconductor light emitting element and an illuminating fixture with the same.
Recently, illuminating fixtures using a semiconductor light emitting element such as a light emitting diode (an LED), an organic electroluminescence (EL), and the like, as a light source have been proliferated. The type of illuminating fixture is provided with, for example, a lighting apparatus (an LED lighting apparatus) disclosed in Japanese Patent Application No. 2005-294063 (hereinafter referred to as a “Document 1”).
The lighting apparatus in Document 1 is a self-excited type and does not have a dimming function. It is therefore impossible to dim the light source load.
Meanwhile, International Publication Number WO 01/58218 A1 (hereinafter referred to as a “Document 2”) discloses that supply power to a light source load (an LED lighting module) is turned on and off at a burst frequency of 100 Hz or 120 Hz synchronized with a frequency (50 or 60 Hz) of an AC power supply (a main power supply voltage). The lighting apparatus (a power supply assembly) can control a length of a pulse in which the supply power to the light source load is in an On state, thereby performing a dimming control. However, a specific circuit configuration for dimming is not disclosed in Document 2.
However, as described in Document 2, in the lighting apparatus configured to perform dimming by controlling a pulse length (an On time), when a dimming ratio is small (dark), the On time in one period of the burst frequency is short, which may cause flicker. For this reason, in the lighting apparatus, a range of selectable dimming ratios is difficult to be set widely.
The present invention is directed to a lighting apparatus capable of widening a dimming range of a light source load with a relatively simple configuration and an illuminating fixture with the same.
A lighting apparatus of the present invention comprises a switching element (162), an inductor (163), a diode (161), an output capacitor (164) and a control circuit (4). The switching element (162) is connected in series to a DC power supply (15) and is controlled to be turned on and off at high frequency. The inductor (163) is connected in series to the switching element (162). When the switching element (162) is turned on, a current flows through the inductor (163) from the DC power supply (15). The diode (161) discharges electromagnetic energy stored in the inductor (163), when the switching element (162) is turned on, to a light source load (3) comprising a semiconductor light emitting element when the switching element (162) is turned off. The output capacitor (164) is connected in parallel with the light source load (3) and adapted to smooth a pulsation component of an output current supplied to the light source load (3). The pulsation component is caused by the turning on and off of the switching element (162). The control circuit (4) is adapted to control an On and Off operation of the switching element (162). The control circuit (4) comprises first, second and third control modes as control modes of the switching element (162). The control circuit (4) is adapted: (a), in the first control mode, to turn the switching element (162) on and off at a predetermined oscillating frequency and an On time so that a current flows through the inductor (163) in a critical mode or a discontinuous mode; (b), in the second control mode, to fix the oscillating frequency of the switching element (162) and change the On time of the switching element (162), and (c), in the third control mode, to fix the On time of the switching element (162) and change the oscillating frequency of the switching element (162). The second control mode and the third control mode are allocated for at least two intervals of intervals into which a dimming range between a minimum dimming ratio and a maximum dimming ratio is divided. The control circuit (4) is adapted: (i), if a full lighting mode is designated, to select the first control mode to fully light the light source load; and (ii), if a dimming ratio is designated, to select one of the second and third control modes according to the interval, to which the dimming ratio corresponds, to dim the light source load (3) at the dimming ratio.
In an embodiment, the output capacitor (164) has capacity set so that a ripple ratio of the output current is less than 0.5 when the light source load (3) is fully lit.
In an embodiment, the lighting apparatus further comprises a current sensing unit (43) for sensing the current flowing through the switching element (162), and a capacitor (55) adapted to be charged by a driving signal of the switching element (162). In this embodiment, the control circuit (4) is adapted: to turn the switching element (162) off when the current sensed by the current sensing unit (43) reaches a predetermined first value: and to turn the switching element (162) on when a value of a voltage across the capacitor (55) is a predetermined threshold value or less. The control circuit (4) is also adapted: to change the first value, thereby changing the On time of the switching element (162); and to change a predetermined second value determining a discharge speed of the capacitor (55), thereby changing the oscillating frequency of the switching element (162).
In an embodiment, the control circuit (4) is adapted to set at least one of the first and second values to be zero or less, thereby stopping the On and Off operation of the switching element (162) to turn the light source load (3) off.
In an embodiment, the control circuit (4) is adapted to receive the dimming signal from outside to select a control mode of the switching element (162) according to the dimming ratio determined by the dimming signal.
In an embodiment, the control circuit (4) is adapted to set the oscillating frequency of the switching element (162) to be in a range of 1 kHz or more.
An illuminating fixture of the present invention comprises the lighting apparatus, and the light source load (3) adapted to be supplied with power from the lighting apparatus.
The present invention can widen the dimming range of the light source load with a relatively simple configuration.
Preferred embodiments of the invention will now be described in further details. Other features and advantages of the present invention will become better understood with regard to the following detailed description and accompanying drawings where:
As shown in
The lighting apparatus 1 includes: a DC power supply generation unit having a filter circuit 14 and a DC power supply circuit 15; a step-down chopper circuit (a buck converter) 16; and a control circuit 4, as main components. A basic configuration of the lighting apparatus 1 will be hereinafter described with reference to
The power supply connector 11 is connected to the DC power supply circuit 15 through a current fuse 13 and the filter circuit 14. The filter circuit 14 includes: a surge voltage absorbing device 141 and a filter capacitor 142 connected in parallel with the power supply connector 11 through the current fuse 13; a filter capacitor 143; and a common mode choke coil 144, and is adapted to cut noise. The filter capacitor 143 is connected between input terminals of the DC power supply circuit 15 and the common mode choke coil 141 is inserted between the two filter capacitors 142 and 143.
Herein, the DC power supply circuit 15 is a rectified smoothing circuit including a full-wave rectifier 151 and a smoothing capacitor 152, but it is not limited thereto. For example, the DC power supply circuit 15 may be a power correction circuit (a power factor improving circuit) including a step-up chopper circuit. By the above configuration, the DC power supply generation unit including the filter circuit 14 and the DC power supply circuit 15 converts an AC voltage (100 V, 50 or 60 Hz) from a DC power supply 2 into a DC voltage (about 140 V) and outputs the converted DC voltage from the output terminals (both terminals of the smoothing capacitor 152) thereof. The output terminals (both terminals of the smoothing capacitor 152) of the DC power supply circuit 15 are connected to the step-down chopper circuit 16 and output terminals of the step-down chopper circuit 16 are connected to the output connector 12.
The step-down chopper circuit 16 includes: a diode (a regenerative diode) 161 and a switching element 162 connected in series to each other and connected between the output terminals of the DC power supply circuit (the DC power supply) 15; and an inductor 163 connected in series to the light source load 3 between both ends of the diode 161. In this configuration, the diode 161 is installed so that a cathode of the diode 161 is connected to an output terminal of a positive side of the DC power supply circuit 15. That is, the switching element 162 is arranged to be inserted between a serial circuit of the inductor 163 and the light source load 3 connected in parallel with the diode 161, and an output terminal of a negative side of the serial power supply circuit 15. A function of the diode 161 will be described below.
The step-down chopper circuit 16 also includes an output capacitor 164 between output terminals thereof (between both terminals of the output connector 12) and the output capacitor 164 is connected in parallel with the light source load 3. That is, in the step-down chopper circuit 16, the output capacitor 164 is connected between both ends of a serial circuit of the diode 161 and the inductor 163 and both ends of the output capacitor 164 are connected to the output connector 12. The output capacitor 164 serves to smooth a pulsation component of the output current supplied to the light source load 3 from the output connector 12. The output capacitor 164 will be described below in detail.
The control circuit 4 includes a driver circuit 4A (see
However, the control circuit 4 has three modes, that is, a first control mode, a second control mode, and a third control mode as control modes of the switching element 162. The control circuit 4 is adapted to select the second control mode or the third control mode according to a dimming ratio designated from the outside, thereby dimming the light source load 3 based on the designated dimming ratio. Here, a dimming range between a minimum dimming ratio and a maximum dimming ratio is divided into a plurality of intervals, and the second control mode and the third control mode are previously allocated for at least two intervals of the divided intervals. In the embodiment, the minimum dimming ratio is 0%, and the maximum dimming ratio is 100%.
In the first control mode, the control circuit 4 is adapted to turn the switching element 162 on and off at predetermined oscillating frequency (i.e., a switching frequency of the switching element 162) and On time (an On time per one period) so that, as an intermittent mode, a current (an electric current) discontinuously flows through the inductor 163. The intermittent mode mentioned herein, which is a mode in which a sleep interval (an interval in which a current becomes zero) is generated in the current flowing through the inductor 163, includes a critical mode in which the switching element 162 is turned on when the current flowing through the inductor 163 becomes zero. That is, the intermittent mode includes a critical mode and a discontinuous mode. The critical mode is a mode in which the current flowing through the inductor 163 becomes zero only for a moment. The discontinuous mode is a mode in which the state in which a current becomes zero every period of the current flowing through the inductor 163 is continued for a predetermined period.
In the second control mode, the control circuit 4 is adapted to approximately fix the oscillating frequency of the switching element 162 within each of the aforementioned intervals and to change the On time of the switching element 162. Unlike the second control mode, in the third control mode, the control circuit 4 is adapted to approximately fix the On time of the switching element 162 within each of the intervals and to change the oscillating frequency of the switching element 162.
The control circuit 4 is adapted to select the first control mode to fully light the light source load 3, if a full lighting mode for fully lighting the light source load 3 is designated. Meanwhile, if a dimming mode for dimming the light source load 3 at a dimming ratio is designated, the control circuit 4 is adapted to select one of the second and third control modes according to an interval corresponding to the designated dimming ratio, thereby dimming the light source load 3 according to the designated dimming ratio. Here, in the second control mode, the oscillating frequency is approximately fixed within the interval for which the second control mode is allocated and therefore, a frequency as a preset value is previously allocated for the oscillating frequency fixed within the interval. In the third control mode, the On time is approximately fixed within the interval for which the third control mode is allocated and therefore, a time as a preset value is previously allocated for the On time fixed within the interval.
For example, when a dimming ratio of the interval corresponding to the second control mode is designated, the control circuit 4 selects the second control mode and approximately fixes the oscillating frequency to the preset value (the oscillating frequency) that is allocated to the interval and changes the On time to dim the light source load 3. On the other hand, when a dimming ratio of the interval corresponding to the third control mode is designated, the control circuit 4 selects the third control mode and approximately fixes the On time to the preset value (On time) that is allocated to the interval and changes the oscillating frequency to dim the light source load 3.
Here, in all the first to third control modes, a pulsation caused by the turning on and off of the switching element 162 occurs in an output current supplied to the light source load 3. Therefore, the step-down chopper circuit 16 smoothes the pulsation component through the output capacitor 164. Here, the capacity of the output capacitor 164 is set so that a ripple ratio (a ripple content ratio) of the output current smoothed when the light source load 3 is fully lit (that is, when the first control mode is selected) is less than 0.5. The ripple ratio mentioned herein represents a content ratio of pulsation (ripple) component of the output current and is a value (Ipp/Ia) obtained by dividing a variation width Ipp (=Imax−Imin) of the output current defined by maximum and minimum values (Imax and Imin) of the output current by an average value Ia of the output current.
Next, an operation of the foregoing lighting apparatus 1 is described as being divided into a full lighting state in which the light source load 3 is fully lit and each of first to third dimming states in which the light source load 3 is dimmed. The first dimming state mentioned herein is a lighting state according to the second control mode. The second dimming state is a lighting state in which the third control mode is additionally selected from the first dimming state, and the third dimming state is a lighting state in which the second control mode is additionally selected from the second dimming state. That is, the lighting apparatus 1 is transferred to the first dimming state when the second control mode is selected from the full lighting state, transferred to the second dimming state when the third control mode is selected from the first dimming state, and transferred to the third dimming state when the second control mode is selected from the second dimming state. In other words, the first dimming state is a state in which only the second control mode is selected from the full lighting state, and the second dimming state is a state in which the third control mode in addition to the second control mode is selected from the full lighting state in a multi-stage type. The third dimming state is a state in which the third control mode in addition to the second control mode and the second control mode are selected from the full lighting state in a multi-stage type.
In the On interval of the switching element 162 in the full lighting state, a current flows through a path of the DC power supply circuit 15, the light source load 3, the inductor 163, the switching element 162, and the DC power supply circuit 15 from the DC power supply circuit 15, and thus electromagnetic energy is stored in the inductor 163. Meanwhile, in the Off interval of the switching element 162, the electromagnetic energy stored in the inductor 163 is discharged and a current flows through a path of the inductor 163, the diode 161, the light source load 3, and the inductor 163.
Here, in the full lighting state (mode), the control circuit 4 turns the switching element 162 on and off at the predetermined oscillating frequency and On time (On time per one period) according to the first control mode. As shown in
In the first dimming state, the control circuit 4 mainly controls the On time of the switching element 162 so that an oscillating frequency f2 is approximately equal to the oscillating frequency f1 of the full lighting state. That is, the control circuit 4 changes only the On time of the switching element 162 so as to be short while fixing the oscillating frequency of the switching element 162 from the full lighting state. Here, as shown in
As such, when the lighting apparatus 1 is in the first dimming state, since the On time of the switching element 162 is short, a peak of the current I1 flowing through the inductor 163 is reduced and the electromagnetic energy stored in the inductor 163 is also reduced, as compared to the full lighting state. As a result, when compared with the full lighting state, the current (the output current) supplied from the lighting apparatus 1 to the light source load 3 is reduced and the light output from the light source load 3 is reduced (becomes dark). In this case, the On time t2 of the switching element 162 is shorter than the On time t1 in the full lighting state (t1>t2) and the oscillating frequency f2 is approximately the same as the oscillating frequency f1 of the full lighting state (f1≈f2).
In the second dimming state, the control circuit 4 mainly controls the oscillating frequency of the switching element 162 so that the On time t3 is approximately the same as the On time t2 of the first dimming state. That is, the control circuit 4 changes only the oscillating frequency of the switching element 162 so as to be reduced while fixing the On time of the switching element 162 from the first dimming state. Here, as shown in
As such, when the lighting apparatus 1 is in the second dimming state, the oscillating frequency of the switching element 162 is reduced and the Off time (the Off time per one period) of the switching element 162 is long accordingly. Therefore, when the lighting apparatus 1 is in the second dimming state, the peak of the current I1 flowing through the inductor 163 is reduced more and the electromagnetic energy stored in the inductor 163 is also reduced more, as compared to the first dimming state. As a result, when compared with the first dimming state, the current (the output current) supplied from the lighting apparatus 1 to the light source load 3 is reduced more and the light output from the light source load 3 is reduced more (becomes darker). In this case, the On time t3 of the switching element 162 is approximately the same as the On time t2 of the first dimming state (t2≈t3) and an oscillating frequency f3 is lower than the oscillating frequency f2 of the first dimming state (f2>f3).
In the third dimming state, the control circuit 4 mainly controls the On time of the switching element 162 so that an oscillating frequency f4 is approximately equal to the oscillating frequency f3 of the second dimming state. That is, the control circuit 4 changes only the On time of the switching element 162 so as to be short while fixing the oscillating frequency of the switching element 162 from the second dimming state.
As such, when the lighting apparatus 1 is in the third dimming state, since the On time of the switching element 162 is shorter, the peak of the current I1 flowing through the inductor 163 is reduced more and the electromagnetic energy stored in the inductor 163 is also reduced more, as compared to the second dimming state. As a result, when compared with the second dimming state, the current (the output current) supplied from the lighting apparatus 1 to the light source load 3 is reduced more and the light output from the light source load 3 is reduced more (becomes darker). In this case, the On time t4 of the switching element 162 is shorter than the On time t3 of the second dimming state (t3>t4) and the oscillating frequency f4 is approximately the same as the oscillating frequency f3 of the second dimming state (f3≈f4).
Consequently, the light source load 3 is brightest in the full lighting state and is darkest in the third dimming state.
The present embodiment illustrates the case in which the control circuit 4 continuously changes the On time of the switching element 162 in the second control mode and the oscillating frequency of the switching element 162 is continuously changed in the third control mode. However, the present embodiment is not limited to the example. For example, the control circuit 4 may change the On time of the switching element 162 stepwise (discontinuously) in the second control mode and may change the oscillating frequency of the switching element 162 stepwise (discontinuously) in the third control mode.
Next, a detailed configuration of the control circuit 4 will be described in more detail.
In the present embodiment, the driver circuit 4A of the control circuit 4 includes an integrated circuit (IC) 40 for control and peripheral components thereof as shown in
The lighting apparatus 1 includes a control power supply circuit 7 that has a zener diode 701 and a smoothing capacitor 702, and is adapted to supply control power to the integrated circuit 40, and applies an output voltage of the control power supply circuit 7 to a power supply terminal (an eighth pin P8) of the integrated circuit 40.
When control power supply voltage of a predetermined voltage or more is applied between the eighth and sixth pins P8 and P6, reference voltages Vref1 and Vref2 are generated with a control power supply 403, and thus each circuit in the integrated circuit 40 can be operated. When power is applied to the integrated circuit 40, a start pulse is supplied to a set input terminal (“S” in
When the seventh pin P7 becomes the H level, a drive voltage (a gate signal) divided by the resistors 41 and 42 shown in
When the switching element 162 is supplied with the drive voltage and then turned on, a current flows to a negative electrode of the smoothing capacitor 152 through the output capacitor 164, the inductor 163, the switching element 162, and the resistor 43 from a positive electrode of the smoothing capacitor 152. In this case, a chopper current flowing through the inductor 163 is an approximately linearly increasing current unless the inductor 163 is magnetic-saturated and is detected by the resistor 43 as a current sensing unit. A serial circuit of a resistor 44 and a capacitor 62 is connected between both ends of the (current sensing) resistor 43, and a connection point between the resistor 44 and the capacitor 62 is connected to the fourth pin P4 of the integrated circuit 40. Therefore, a voltage corresponding to the current value sensed through the resistor 43 is supplied to the fourth pin P4 of the integrated circuit 40.
A voltage value supplied to the fourth pin P4 of the integrated circuit 40 is applied to a “+” input terminal of a comparator 409 through a noise filter including a resistor 407 and a capacitor 408 therein. A reference voltage determined by the applied voltage to the first pin P1 and the applied voltage to the third pin P3 is applied to a “−” input terminal of the comparator 409 and the output of the comparator 409 is supplied to a reset terminal (“R” in
Therefore, if the voltage of the fourth pin P4 of the integrated circuit 40 exceeds the reference voltage, the output of the comparator 409 becomes the H level and the reset signal is supplied to the reset terminal of the flip flop 405, and thus the output of the flip flop 405 becomes the L level. In this case, the seventh pin P7 of the integrated circuit 40 becomes the L level, and therefore the diode 45 of
In the present embodiment, resistors 47, 48, and 49 and capacitors 50 and 51 average a rectangular wave signal S1 from a signal generation circuit 21 (see
In other words, the control circuit 4 turns the switching element 162 off when a value of the current sensed (measured) through the resistor (the current sensing unit) 43 reaches a predetermined first value (corresponding to the reference voltage) determined by the rectangular wave signal S1. The On time of the switching element 162 is changed by changing the first value. Therefore, in the embodiment of the present invention, the On time of the switching element 162 can be changed using this principle in the first dimming state and the third dimming state.
As shown in
The integrated circuit 40 includes a built-in clamp circuit 410 connected to the fifth pin P5 as shown in
At this time, the output of the comparator 411 becomes the H level. Therefore, the flip flop 405 connected to the output terminal of the comparator 411 through an OR circuit 412 is set and the output of the flip flop 405 also becomes the H level. Therefore, the seventh pin P7 becomes the H level again, and thus the switching element 162 is turned on. Thereafter, the control circuit 4 repeatedly performs the same operations, and thus the switching element 162 is turned on and off at a high frequency.
Here, as the duty ratio of the rectangular wave signal S2 is larger (as the time of the H level is longer), the voltage between a base and an emitter of the transistor 56 is more increased and a current flowing through the transistor 56 is also more increased. Therefore, the capacitor 55 is quickly discharged. Therefore, the Off time of the switching element 162 is short and the oscillating frequency of the switching element 162 is increased. On the other hand, as the duty ratio of the rectangular wave signal S2 is smaller (as the time of the H level is shorter), the voltage between the base and the emitter of the transistor 56 is more reduced and the current flowing through the transistor 56 is also more reduced. Accordingly, the discharge of the capacitor 55 is delayed. Therefore, the Off time of the switching element 162 is long and the oscillating frequency of the switching element 162 is reduced.
In other words, the control circuit 4 turns the switching element 162 on when a value of the voltage across the capacitor 55 charged by the driving signal of the switching element 162 becomes a predetermined threshold value (a value of the reference voltage Vref2) or less. Here, the control circuit 4 determines a discharge speed of the capacitor 33 based on a predetermined second value (the voltage between the base and the emitter of the transistor 56) determined by the rectangular wave signal S2, and changes the predetermined second value to change the oscillating frequency of the switching element 162. Therefore, in the second dimming state of the present embodiment, the oscillating frequency of the switching element 162 can be changed using this principle.
Next, the overall configuration of the lighting apparatus 1 in which the lighting apparatus 1 shown in
In
The rectifying circuit 18 is connected to the signal line connector 17 and is a circuit for converting wires of the dimming signal line 5 into non-polarized wires. The lighting apparatus 1 includes the rectifying circuit 18, and thus is normally operated even when the dimming signal line 5 is connected thereto reversely. That is, the rectifying circuit 18 includes: a full-wave rectifier 181 connected to the signal line connector 17; and a series circuit of a zener diode 183 and an impedance element 182 such as a resistor, connected in parallel with an output of the full-wave rectifier 181. Therefore, the rectifying circuit 18 full-wave rectifies the input dimming signal with the full-wave rectifier 181 and generates the rectangular wave voltage signal across the zener diode 183 through the impedance element 182.
The insulating circuit 19 includes a photocoupler 191 and serves to transfer the rectangular wave voltage signal to the control circuit 4 while insulating the dimming signal line 5 and the control circuit 4 of the lighting apparatus 1. The waveform shaping circuit 20 is adapted to shape a waveform of a signal output from the photocoupler 191 of the insulating circuit 19 so as to be output as a pulse width modulation (PWM) signal. Therefore, the waveform of the rectangular wave voltage signal (the dimming signal) transmitted far through the dimming signal line 5 may be distorted but the influence of the distortion is removed through the waveform shaping circuit 20.
Here, in a conventional inverter-type fluorescent lamp dimming ballast, a low pass filter circuit such as a CR integrating circuit (a smoothing circuit) is mounted at a latter stage of the waveform shaping circuit. The ballast is adapted to generate an analog dimming voltage and variably control a frequency of the inverter, and the like, according to the dimming voltage. In contrast, the lighting apparatus 1 according to the present embodiment is adapted to supply a PWM signal after the waveform shaping to the signal generation circuit 21.
The signal generation circuit 21 includes a microcomputer and peripheral components thereof, which are not shown. The microcomputer is configured to measure an On time of the input PWM signal through a built-in timer and supply two kinds of rectangular wave signals S1 and S2 to the driver circuit 4A. The rectangular wave signals S1 and S2 supplied from the microcomputer are smoothed through the resistor and the capacitor within the driver circuit 4A, as described above. Therefore, as the duty ratio of the rectangular wave signal S1 is larger (as the time of the H level is longer), the input value in the driver circuit 4A is more increased. That is, as the duty ratio of the rectangular wave signal S1 is larger, the voltage V1 of the third pin P3 supplied with the smoothed rectangular wave signal S1 is more increased. As the duty ratio of the rectangular wave signal S2 is larger, the voltage V2 between the base and the emitter of the transistor 56, supplied with the smoothed rectangular wave signal S2 is more increased.
Next, when the PWM signal is changed, an operation of the lighting apparatus 1 will be described with reference to
The first control mode is allocated for an interval in which a duty ratio (an On duty ratio) of the PWM signal is in a range of 0 to 5% (a first interval), where 0% is a first end of the first interval, and 5% is a second end of the first interval. As shown in
The second control mode is allocated for an interval in which a duty ratio of the PWM signal is in a range of 5 to 30% (a second interval), where 5% is a first end of the second interval, and 30% is a second end of the second interval. In this interval, the signal generation circuit 21 reduces the duty ratio of the rectangular wave signal S1 according to the increase in the duty ratio of the PWM signal to reduce the voltage V1 of the third pin P3 up to v11 (<v10). When the voltage V1 is reduced, the On time of the switching element 162 is short, and thus the load current (the output current supplied to the light source load 3) is reduced. In this case, in order to substantially and constantly maintain the oscillating frequency of the switching element 162, the signal generation circuit 21 may slightly reduce the duty ratio of the rectangular wave signal S2 to slightly reduce the voltage V2 and delay the discharge of the capacitor 55 to slightly increase the Off time of the switching element 162. This state becomes the first dimming state.
The third control mode is allocated for an interval in which a duty ratio of the PWM signal is in a range of 30 to 80% (a third interval), where 30% is a first end of the third interval, and 80% is a second end of the third interval. In this interval, the signal generation circuit 21 reduces the duty ratio of the rectangular wave signal S2 according to the increase in the duty ratio of the PWM signal, thereby reducing the voltage V2 between the base and the emitter up to v21 (<v20). When the voltage V2 is reduced, drawn current of the transistor 56 is reduced and discharging time of the capacitor 55 is increased so that the Off time of the switching element 162 is long and the oscillating frequency is reduced, such that the load current (the output current) is reduced. In this case, the voltage V1 of the third pin P3 maintains a value of v11, and therefore the On time of the switching element 162 is constant. This state becomes the second dimming state.
The second control mode is allocated for an interval in which a duty ratio of the PWM signal is in a range of 80 to 90% (a fourth interval), where 80% is a first end of the fourth interval, and 90% is a second end of the fourth interval. In the fourth interval, the signal generation circuit 21 reduces the duty ratio of the rectangular wave signal S1 according to the increase in the duty ratio of the PWM signal, reducing the voltage V1 of the third pin P3 up to v12 (<v11). When the voltage V1 is reduced, the On time of the switching element 162 is shorter, and thus the load current (the output current) is reduced more. In this case, in order to substantially and constantly maintain the oscillating frequency of the switching element 162, the signal generation circuit 21 may slightly reduce the duty ratio of the rectangular wave signal S2 to slightly reduce the voltage V2 and delay the discharge of the capacitor 55 to slightly increase the Off time of the switching element 162. This state becomes the third dimming state.
In an interval (a fifth interval) in which a duty ratio of the PWM signal is in a range of 90 to 100%, the signal generation circuit 21 is set to constantly maintain the duty ratios of the rectangular wave signals S1 and S2, thereby maintaining the third dimming state. Alternatively, in the interval in which the duty ratio of the PWM signal is in a range of 90% to 100%, the lighting apparatus 1 may set at least one of the voltage V1 of the third pin P3 and the voltage V2 between the base and the emitter to the L level to stop the operation of the step-down chopper circuit 16 and turn the light source load 3 off. That is, the control circuit 4 may set at least one of a predetermined first value (corresponding to the reference voltage) determined by the rectangular wave signal S1 and a predetermined second value (the voltage V2 between the base and the emitter) determined by the rectangular wave signal S2 to zero or less to stop the On an Off operation of the switching element 162.
The control circuit 4 sets the oscillating frequency of the switching element 162 to be in a range of 1 kHz or more, preferably, several kHz or more. Therefore, even in the second or third dimming state in which the oscillating frequency is reduced, a flicker frequency of the light source load 3 is high and the interference between the flicker of the light source load 3 and the shutter speed (the exposure time), for example, at the time of the camera photographing can be avoided.
According to the lighting apparatus 1 of the present embodiment as described above, the control circuit 4 randomly selects the second control mode for changing the On time of the switching element 162 and the third control mode for changing the oscillating frequency in a multi stage, thereby dimming the light source load 3. Therefore, when comparing with the case in which the light source load 3 is dimmed based on only the second control mode or the third control mode, the lighting apparatus 1 may expand the dimming range of the light source load 3 without flickering the light source load 3. As a result, the lighting apparatus 1 can precisely (finely) control the brightness of the light source load 3 over the relatively wide range.
In addition, the control of the dimming ratio in the dimming state is performed through the signal generation circuit 21 including the microcomputer as a main component, such that the lighting apparatus 1 that can precisely (finely) control the brightness of the light source load 3 with the relatively simple configuration can be realized.
Further, when the lighting apparatus 1 fully lights the lighting source load 3, the control circuit 4 is operated in the first control mode in which the On time and the oscillating frequency of the switching element 162 are fixed and the switching element 162 is turned on and off in the critical or discontinuous mode in which a current discontinuously flows through the inductor 163. Therefore, even when the lighting apparatus 1 changes at least one of the On time and the oscillating frequency of the switching element 162 to dim the light source load 3, the switching element 162 is turned on and off in the critical or discontinuous mode in which a current discontinuously flows through the inductor 163. For example, the lighting apparatus 1 always turns the switching element 162 on and off in the intermittent mode (the critical mode or discontinuous mode) regardless of the dimming ratio.
In the intermittent mode, the switching element 162 is turned on at a timing when the current flowing through the inductor 163 is zero, such that the loss of the switching element 162 may be reduced more when compared with the continuous mode in which a current continuously flows through the inductor 163 without the sleep interval. That is, the switching element 162 is operated in the intermittent mode at all times, such that the lighting apparatus 1 according to the present embodiment can reduce the loss of the switching element 162 more and can realize the higher circuit efficiency, as compared with the case in which the switching element 162 is operated in the continuous mode.
Further, the output current supplied to the light source load 3 is smoothed with the output capacitor 164 and the ripple ratio of the output current is set to be less than 0.5 at the time of the full lighting of the light source load 3, such that the lighting apparatus 1 having the foregoing configuration suppresses the flicker of the light source load 3, thereby increasing the light emitting efficiency.
In the present embodiment, the dimming signal supplied to the lighting apparatus 1 is the rectangular wave of which the duty ratio varies, but it is not limited thereto. For example, the dimming signal may be a DC voltage of which the voltage value varies. In this case, the signal generation circuit 21 including the microcomputer realizes the dimming control by controlling the duty ratios of the rectangular wave signals S1 and S2 based on the amplitude (the voltage value) of the dimming signal. The lighting apparatus 1 is not limited as a configuration that inputs the dimming signal from the dimming signal line 5. For example, the lighting apparatus 1 may be a configuration in which an infrared light receiving module is mounted to receive the dimming signal by infrared communication.
The lighting apparatus 1 according to the present embodiment is different from the lighting apparatus 1 according to the first embodiment in terms of the configuration of the control circuit 4 and the control power supply circuit 7, as shown in
The DC power supply circuit 15 includes the step-up chopper circuit as the power factor improving circuit that is provided at the output terminal of the full-wave rectifier 151 in this embodiment. The step-up chopper circuit has a general configuration in which the inductor 153 and the switching element 154 are connected in series to each other and are between the output terminals of the full-wave rectifier 151, and the diode 155 and the smoothing capacitor 152 are connected in series to each other and connected across the switching element 154. Therefore, a DC voltage (approximately 410 V) obtained by stepping-up and smoothing the supply voltage from an AC power supply 2 is generated at the output terminal (both ends of the smoothing capacitor 152) of the DC power supply circuit 15. The step-up chopper circuit is operated by controlling the On and Off of the switching element 154 through a control circuit that includes an integrated circuit 156 including “L6562” from ST Micro Electronic Co. and peripheral components thereof. The operation of this kind of step-up chopper circuit is known, and therefore the operation thereof will not be described here.
As shown in
By the above configuration, the control power supply circuit 7 generates a constant voltage (for example, about 15 V) across the smoothing capacitor 73, wherein the constant voltage is a power supply voltage VC1 for supplying the control power of the integrated circuit (a three-terminal regulator 79, a microcomputer 80, and a driver circuit 81) to be described below. Therefore, because the smoothing capacitor 73 is uncharged until the IPD element 71 starts operation, other integrated circuits (the three-terminal regulator 79, the microcomputer 80, and the driver circuit 81) are not operated.
Hereinafter, an operation of the control power supply circuit 7 will be described.
At the early stage of power up, when the smoothing capacitor 152 is charged by the output voltage of the full-wave rectifier 151, a current flows along a path of drain terminal of the IPD element 71, control terminal of the IPD element 71, smoothing capacitor 77, inductor 72, and smoothing capacitor 73. Therefore, the smoothing capacitor 73 is charged with the polarity as shown in
When the built-in switching element 711 of the IPD element 71 is turned on, a current flows along a path of smoothing capacitor 152, drain terminal of IPD element 71, source terminal of IPD element 71, inductor 72 and smoothing capacitor 73, and thus the smoothing capacitor 73 is charged. When the switching element 711 is turned off, the electromagnetic energy stored in the inductor 72 is discharged to the smoothing capacitor 73 through the diode 74. Therefore, the circuit including the IPD element 71, the inductor 72, the diode 74, and the smoothing capacitor 73 is operated as the step-down chopper circuit, such that the power supply voltage VC1 obtained by stepping down the voltage across the smoothing capacitor 152 is generated across the smoothing capacitor 73.
When the built-in switching element 711 in the IPD element 71 is turned off, the regenerative current flows through the diode 74. However, the voltage across the inductor 72 is clamped to a sum voltage of voltage across the smoothing capacitor 73 and forward voltage of the diode 74. Voltage obtained by subtracting the zener voltage of the zener diode 75 and the forward voltage of the diode 76 from the sum voltage becomes a voltage across the smoothing capacitor 77. A built-in controller 712 in the IPD element 71 is adapted to control the On and Off operation of the switching element 711 so that the voltage across the smoothing capacitor 77 is constant. As a result, the voltage (the power supply voltage VC1) across the smoothing capacitor 73 is also constant.
When the power supply voltage VC1 is generated across the smoothing capacitor 73, the three-terminal regulator 79 starts supplying the power voltage VC2 (e.g., 5 V) to the microcomputer 80 to start the On and Off control of the switching element 162 of the step-down chopper circuit 16. The microcomputer 80 is supplied with the dimming signal from the external dimmer 6 and performs the dimming control.
As shown in
The control circuit 4 of the present embodiment is described below.
An input terminal of the three-terminal regulator 79 is connected to a positive electrode of the smoothing capacitor 73, while an output terminal of the three-terminal regulator 79 is connected to the twenty-seventh pin P27 (a power terminal) of the microcomputer 80. A capacitor 791 is connected between the input terminal and a ground terminal of the three-terminal regulator 79. A capacitor 792 is connected between an output terminal and the ground terminal of the three-terminal regulator 79. The twenty-eighth pin P28 (a ground terminal) of the microcomputer 80 is connected to ground. Thus, the three-terminal regulator 79 is configured to convert the voltage across the smoothing capacitor 73 (power supply voltage VC1) into the power supply voltage VC2 for a microcomputer (herein, 5V) across the capacitor 792, thereby supplying power to the microcomputer 80.
The twenty-second pin P22 of the microcomputer 80 is connected to the external dimmer 6 through the signal line connector 17, and is supplied with the dimming signal from the external dimmer 6 through the dimming signal line 5. As mentioned above, the dimming signal line 5 is supplied with the dimming signal including a rectangular wave voltage signal, wherein the duty ratio of the rectangular wave voltage signal is variable, and the frequency and amplitude of the rectangular wave voltage signal are, for example, 1 kHz and 5 V, respectively. The microcomputer 80 is configured to output, from the nineteenth pin P19, the rectangular wave signal S3 for turning on and off of the switching element 162 in accordance with the duty ratio of the dimming signal. The driver circuit 81 drives the switching element 162 in accordance with the rectangular wave signal S3.
The driver circuit 81 has the first to sixth pins (P81-P86). The first pin P81 is a positive input terminal, and is connected to the nineteenth pin P19 of the microcomputer 80 through a resistor 82 of, e.g., 1 kΩ. A connection point between the resistor 82 and the nineteenth pin P19 of the microcomputer 80 is connected to ground through a resistor 83 of, e.g., 100 kΩ. The second pin P82 is a ground terminal and connected to ground. The third pin P83 is a negative input terminal and connected to ground. The fourth pin P84 is an output terminal (a SYNC output terminal) of a built-in N-channel MOSFET and connected to the gate terminal of the switching element 162 through a resistor 84 of, e.g., 10 Ω. The fifth pin P85 is an output terminal (a source output terminal) of a built-in P-channel MOSFET and connected to the gate terminal of the switching element 162 through a resistor 85 of, e.g., 300 Ω. The gate terminal of the switching element 162 is also connected to ground through a resistor 90. The sixth pin P86 is a power terminal, and is connected to the positive electrode of the smoothing capacitor 73 and also connected to ground through a capacitor 86 of, e.g., 0.1 μF. The sixth pin P86 is supplied with the power supply voltage VC1 (the voltage across the smoothing capacitor 73).
The driver circuit 81 amplifies the rectangular wave signal S3 having an amplitude of, e.g., 5V from the microcomputer 80 so that the amplitude becomes, e.g., 15V, and supplies the amplified signal to the gate terminal of the switching element 162, thereby turning the switching element 162 on and off.
Here, in the present embodiment, the three-terminal regulator 79 is, for example, “TA78L05” from Toshiba Co., the microcomputer 80 is an 8-bit microcomputer “78K0/Ix2” from RENESAS Co., and the driver circuit 81 is “MAX15070A” from Maxim Co. Here, as an example, the inductor 163 is set to be 3 mH and the output capacitor 164 is set to be 1 μF.
However, the lighting apparatus 1 in the present embodiment is adapted so that according to the duty ratio (the dimming ratio) of the dimming signal, the apparatus 1 switches the full lighting state in which full lighting of the light source load 3 is performed and the first and second dimming states in which the light source load 3 is dimmed. The first dimming state mentioned herein is a lighting state based on the third control mode in which the On time of the switching element 162 is approximately fixed and the oscillating frequency of the switching element 162 is changed. The second dimming state is a lighting state in which the second control mode in which the oscillating frequency of the switching element 162 is approximately fixed and the On time of the switching element 162 is changed, is further selected from the first dimming state.
Next, an operation of the lighting apparatus 1 according to the present embodiment will be described with reference to
First, the first control mode is allocated for an interval in which a duty ratio of the PWM signal is in a range of 0 to 5% (a first interval). In the first interval, the microcomputer 80 outputs the constant rectangular wave signal S3 for driving the switching element 162 from the nineteenth pin P19. In this case, the rectangular wave signal S3 in the embodiment is set so that the oscillating frequency is 30 kHz, the On time is 5.8 μs and the voltage value is 5 V. The driver circuit 81 amplifies the voltage value to 15 V by receiving the rectangular wave signal S3 and supplies the amplified signal to the gate of the switching element 162 of the step-down chopper circuit 16 to turn the switching element 162 on and off.
In this case, the lighting apparatus 1 is operated in the full lighting state and the output current of 308 mA in average flows through the light source load 3 (the dimming ratio of 100%). The lighting apparatus 1 continues the state (the full lighting state) until the duty ratio of the dimming signal reaches 5%. In this state, the On and Off operation of the switching element 162 is in a discontinuous mode and the switching element 162 is turned on at the timing when the current is zero, such that the switching loss of the switching element 162 is small. In this case, the output current supplied from the lighting apparatus 1 to the light source load 3 is smoothed with the output capacitor 164 so that the ripple ratio (IPP/Ia) is less than 0.5.
Next, the third control mode is allocated for an interval (a second interval) in which a duty ratio of the dimming signal is a range of 5 to 80%. In this interval, the microcomputer 80 gradually reduces the oscillating frequency of the rectangular wave signal S3 supplied from the nineteenth pin P19 according to the increase in the duty ratio of the dimming signal. In the present embodiment, the microcomputer 80 approximately maintains the On time of the rectangular wave signal S3 as a predetermined value (5.8 μs) and gradually increases the Off time of the rectangular wave signal according to the increase in the duty ratio of the dimming signal. Here, when the duty ratio of the dimming signal is 80%, the program of the microcomputer 80 is set so that the oscillating frequency of the rectangular wave signal S3 supplied from the nineteenth pin P19 is 8 kHz. In this case, the lighting apparatus 1 is operated in the first dimming state and an average of the output current flowing through the light source load 3 is controlled to 163 mA (the dimming ratio of 53%) as a lower limit.
The second control mode is allocated for an interval (a third interval) in which a duty ratio of the dimming signal is a range of 80-95%. In this interval, the microcomputer 80 gradually reduces the On time of the rectangular wave signal S3 supplied from the nineteenth pin P19 according to the increase in the duty ratio of the dimming signal. In the present embodiment, the microcomputer 80 changes the On time according to the duty ratio of the dimming signal while making the oscillating frequency approximately constant as a predetermined value (8 kHz). Here, when the duty ratio of the dimming signal is 95%, the program of the microcomputer 80 is set so that the On time of the rectangular wave signal S3 supplied from the nineteenth pin P19 is 0.5 μs. In this case, the lighting apparatus 1 is operated in the second dimming state and an average of the output current flowing through the light source load 3 is controlled to 2.5 mA (the dimming ratio of 0.8%) as a lower limit.
In the present embodiment, the lighting apparatus 1 stops the operation of the step-down chopper circuit 16 and turns the light source load 3 off by setting the output from the nineteenth pin P19 of the microcomputer 80 to the L level in an interval (a fourth interval) in which a duty ratio of the PWM signal is in a range of 95% or more (see
According to the lighting apparatus 1 of the present embodiment as described above, the control circuit 4 dims the light source load 3 by randomly selecting the second control mode for changing the On time of the switching element 162 and the third control mode for changing the oscillating frequency in a multi stage. Therefore, when compared with the case in which the light source load 3 is dimmed based on only the second control mode or the third control mode, the lighting apparatus 1 may expand the dimming range of the light source load 3 without flickering the light source load 3. As a result, the lighting apparatus 1 can precisely (finely) control the brightness of the light source load 3 over the relatively wide range.
In addition, the control of the dimming ratio in the dimming state is performed with the microcomputer 80 of the control circuit 4, such that the lighting apparatus 1 that can precisely (finely) control the brightness of the light source load 3 with the relatively simple configuration can be realized.
Other components and functions are the same as the first embodiment.
However, each lighting apparatus 1 described in the embodiments configures the illuminating fixture together with the light source load 3 comprising the semiconductor light emitting device (LED module). As shown in
In the example of
The illuminating fixture 10 is not limited to a separate mounting type configuration in which the lighting apparatus 1 as the power supply unit is received in the case separate from that of the LED module 30. For example, the fixture 10 may be a power supply integrated type configuration in which the LED module 30 and the lighting apparatus 1 are received in the same housing.
Each lighting apparatus 1 described in the embodiments is not limited to be used for the illuminating fixture 10. Each lighting apparatus 1 may be used for various light sources, for example, a backlight of a liquid crystal display, a copier, a scanner, a projector, and the like. Alternatively, the light source load 3 emitting light by receiving the power supply from the lighting apparatus 1 is not limited to the light emitting diode (LED). For example, the light source load 3 may comprise a semiconductor light emitting element such as, for example, an organic EL device, a semiconductor laser device, etc.
Further, in each embodiment, the step-down chopper circuit 16 has a configuration in which the switching element 162 is connected to the low potential (negative) side of the output terminals of the DC power supply circuit 15 and the diode 161 is connected to the high potential (positive) side thereof, but it is not limited thereto. That is, the step-down chopper circuit 16 may have a configuration in which the switching element 162 is connected to the high potential side of the output terminals of the DC power supply circuit 15, as shown in
The lighting apparatus 1 is not limited to the configuration in which the step-down chopper circuit 16 is applied thereto but as shown in
The step-up chopper circuit shown in
Number | Date | Country | Kind |
---|---|---|---|
2011-265721 | Dec 2011 | JP | national |