This application claims the priority benefit of Taiwan Patent Application No. 100101135, filed on Jan. 12, 2011. The entirety of the above-mentioned patent application is hereby incorporated by reference and made a part of this specification.
1. Technical Field
The present invention relates to a lighting apparatus and the structure of a light emitting diode (LED) device thereof and, more particularly, to an LED device with reduced attenuation in brightness (luminous decay, light decay, light attenuation, light decline or light degradation) and a technique that reduces attenuation in brightness in red LED caused by an increase in temperature.
2. Description of Related Art
With demand for environmental protection on the rise, the utilization of LEDs for illumination in people's daily life has become an inevitable trend. According to conventional technologies, blue and red LED chips are often used in lighting apparatuses that provide warm lighting and for which yellow and red phosphors are used during the manufacturing thereof. As the time in operation of this type of lighting apparatuses increases, the ambient temperature surrounding the lighting apparatus typically rises accordingly. In particular, as red LEDs typically have more pronounced attenuation in brightness compared to blue LEDs, the attenuation in brightness (luminous decay, light decay, light attenuation, light decline or light degradation) is generally more severe in red LEDs than in blue LEDs. As such, the lighting provided by conventional lighting apparatuses tends to change drastically over time and the lighting performance of such lighting apparatuses is severely impaired.
Therefore, it is important for designers in this field to provide lighting apparatuses that are capable of long and stable operation with high efficiency in lighting.
The present invention provides an LED device that is capable of effectively reducing the attenuation in brightness in a string of red LEDs thereof caused by an increase in temperature.
The present invention further provides a lighting apparatus that is capable of effectively reducing the attenuation in brightness in a string of red LEDs thereof caused by an increase in temperature. Advantageously, the lighting apparatus can emit light under high ambient temperature such that the emitted light still satisfies the requirement of the 7-step macadam and, optimally, the requirement of the 4-step macadam.
In one aspect, an LED device may comprise a first LED, at least one impedance-providing component, and a driver. The first LED may have an internal impedance and may be configured to emit light of a first wavelength. The at least one impedance-providing component may be coupled in parallel with the first LED, and may provide a shunt impedance having a value that varies in positive proportion with a variation in an ambient temperature. The driver may be respectively coupled in series with the first LED and the at least one impedance-providing component. The driver may provide a drive current divided to flow through the first LED and the at least one impedance-providing component according to the shunt impedance and the internal impedance.
In one embodiment, the drive current is divided into a first partial drive current that flows through the first LED and a second partial drive current that flows through the at least one impedance-providing component. A ratio between a value of the first partial drive current and a value of the second partial drive current may be proportional to a ratio between a value of the shunt impedance provided by the at least one impedance-providing component and a value of the internal impedance of the first LED.
In one embodiment, the at least one impedance-providing component may comprise a plurality of impedance-providing components each of which providing a respective shunt impedance having a respective value that varies in positive proportion with the variation in the ambient temperature.
In one embodiment, the at least one impedance-providing component may comprise a semiconductor component, a thermistor, a transistor, or a diode having a positive temperature coefficient.
In one embodiment, the LED device may further comprise a second LED that is respectively coupled in series with the driver, the first LED, and the at least one impedance-providing component. The second LED may be configured to emit light of a second wavelength.
In one embodiment, the second LED, the first LED, and the driver may be coupled in series such that the second LED is coupled between the driver and the first LED or the first LED is coupled between the driver and the second LED.
In one embodiment, the second LED may comprise a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof.
In another aspect, an LED device may comprise a first LED, at least one impedance-providing component, a string of one or more second LEDs, and a driver. The first LED may have an internal impedance and may be configured to emit light of a first wavelength. The at least one impedance-providing component may be coupled in parallel with the first LED and provide a shunt impedance having a value that varies in positive proportion with a variation in an ambient temperature. The string of one or more second LEDs may be respectively coupled in series with the first LED and the at least one impedance-providing component. Each of the one or more second LEDs may be configured to emit light of a respective wavelength that is less than the first wavelength. The driver may be respectively coupled in series with the first LED, the string of one or more second LEDs, and the at least one impedance-providing component. The driver may provide a drive current to the string of one or more second LEDs. The drive current is divided to flow through the first LED and the at least one impedance-providing component according to the shunt impedance and the internal impedance.
In one embodiment, the drive current is divided into a first partial drive current that flows through the first LED and a second partial drive current that flows through the at least one impedance-providing component. A ratio between a value of the first partial drive current and a value of the second partial drive current may be proportional to a ratio between a value of the shunt impedance provided by the at least one impedance-providing component and a value of the internal impedance of the first LED.
In one embodiment, the at least one impedance-providing component may comprise a plurality of impedance-providing components each providing a respective shunt impedance having a respective value that varies in positive proportion with the variation in the ambient temperature.
In one embodiment, the at least one impedance-providing component may comprise a semiconductor component, a thermistor, a transistor, or a diode having a positive temperature coefficient.
In one embodiment, the first LED may comprise a red LED, and the string of one or more second LEDs may comprise a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof.
In one embodiment, the LED device may further comprise a string of one or more third LEDs that is respectively coupled in series with the driver, the first LED, the string of one or more second LEDs, and the at least one impedance-providing component. Each of the one or more third LEDs may be configured to emit light of a respective wavelength that is less than the first wavelength.
In one embodiment, the string of one or more third LEDs may be coupled in series and between the driver and the first LED.
In one embodiment, the first LED may comprise a red LED, and the string of one or more third LEDs may comprise a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof.
In one aspect, a lighting apparatus comprising a first LED, at least one impedance-providing component, a second LED and a driver is provided. The first LED has an internal impedance and a first light decay. The at least one impedance-providing component is coupled in parallel with the first LED. The at least one impedance-providing component provides a shunt impedance having a value that varies in positive proportion with a variation in an ambient temperature. The second LED is respectively coupled in series with the first LED and the at least one impedance-providing component. The second LED has a second decay. The first light decay is more severe than the second light decay. The driver is respectively coupled in series with the first LED, the second LED and the at least one impedance-providing component. The driver provides a drive current to the second LED. The drive current is divided to flow through the first LED and the at least one impedance-providing component according to the shunt impedance and the internal impedance.
In one embodiment, the at least one impedance-providing component comprises a semiconductor component, a thermistor, a transistor, or a diode having a positive temperature coefficient.
In one embodiment, a third LED is respectively coupled in series with the first LED, the second LED, the at least one impedance-providing component and the driver. The third LED has a third light decay.
In one embodiment, the first light decay is more severe than the third light decay.
In one embodiment, the third LED is coupled in series and between the driver and the first LED.
In one embodiment, the first LED comprises a red LED. The second LED comprises a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof. The third LED comprises a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof.
In one embodiment, the drive current is divided into a first partial drive current that flows through the first LED and a second partial drive current that flows through the at least one impedance-providing component. A ratio between a value of the first partial drive current and a value of the second partial drive current is proportional to a ratio between a value of the shunt impedance provided by the at least one impedance-providing component and a value of the internal impedance of the first LED.
In one aspect, a lighting apparatus may comprise an LED device. The LED device may include a first LED, at least one impedance-providing component, and a driver. The first LED may have an internal impedance and may be configured to emit light of a first wavelength. The at least one impedance-providing component may be coupled in parallel with the first LED and may provide a shunt impedance having a value that varies in positive proportion with a variation in an ambient temperature. The driver may be respectively coupled in series with the first LED, and the at least one impedance-providing component. The driver may provide a drive current that is divided into a first partial drive current that flows through the first LED and a second partial drive current that flows through the at least one impedance-providing component. A ratio between a value of the first partial drive current and a value of the second partial drive current may be proportional to a ratio between a value of the shunt impedance provided by the at least one impedance-providing component and a value of the internal impedance of the first LED.
In one embodiment, the at least one impedance-providing component may comprise a semiconductor component, a thermistor, a transistor, or a diode having a positive temperature coefficient.
In one embodiment, the lighting apparatus may further comprise a string of one or more second LEDs that is respectively coupled in series with the first LED and the driver. Each of the one or more second LEDs may be configured to emit light of a respective wavelength that is less than the first wavelength. In another embodiment, the lighting apparatus may additionally comprise a string of one or more third LEDs that is respectively coupled in series with the driver, the first LED, and the string of one or more second LEDs. Each of the one or more third LEDs may be configured to emit light of a respective wavelength that is less than the first wavelength.
In one embodiment, the string of one or more third LEDs may be coupled in series and between the driver and the first LED.
In one embodiment, the first LED may comprise a red LED. The string of one or more second LEDs may comprise a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof. The string of one or more third LEDs may comprise a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof.
In one embodiment, each of the at least one first LED may be coupled in parallel with a respective one of the at least one impedance-providing component. The lighting apparatus may further comprise a plurality of strings of one or more second LEDs. Each string of one or more second LEDs may be respectively coupled in series with a respective one of the at least one first LED and the driver. Each LED of each string of one or more second LEDs may be configured to emit light of a respective wavelength that is less than the first wavelength.
To facilitate better understanding of the features of and benefits provided by the present invention, implementation examples are provided in the Detailed Description section below with reference made to the accompanying drawings.
The string of one or more red LEDs 120 includes a quantity of N of LEDs 121 coupled in series, where N is a positive integer.
The impedance-providing component 130 is coupled in parallel with the string of one or more red LEDs 120. The impedance-providing component 130 provides a shunt impedance RD the value of which depends on the ambient temperature surrounding the impedance-providing component 130. That is, according to Kirchhoff's current laws, the drive current ID provided by the driver 110 is divided into a first partial drive current ID1 and a second partial drive current ID2. The first partial drive current ID1 and the second partial drive current ID2 flow through the string of one or more red LEDs 120 and the impedance-providing component 130, respectively. The value of the drive current ID is equal to the sum of the value of the first partial drive current ID1 and the value of the second partial drive current ID2. More specifically, a voltage drop across the string of one or more red LEDs 120 is the same as a voltage drop across the impedance-providing component 130.
Moreover, a ratio between the value of the first partial drive current ID1 and the value of the second partial drive current ID2 is proportional to a ratio between a value of the shunt impedance RD provided by the impedance-providing component 130 and a value of an internal impedance of the string of one or more red LEDs 120. Notably, in at least one embodiment, the value of the shunt impedance RD provided by the impedance-providing component 130 varies in positive proportion with a variation in the ambient temperature. For example, when the ambient temperature increases, the shunt impedance RD increases proportionally.
In short, when the value of the shunt impedance RD provided by the impedance-providing component 130 is greater than the value of the internal impedance of the string of one or more red LEDs 120, the value of the first partial drive current ID1 is greater than the value of the second partial drive current ID2. Conversely, when the value of the shunt impedance RD provided by the impedance-providing component 130 is less than the value of the internal impedance of the string of one or more red LEDs 120, the value of the first partial drive current ID1 is less than the value of the second partial drive current ID2. When the value of the shunt impedance RD provided by the impedance-providing component 130 is equal to the value of the internal impedance of the string of one or more red LEDs 120, the drive current ID is equally divided between the first partial drive current ID1 and the second partial drive current ID2.
Based on the description above, it is clear that, when the LED device 100 is in operation for a long period of time, the value of the shunt impedance RD provided by the impedance-providing component 130 increases corresponding to an increase in the ambient temperature over time. As the value of the shunt impedance RD increases, the value of the first partial drive current ID1 that flows through the string of one or more red LEDs 120 also increases. The increase in the first partial drive current ID1 due to an increase in the ambient temperature effectively compensates for a decrease, or attenuation, in the brightness of the string of one or more red LEDs 120 that would result due to an increase in the ambient temperature had there been no such compensation.
Additionally, the value of the shunt impedance RD provided by the impedance-providing component 130 is selected based on the temperature-dependent attenuation in brightness of the string of one or more red LEDs 120 and a relationship between the brightness of the string of one or more red LEDs 120 and the drive current ID.
In at least one embodiment, the impedance-providing component 130 may comprise a thermistor with a positive temperature coefficient. When the LEDs 121 of the string of one or more red LEDs 120 comprise red LED chips, the impedance-providing component 130 may be a semiconductor component having a positive temperature coefficient, e.g., a transistor or a diode with a positive temperature coefficient, fabricated during the chip fabrication process.
As shown in
Of course, the quantity of LEDs in each of the strings of one or more non-red LEDs 260 and 280 is not limited to 3. In various embodiments, the proposed technique may be implemented with each of the strings of one or more non-red LEDs 260 and 280 including at least one non-red LED. Additionally, the attenuation in brightness (luminous decay, light attenuation, light decay, light decline or light degradation) is generally more severe in red LEDs than in non-red LEDs.
In one embodiment, either or both of the strings of one or more non-red LEDs 260 and 280 may include one or more blue LEDs. In one embodiment, the strings of one or more non-red LEDs 260 and 280 may include one or more non-red LEDs of one or more other colors such as, for example, a blue LED, a green LED, a yellow LED, an orange LED, an ultraviolet LED, a near blue LED, a white LED, or a combination thereof.
The driver 410 may utilize a current mirror to mirror the drive current IDA1 to provide the drive currents IDA2 and IDA3. As circuits of current mirrors are well known in the art, in the interest of brevity a detailed description thereof will not be provided herein.
With respect to the compensation for the attenuation in the brightness of the strings of one or more red LEDs 431-433 using the impedance-providing components 441-443, since an example and the principle of operation have been provided above, in the interest of brevity a detailed description thereof will not be provided herein.
In summary, by coupling one or more impedance-providing components in parallel with a string of one or more red LEDs, the present invention provides a shunt impedance having a value that depends on the ambient temperature. Correspondingly, the value of a partial drive current of a drive current provided by the driver that flows through the string of one or more red LEDs varies in accordance with the variation in the value of the shunt impedance. Thus, the partial drive current that flows through the string of one or more red LEDs is adjusted according to the ambient temperature, thereby effectively compensating for the attenuation in brightness due to a rise in ambient temperature. This technique allows a lighting apparatus to emit light under high ambient temperature such that the emitted light still satisfies the requirement of the 7-step macadam and, optimally, the requirement of the 4-step macadam. In order to allow an impedance-providing component to effectively sense the ambient temperature to vary the partial drive current that flows through a string of one or more red LEDs, a distance between the impedance-providing component and the LEDs of the string of one or more red LEDs is no more than 5 centimeters. This distance is ideally less than 4 centimeters and optimally less than 3 centimeters. This design allows the impedance-providing component to effectively sense the ambient temperature so that the value of its shunt impedance varies proportionally according to a variation in the ambient temperature. In various embodiments, the LEDs described herein may be in the form of LED chips, LED packages, or a combination thereof.
A lighting apparatus in accordance with the present invention may be used in combination with any of the commercially available lighting modules, such as A40, A60, MR16, PAR30, PAR38 or GU10, with the use of yellow phosphor to produce white light. Moreover, red phosphor may be added to enhance color saturation. Furthermore, LED devices in accordance with the present invention may be used in indoor lighting apparatuses, outdoor lighting apparatuses, backlight modules, and indicator devices.
Although specific embodiments of the present invention have been disclosed, it will be understood by those of ordinary skill in the art that the foregoing and other variations in form and details may be made therein without departing from the spirit and the scope of the present invention. The scope of the present invention is defined by the claims provided herein.
Number | Date | Country | Kind |
---|---|---|---|
100101135 | Jan 2011 | TW | national |