This invention relates to using Light Emitting Diodes (LED) lights with remote controlled devices.
Prior to the present invention, remote controlled devices or drones used and employed lights and cameras; however, none used a combination of lights (typically LED-type lights) in a cycling motion and software that is reactive to sound to create the effect of writing words in the air and typically at nighttime against a dark sky. Prior devices simply turned lights on or off to mimic independent movement.
From the preceding descriptions, it is apparent that the devices currently being used have significant disadvantages. Thus, important aspects of the technology used in the field of invention remain amenable to useful refinement.
There is a remote control flying device or drone, which has software algorithms and a combination of lights or LED on an lighting ring or apparatus that can move independently of the drone; the drone can be programmed or be reactive to sound or other stimulus (light, motion, temperature) to create the effect of writing shapes or words in the air and typically at nighttime against a dark sky.
An apparatus for presenting LED lighting on a drone, said drone having a drone frame, at least one drone motor and at least one rotating blade; a battery; a LED microcontroller; a wireless receiver; an electronic speed controller; a first flight controller; said apparatus for presenting LED lighting comprising:
The drone frame can have multiple arms; each arm can have at least one drone motor, the at least one rotating blade, servo or bearing. The LED housing can be translucent and circular, square rectangular or triangular in shape. The drone is wirelessly connected to a second flight controller or a ground control computing device, which is a computing device with wireless communication and audio and visual inputs and can direct the LED lights to activate, for the LED Ring Motor to active to move the LED housing and to operate the first flight controller of the drone. The additional flight controller can be a smartphone, tablet or laptop computer; the audio input is a microphone; the visual input can be a light or thermal heat sensor.
A method of creating a persistence of vision display using a drone, an apparatus for presenting LED lighting and a ground station computing device with a wireless communication system; said drone having a drone frame, at least one drone motor and at least one rotating blade; a battery; a LED microcontroller; a wireless receiver; an electronic speed controller; a first flight controller; said apparatus for presenting LED lighting comprising:
The present invention introduces such refinements. In its preferred embodiments, the present invention has several aspects or facets that can be used independently, although they are preferably employed together to optimize their benefits. All of the foregoing operational principles and advantages of the present invention will be more fully appreciated upon consideration of the following detailed description, with reference to the appended drawings.
The Basic Drone Apparatus includes without limitation: a drone frame or housing; at least one drone motor and at least one rotating blade or fan; a battery; a computing device or computing control device or flight controller; antenna; electronic speed controllers or sensors; stabilizers; gyroscope; altimeter; accelerometer and magnetometer; and a wireless receiver. The drone frame can have at least one or multiple arms, which each can have a drone motor and propeller; the drone frame and/or arms can also have lights or LED lights. Some of the electronic components or sensors can be combined into a computing device on the drone itself or be placed on different parts of the apparatus (LED housing, drone arms or drone frame). All of the electronics, LED lights, batteries on the drone or LED housing can be connected with wiring.
One preferred embodiment of the invention presents a circular or ring shaped light mounting structure on the drone apparatus, which moves independently and separately from the drone itself. There is a moving frame or ring of LED lights; LED lights can be programmed to react to an external stimulus (sound, light, etc.) or a programmed stimulus (music, light pattern). Separate motors, servos and bearings allow the light mounting apparatus on the drone apparatus to spin or to move independently from the drone itself. This invention employs software programs and algorithms to activate said lights and the drone apparatus. RF is radio frequency or any other wireless communication format; laptop refers to any computing device, including Smart Phone, laptop, tablet, notebook or any other mobile or desktop computing device.
Lighting or LED Housing
The drone frame can have multiple drone arms, including a first drone frame arm and a second drone frame arm. The first and the second drone arms can be connected to the lighting or LED housing. The first or second drone arms can have at least one or more LED frame motors, servos or bearings.
The LED housing has at least one LED light and engages the drone frame arms via the bearing and the LED ring motor, whereby the bearing allows the LED Ring Motor to move the LED housing around an axis of the drone frame and independently of movement of the drone. LED lights can be various colors: white, red, blue, etc.
The housing can be made of any lightweight plastic material, including clear, transparent or opaque colors; the housing can be hollow, a rail or track (upon which the LED lights are disposed. The LED housing can be circular, square rectangular or triangular or any variable shape.
Wireless Connection and Control:
In one preferred embodiment, the applicants employ a wireless control of not only the drone's flying motors and flight system, but also the LED lights, including without limitation use of a wireless Arduino LED Control system.
In low light conditions and when the LED housing is moving independently around the drone, the at least one LED light or lights on the rotating LED housing create a persistence of vision such that the drone is generally or basically shadowed or invisible in relation to the at least one LED light or lights. The display of a rapidly rotating LED light housing around a stationary or moving drone creates a visually stimulating and pleasing sight.
The drone can be wirelessly connected to a second flight controller, which is a computing device with audio and visual inputs and can direct the LED lights to activate, for the LED Ring Motor to active to move the LED housing and to operate the first flight controller of the drone. Typical wireless communication is RF but can also include without limitation other wireless protocols: Bluetooth, WIFI, Satellite and cellular network communications.
The second flight controller can also be a Smartphone, tablet or laptop computer; the audio input can be a microphone; the visual input can be a light sensor or another type of electronic eye; other potential sensors could include heat and thermal sensors and GPS or position sensors.
a. Programmed to React to Stimuli (Music or Light, Etc.)
In
When not connected to a controlling computing device; hardware on the drone can have pre-built ore pre-programmed patterns for movement of the drone and activation/deactivation of the LED lights and rotation or spinning of the LED housing around the drone frame.
b. Non-Programmed Stimulus:
In
In one preferred embodiment, the controlling computing device uses its microphone to listen to external music or other stimulus—this will turn the LED “on” or “off” or make the LED light apparatus to move or to make the drone change its position.
The apparatus also allows the human operator to change the LED light activation, sequence of activation, LED light apparatus movement and the drone movement.
c. Persistence of Vision:
In
This invention relates to remote control device or drone, which has a combination of lights (typically LED-type lights) in a cycling motion and software that is reactive to sound to create the effect of writing words in the air and typically at nighttime against a dark sky.
Persistence of Vision can be defined as the retention of a visual image for a short period of time after the removal of the stimulus that produced it; the phenomenon that produces the illusion of movement when viewing motion pictures.
This invention refers to computing programs, applications or software, which are all synonymous and are used interchangeably. This invention can be applied to any computing device that can be connected to a communication network or the Internet via wire or wireless connection. The embodiments of the invention may be implemented by a processor-based computer system. The system includes a database for receiving and storing information from users and application software for users, among other things, determining or updating usage, lifestyle characteristics, values and a user's profile, and displaying feedback information. In accordance with the present invention, computer system operates to execute the functionality for server component. A computer system includes: a processor, a memory and disk storage. Memory stores computer program instructions and data. Processor executes the program instructions or software, and processes the data stored in memory. Disk storage stores data to be transferred to and from memory; disk storage can be used to store data that is typically stored in the database.
All these elements are interconnected by one or more buses, which allow data to be intercommunicated between the elements. Memory can be accessible by processor over a bus and includes an operating system, a program partition and a data partition. The program partition stores and allows execution by processor of program instructions that implement the functions of each respective system described herein. The data partition is accessible by processor and stores data used during the execution of program instructions.
For purposes of this application, memory and disk are machine readable mediums and could include any medium capable of storing instructions adapted to be executed by a processor. Some examples of such media include, but are not limited to, read-only memory (ROM), random-access memory (RAM), programmable ROM, erasable programmable ROM, electronically erasable programmable ROM, dynamic RAM, magnetic disk (e.g., floppy disk and hard drive), optical disk (e.g., CD-ROM), optical fiber, electrical signals, light wave signals, radio-frequency (RF) signals and any other device or signal that can store digital information. In one embodiment, the instructions are stored on the medium in a compressed and/or encrypted format.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. The terms “a” or “an”, as used herein, are defined as: “one” or “more than one.” The term plurality, as used herein, is defined as: “two” or “more than two.” The term another, as used herein, is defined as at least a second or more. The terms including and/or having, as used herein, are defined as comprising (i.e., open language). The term coupled, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically.
Any section or paragraph headings are for the organization of the application and are not intended to be limiting. Any element in a claim that does not explicitly state “means for” performing a specific function, or “step for” performing a specific function, is not be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Sec. 112, Paragraph 6. In particular, the use of “step of” in the claims herein is not intended to invoke the provisions of 35 U.S.C. Sec. 112, Paragraph 6.
Incorporation by Reference: All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference: U.S. Pat. No. 8,667,533; US 2005/0005025; U.S. Pat. Nos. 9,162,753; 8,903,568; 7,302,316; 7,195,200; 9,134,534; 9,129,295; 9,128,281; 9,097,891; 9,097,890; 9,061,102; 9,055,226; 9,017,123; 9,014,661; 9,010,261; 8,989,053; 8,964,298; 8,857,191; 8,854,594; 8,814,691; 8,596,036; 8,549,833; 8,488,246; 8,482,589; 8,477,425; 8,472,120; 8,468,244; 8,467,133; 8,291,716; 8,109,073; 8,099,944; 7,973,658; 7,773,204; 7,750,802; 6,949,003; 6,333,726.
This application is a continuation of and claims the benefit of U.S. patent application Ser. No. 16/452,026, filed Jun. 25, 2019, which is a continuation of and claims the benefit of U.S. patent application Ser. No. 15/339,810, filed Oct. 31, 2016, which claims the benefit of U.S. Provisional Patent Appl. No. 62/249,252, filed on Oct. 31, 2015, which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6038295 | Mattes | Mar 2000 | A |
6819982 | Doane | Nov 2004 | B2 |
6980909 | Root et al. | Dec 2005 | B2 |
7173651 | Knowles | Feb 2007 | B1 |
7411493 | Smith | Aug 2008 | B2 |
7535890 | Rojas | May 2009 | B2 |
7542073 | Li et al. | Jun 2009 | B2 |
8131597 | Hudetz | Mar 2012 | B2 |
8174562 | Hartman | May 2012 | B2 |
8199747 | Rojas et al. | Jun 2012 | B2 |
8274550 | Steuart, III | Sep 2012 | B2 |
8332475 | Rosen et al. | Dec 2012 | B2 |
8646720 | Shaw | Feb 2014 | B2 |
8718333 | Wolf et al. | May 2014 | B2 |
8724622 | Rojas | May 2014 | B2 |
8874677 | Rosen et al. | Oct 2014 | B2 |
8909679 | Root et al. | Dec 2014 | B2 |
8995433 | Rojas | Mar 2015 | B2 |
9040574 | Wang et al. | May 2015 | B2 |
9055416 | Rosen et al. | Jun 2015 | B2 |
9100806 | Rosen et al. | Aug 2015 | B2 |
9100807 | Rosen et al. | Aug 2015 | B2 |
9191776 | Root et al. | Nov 2015 | B2 |
9204252 | Root | Dec 2015 | B2 |
9344642 | Niemi et al. | May 2016 | B2 |
9345711 | Friedhoff | May 2016 | B2 |
9443227 | Evans et al. | Sep 2016 | B2 |
9471059 | Wilkins | Oct 2016 | B1 |
9489661 | Evans et al. | Nov 2016 | B2 |
9489937 | Beard et al. | Nov 2016 | B1 |
9491134 | Rosen et al. | Nov 2016 | B2 |
9576369 | Venkataraman et al. | Feb 2017 | B2 |
9589448 | Schneider et al. | Mar 2017 | B1 |
9681046 | Adsumilli et al. | Jun 2017 | B2 |
9723272 | Lu et al. | Aug 2017 | B2 |
9747901 | Gentry | Aug 2017 | B1 |
9922659 | Bradlow et al. | Mar 2018 | B2 |
9989965 | Cuban et al. | Jun 2018 | B2 |
10061328 | Canoy et al. | Aug 2018 | B2 |
10109224 | Ratti | Oct 2018 | B1 |
10140987 | Erickson et al. | Nov 2018 | B2 |
10168700 | Gordon et al. | Jan 2019 | B2 |
10370118 | Nielsen et al. | Aug 2019 | B1 |
10501180 | Yu | Dec 2019 | B2 |
10768639 | Meisenholder et al. | Sep 2020 | B1 |
11126206 | Meisenholder et al. | Sep 2021 | B2 |
11427349 | Nielsen et al. | Aug 2022 | B1 |
20070250526 | Hanna | Oct 2007 | A1 |
20080255842 | Simhi | Oct 2008 | A1 |
20090122133 | Hartman | May 2009 | A1 |
20110202598 | Evans et al. | Aug 2011 | A1 |
20120194420 | Osterhout et al. | Aug 2012 | A1 |
20120209924 | Evans et al. | Aug 2012 | A1 |
20120281885 | Syrdal et al. | Nov 2012 | A1 |
20120287274 | Bevirt | Nov 2012 | A1 |
20130056581 | Sparks | Mar 2013 | A1 |
20130238168 | Reyes | Sep 2013 | A1 |
20140254896 | Zhou et al. | Sep 2014 | A1 |
20150022432 | Stewart et al. | Jan 2015 | A1 |
20150070272 | Kim et al. | Mar 2015 | A1 |
20150175263 | Reyes | Jun 2015 | A1 |
20150199022 | Gottesman et al. | Jul 2015 | A1 |
20150287246 | Huston et al. | Oct 2015 | A1 |
20150331490 | Yamada | Nov 2015 | A1 |
20150362917 | Wang et al. | Dec 2015 | A1 |
20160063987 | Xu et al. | Mar 2016 | A1 |
20160161946 | Wuth Sepulveda et al. | Jun 2016 | A1 |
20160179096 | Bradlow et al. | Jun 2016 | A1 |
20160292886 | Erad et al. | Oct 2016 | A1 |
20160307573 | Wobrock | Oct 2016 | A1 |
20160336020 | Bradlow et al. | Nov 2016 | A1 |
20170031369 | Liu et al. | Feb 2017 | A1 |
20170094259 | Kouperman et al. | Mar 2017 | A1 |
20170099424 | Jones | Apr 2017 | A1 |
20170102699 | Anderson | Apr 2017 | A1 |
20170137125 | Kales | May 2017 | A1 |
20170177925 | Volkart | Jun 2017 | A1 |
20170225796 | Sun et al. | Aug 2017 | A1 |
20170228690 | Kohli | Aug 2017 | A1 |
20170244937 | Meier et al. | Aug 2017 | A1 |
20170320564 | Kuzikov | Nov 2017 | A1 |
20170337791 | Gordon-carroll | Nov 2017 | A1 |
20170371353 | Millinger, III | Dec 2017 | A1 |
20180082682 | Erickson et al. | Mar 2018 | A1 |
20180246529 | Hu et al. | Aug 2018 | A1 |
20190011921 | Wang et al. | Jan 2019 | A1 |
20200241575 | Meisenholder et al. | Jul 2020 | A1 |
20210362848 | Spencer | Nov 2021 | A1 |
20210382503 | Meisenholder et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
2887596 | Jul 2015 | CA |
Entry |
---|
US 10,656,660 B1, 05/2020, Meisenholder et al. (withdrawn) |
“U.S. Appl. No. 15/339,810, Non Final Office Action dated Sep. 7, 2018”, 5 pgs. |
“U.S. Appl. No. 15/339,810, Notice of Allowance dated Mar. 21, 2019”, 7 pgs. |
“U.S. Appl. No. 15/339,810, Response filed Feb. 7, 2019 to Non Final Office Action dated Sep. 7, 2018”, 7 pgs. |
“U.S. Appl. No. 15/339,810, Response filed Jul. 17, 2018 to Restriction Requirement dated May 16, 2018”, 7 pgs. |
“U.S. Appl. No. 15/339,810, Restriction Requirement dated May 16, 2018”, 5 pgs. |
“U.S. Appl. No. 16/452,026, 312 Amendment filed Jul. 15, 2022”, 6 pgs. |
“U.S. Appl. No. 16/452,026, Final Office Action dated Apr. 21, 2021”, 14 pgs. |
“U.S. Appl. No. 16/452,026, Non Final Office Action dated Sep. 13, 2021”, 12 pgs. |
“U.S. Appl. No. 16/452,026, Non Final Office Action dated Nov. 13, 2020”, 16 pgs. |
“U.S. Appl. No. 16/452,026, Notice of Allowance dated Apr. 15, 2022”, 8 pgs. |
“U.S. Appl. No. 16/452,026, Prelimary Amendment filed Jan. 2, 2020”, 7 pgs. |
“U.S. Appl. No. 16/452,026, PTO Response to Rule 312 Communication dated Jul. 27, 2022”, 2 pgs. |
“U.S. Appl. No. 16/452,026, Response filed Feb. 28, 2022 to Non Final Office Action dated Sep. 13, 2021”, 10 pgs. |
“U.S. Appl. No. 16/452,026, Response filed Apr. 13, 2021 to Non Final Office Action dated Nov. 13, 2020”, 8 pgs. |
“U.S. Appl. No. 16/452,026, Response filed Aug. 23, 2021 to Final Office Action dated Apr. 21, 2021”, 11 pages. |
Laput, Gierad, et al., “PixelTone: A Multimodal Interface for Image Editing”, ACM, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, FR, (2013), 10 pgs. |
Leyden, John, “This SMS will self-destruct in 40 seconds”, [Online] Retrieved from the Internet: <URL: http://www.theregister.co.uk/2005/12/12/stealthtext/>, (Dec. 12, 2005), 1 pg. |
Meisenholder, David, et al., “Remoteless Control of Drone Behavior”, U.S. Appl. No. 15/640,143, filed Jun. 30, 2017, 108 pgs. |
Pourmehr, Shokoofeh, et al., “You two! Take off!: Creating, Modifying, and Commanding Groups of Robots Using Face Engagement and Indirect Speech in Voice Commands”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, JP, (2013), 137-142. |
Yamada, Wataru, et al., “iSphere: Self-Luminous Spherical Drone Display”, Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST), Quebec City, CA, (Oct. 22-25, 2017), 635-343. |
Number | Date | Country | |
---|---|---|---|
20230059272 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
62249252 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16452026 | Jun 2019 | US |
Child | 17821776 | US | |
Parent | 15339810 | Oct 2016 | US |
Child | 16452026 | US |