1. Field of the Invention
The present invention relates to a lighting apparatus such as that used in an LCD (Liquid Crystal Display), and more particularly to a lighting apparatus comprising serially-driven lighting units.
2. Prior Art of the Invention
The improved quality and reduced costs of modern LCDs are making the LCD an increasingly popular choice in the field of display devices. LCDs are traditionally employed in notebook computers and other portable computer systems. LCD devices have made great progress in conjunction with the evolution of computer displays from the conventional VGA (Video Graphics Array) standard to the newer XGA (Extended Graphics Array) standard. Nowadays, LCD devices have a superior display quality to that of CRTs (Cathode Ray Tubes), and are poised to replace conventional CRT devices.
The LCD cannot achieve light-emission independently; it generally has to rely on a backlight source. The backlight source and related elements are indispensable in a typical direct-viewing type of LCD device. The performance of the backlight source significantly influences the display quality of the LCD device. Moreover, the backlight source is a large contributor to the cost and power consumption of the LCD device.
A typical backlight source of an LCD is implemented by utilizing several lamps. Apparatuses and means for driving these lamps are important technologies.
The lighting apparatus 8 commonly employs numerous lamps 10 in order to illuminate a large LCD, thus requiring a large number of transformers 12, 14 to be used in the system. Backlight modules for this kind of display system are unduly large, and result in increased production costs.
In the lighting apparatus 18, a feedback control circuit to control the current of the N lamps 20 should be employed, so that the lighting apparatus 18 is more stable. A feedback control mechanism achieves two main purposes. Firstly, the brightness of each lamp 20 needs to be adjusted by adjusting the current of the lamp 20. The feedback control mechanism can finely increase or decrease the current of the lamp 20 according to feedback signals in order that the lamp 20 has a proper level of brightness. Secondly, the feedback control mechanism makes the current stable. If distortions in the current occur without any feedback, the brightness of the lamp 20 becomes unstable. However, in the lighting apparatus 18, both high voltage ports of the corresponding transformer 22 are connected to the single lamp 20, which means that the lighting apparatus 18 cannot be provided with the feedback control mechanism directly. Therefore, in practice, the lighting apparatus 18 is not provided with a feedback control mechanism, and does not have the advantages of being able to make the lighting system stable and being able to accurately adjust the brightness of the lamps 20. This is contrast with the lighting apparatus 8, in which the transformers 12, 14 each have one high voltage port connected to ground. That is, the lighting apparatus 8 can be provided with a feedback control mechanism directly.
In summary, in the lighting apparatus 8, the numerous transformers 12, 14 increase overall size and production costs. In the lighting apparatus 18, a feedback control mechanism cannot be provided, which makes it difficult to control the lamps 20. With ongoing improvements in LCD technologies, there is increasing demand to enhance both the cost-effectiveness and the quality of LCDs. However, conventional lighting apparatuses are unable to adequately meet this demand.
It is therefore an object of the present invention to provide a lighting apparatus for driving discharge lamps which readily enables deployment of a feedback control mechanism and which is cost-effective.
According to a first embodiment of the present invention, a lighting apparatus formed by a plurality of serially-driven lighting units comprises a lighting module. The lighting module comprises a first lighting unit, a second lighting unit, a first transformer, a second transformer and a third transformer. A first end of a first port of the first transformer is connected to a first end of the first lighting unit, a first end of a first port of the second transformer is connected to a second end of the first lighting unit, a second end of the first port of the second transformer is connected to a first end of the second lighting unit, and a first end of a first port of the third transformer is connected to a second end of the second lighting unit. Both a second end of the first port of the first transformer and a second end of the first port of the third transformer are connected to ground. Thus, the first transformer or the third transformer can be attached to a feedback control circuit.
In a second embodiment of the present invention, a current balance control circuit is disposed between the second end of the first lighting unit and the first end of the second lighting unit. The first end of the first port of the second transformer is connected to the current balance control circuit, and the second end of the first port of the second transformer is connected to ground. In this manner, each of the transformers can help implement feedback control.
Unlike in the prior art, the lighting apparatus of the present invention uses serial connection of the lighting units to reduce the number of transformers and still be able to apply the feedback control circuit or the current balance control circuits. Therefore, the amount of hardware elements of the lighting apparatus of the present invention is less than that of the prior art, and the size of an associated LCD is correspondingly reduced. The lighting apparatus of the present invention has advantages of compactness, low cass and high quality not provided by the prior art.
These and other objectives of the present invention will become apparent to those of ordinary skill in the art after reading the following detailed description of the preferred embodiments that are illustrated in the various figures and drawings.
As described above, one end of the high voltage port of the transformer 35 is connected to the positive high-voltage end of the lighting unit 32. Further, the other end of the high voltage port of the transformer 35 is connected to ground. Similarly, one end of the high voltage port of the terminal transformer 39 is connected to the negative high-voltage end of the lighting unit 36, while the other end of the high voltage port of the transformer 39 is connected to ground. In the first embodiment, one end of the high voltage port of the transformer 35 and one end of the high voltage port of the transformer 39 are each connected to ground. Thus, the transformer 35 or the transformer 39 can be attached to a feedback control circuit. In other words, the current passing through the lighting units 32, 36 can be sampled by a feedback means, for execution of feedback control of the lighting units 32, 34, . . . , 36.
In said part of the lighting apparatus comprising N lighting units 32, 34, . . . , 36, only N+1 transformers 35, 37, . . . , 39 are needed to drive the lighting units 32, 34, . . . , 36. Moreover, a feedback circuit can be added for accurate and stable feedback control of said part of the lighting apparatus. The present invention achieves the dual advantages of low cost and high quality. Details of the feedback system are described below in relation to
Referring to
Further, one end of the high voltage port of the initial transformer 65 is connected to the positive high-voltage end of the lighting unit 62, and the other end of the high voltage port of the transformer 65 is connected to ground. Similarly, one end of the high voltage port of the terminal transformer 69 is connected to the negative high-voltage end of the terminal lighting unit 66, and the other end of the high voltage port of the transformer 69 is connected to ground. In the lighting apparatus 60, one end of the high voltage port of each of the transformers 65, 67, . . . , 69 is connected to ground. Therefore, each of the transformers 65, 67, . . . , 69 can help implement feedback control. The feedback control circuit of the lighting apparatus 60 detects the current of each transformer 65, 67, . . . , 69 (the current of each transformer 65, 67, . . . , 69 has a fixed ratio in relation to the current of each lamp 62, 64, . . . , 66) and outputs a corresponding feedback control signal. Thus in the lighting apparatus 60 with N lighting units 62, 64, . . . , 66, only N+1 transformers 65, 67, . . . , 69 are needed to implement the control of the lighting units 62, 64, . . . , 66, and each of the transformers 65, 67, . . . , 69 can be included in the feedback system.
Unlike in the prior art, the lighting apparatus of the present invention uses serial connection of the lighting units to reduce the number of transformers and still be able to apply a feedback control circuit. Therefore, the amount of hardware elements of the lighting apparatus of the present invention is less than that of the prior art, and the size of an associated LCD is correspondingly reduced. As described above in relation to the second embodiment of the present invention, the current flowing in the N lamps and the brightnesses of the N lamps can be balanced by the N−1 corresponding current balance control circuits. The lighting apparatus of the present invention has advantages of compactness, low cost and high quality not provided by the prior art.
Those skilled in the art will readily observe that numerous modifications and alterations of the described devices may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as merely being exemplary of the present invention as delineated by the appended claims and allowable equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
93101003 A | Jan 2004 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5548189 | Williams | Aug 1996 | A |
5751566 | Vongehr | May 1998 | A |
6127785 | Williams | Oct 2000 | A |
7294971 | Jin | Nov 2007 | B2 |
Number | Date | Country |
---|---|---|
10-092589 | Apr 1998 | JP |
2002-231474 | Aug 2002 | JP |
1020050054242 | Jun 2005 | KR |
Number | Date | Country | |
---|---|---|---|
20050156542 A1 | Jul 2005 | US |