Information
-
Patent Grant
-
6184632
-
Patent Number
6,184,632
-
Date Filed
Thursday, June 18, 199826 years ago
-
Date Issued
Tuesday, February 6, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Pillsbury Madison & Sutro LLP
-
CPC
-
US Classifications
Field of Search
US
- 315 224
- 315 360
- 315 DIG 5
- 315 307
- 315 276
- 315 274
- 315 291
- 315 207
- 315 208
- 315 308
- 315 225
- 315 209 R
- 315 247
-
International Classifications
-
Abstract
A lighting apparatus of the present invention includes a discharge lamp incorporating a detecting element having a predetermined electrical characteristic, a detector circuit to discriminate the electrical characteristic of the detecting element and a lighting circuit to light the discharge lamp according to the output from the detector circuit. According to the lighting apparatus of the present invention, it is possible to detect whether a discharge lamp mounted in the socket is an adapted lamp without necessity for lighting the discharge lamp.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a lighting apparatus for lighting a discharge lamp.
2. Description of the Related Art
The technique to detect wattage of a discharge lamp by detecting an electrical characteristic of the discharge lamp when it is lighted in order to prevent the erroneous mounting of a discharge lamp having a different rated lamp voltage in a socket has been disclosed in Japanese Published Unexamined Patent Application JP-A No, 7-106088.
This type of lamp base has become commonly used for different kinds of lamps in recent years because different kinds of lamps may be erroneously mounted in different kinds of lamp sockets.
However, in the conventional technology disclosed in the Published Unexamined Patent Application JP-A No. 7-106088, there is a problem that even the same type lamps have different wattage ratings, it is not possible to prevent erroneous mounting of these high pressure discharge lamps and incandescent lamps.
Further, in the above-mentioned conventional technique, in order to detect that a lamp mounted in a socket is properly adapted from the viewpoint of its type and rated power, the mounted lamp must be lighted. Therefore, if a high pressure discharge lamp that has a lower rated lamp power is lighted in a high pressure discharge lamp lighting apparatus, this lamp receives an overcurrent and may possibly burst.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a lighting apparatus capable of detecting whether a lamp mounted in a socket is a adapted lamp without necessity of lighting it
The lighting apparatus of the present invention is composed of a discharge lamp incorporating a detecting element having a predetermined electrical characteristic, a detector circuit for discriminating the electrical characteristic of the detecting element and a lighting circuit for lighting the discharge lamp according to the output from the detector circuit.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a circuit diagram showing a first embodiment of a lighting apparatus of the present invention;
FIG. 2
is a plan view showing a high pressure discharge lamp that is a adapted lamp in the lighting apparatus shown in
FIG. 1
;
FIG. 3
is a graph for explaining the action of the lighting apparatus shown in
FIG. 1
;
FIG. 4
is a circuit diagram showing a second embodiment in the lighting apparatus of the present invention;
FIG. 5
is a circuit diagram showing a third embodiment in the lighting apparatus of the present invention;
FIG. 6
is a circuit diagram showing a fourth embodiment in the lighting apparatus of the present invention; and
FIG. 7
is a plan view showing a high pressure discharge lamp that is a adapted lamp in the lighting apparatus shown in FIG.
6
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, several embodiments of the lighting apparatus of the present invention will be described with reference to the attached drawings.
FIG. 1
is a circuit diagram of a lighting apparatus showing a first embodiment of the present invention and is for direct current.
In the lighting apparatus, a lighting circuit
3
, a starting circuit
4
, a lamp mounting detector circuit
5
and a high pressure discharge lamp
6
are connected to the power line of a DC power source
2
as shown in FIG.
1
.
The lighting circuit
3
comprises a driving circuit
11
which drives the high pressure discharge lamp
6
to light and a controlling circuit
12
which controls the driving circuit
11
.
The driving circuit
11
comprises a switching element
13
, a transformer
14
of which secondary side winding is connected to the base side of the switching element
13
f
a choke coil
15
, a diode
16
, etc. When square wave is input to the primary side winding of the transformer
14
, the switching element
13
is turned. ON/OFF to drive the high pressure discharge lamp
6
to light.
The controlling circuit
12
comprises switching elements
21
and
22
to turn ON/OFF electric power supplied to the primary side winding of the transformer
14
, a comparator
23
of which an output side is connected to the gate sides of the switching elements
21
and
22
, an oscillator
24
of which an output side is connected to the inversion input terminal of the comparator
23
, etc. At triangle wave pulse which is output from the oscillator
24
is compared with a prescribed reference voltage in the comparator
23
and the output corresponding to the result of this comparison is output to the switching elements
21
and
22
from the comparator
23
. By the turn-on/off of the switching elements
21
and
22
, the output corresponding to the duty ratio of square wave that is applied to the transformer
14
is supplied from the driving circuit
11
to the high pressure discharge lamp
6
.
The starting circuit
4
comprises a capacitor
31
connected between the power lines, a pulse transformer
32
, a capacitor
33
of which one side is connected to the minus side of the power line and the other side is connected to the primary side winding of the pulse transformer
32
, a thyristor
34
of which anode side is connected to the primary side winding of the pulse transformer
32
and the cathode side is connected to the minus side of the power line, a diode AC switch
35
connected to the charging side of the capacitor
31
and the gate side of the thyristor
34
, etc. When electric energy more than the fixed level is accumulated in the capacitor
31
, the diode AC switch
35
triggers the thyristor
34
and the charge current flows from the capacitor
33
to the primary side winding of the pulse transformer
32
repetitively. By repeating this operation, starting pulses are applied to the high pressure discharge lamp
6
from the secondary side winding of the pulse transformer
32
.
The discharge lamp
6
is, for instances a metal halide lamp, and an arc tube
41
and a detecting element
42
are connected in parallel. More definitely, the high pressure discharge lamp
6
comprises an outer bulb
43
and the arc tube
41
, which is suspended in the outer bulb
43
. The outer bulb
43
has a screw base
44
for coupling to a socket (not shown) at its one end. A detecting element
42
is incorporated in the outer bulb
43
and is connected between wires
45
and
46
which supply electric power to the arc tube
41
as shown in FIG.
2
. The detecting element
42
is a resistance for divided voltage detecting in this embodiment. The detecting element
42
has a temperature coefficient of resistance more than 500 ppm/° .C Further, a resistance value of the detecting element
42
is larger than an equivalent resistance value of the arc tube
41
when it is lighted.
The lamp mounting detector circuit
5
is equipped with comparators
51
and
52
, and the non-inversion input terminal of the comparator
51
and the inversion input terminal of the comparator
52
are connected to the plus side of the power supply line to the high pressure discharge lamp
6
. The inversion input terminal of the comparator
51
. and the non-inversion input terminal of the comparator
52
are connected to reference voltage sources, respectively. That is, the voltage at the plus side of the power supply line is compared with the reference voltages of these reference voltage sources. The output terminals of the comparators
51
and
52
are connected with each other and the combined output voltage of both comparators is input to the oscillator
24
.
A resistor
53
used for detecting a divided voltage in this embodiment divided voltage. The resistor
53
is connected together with a switch
54
in series between the emitter and the collector of the switching element
13
and is able to apply current to the power line bypassing the switching element
13
.
Next, the operation of the lighting apparatus
1
will be described.
When the switch
54
is closed, the current flows to the high pressure discharge lamp
6
bypassing the switching element
13
. At this time, as the starting circuit
4
and the lighting circuit
3
are not in operation, the arc tube
41
is not ON and DC current flows to the detecting elements
53
and
42
which are connected with each other in series. As a result, a divided voltage corresponding to a size of resistance value of the high pressure discharge lamp
6
, that is, the detecting element
42
is applied to the comparators
51
and
52
. Both of the comparators
51
and
52
output minus voltages only when the divided is within the range of fixed numerical values corresponding to reference voltages input to these comparators, respectively.
When a resistance value of the high pressure discharge lamp
6
, that is, a resistance value of the detecting element
42
is in a range of fixed numerical values, a lamp mounted in the socket of the lighting apparatus
1
is judged to be a lamp adaptable to the lighting apparatus
1
. The combined voltage of minus voltages output from the comparators
51
and
52
at that time is usable as the starting signal to drive the lighting apparatus J.
When describing definitely, if a metal halide lamp for 250 watt is adaptable to the lighting apparatus
1
, a metal halide lamp outputs the driving start signal as an adapted lamp if the detecting element
42
of which resistance is in the range of fixed numerical values is connected to a 250 watt metal halide lamp. A resistance value in this range of fixed numerical values is, for instance, 200 kΩ. On the contrary, if the lamp mounted in the lighting apparatus
1
is a metal halide lamp of other rated lamp power (70 watt, 150 watt, etc.) or another kind of lamp, for instance, an incandescent lamp, as this mounted lamp has a different resistance value (as there is a filament in an incandescent lamp, current flows but a resistance value of this filament is small), it can be detected that the lamp mounted in the socket is the wrong type lamp without lighting the lamp.
Further, by detecting whether a resistance value of the detecting element
42
is within the range of fixed numerical values, it is possible to judge if a mounted lamp, after being turned OFF is in the state ready to be lighted again. That is, the higher the lamp temperature, the higher a resistance of the detecting element
42
becomes. Thus, it may not be possible to light the lamp again even when a starting pulse is given. Therefore, to light a lamp again, it is possible to prevent the supply of starting pulses until the lamp temperature drops to a lower level by stopping the starting circuit
4
.
In this case, it is desirable to make the upper limit value of resistance in the range of fixed numerical values below a value b that is considered to be the upper limit value able to light the high pressure discharge lamp
6
and above a resistance value at the normal temperature (about 25° C.).
Further, as a temperature coefficient of resistance is above 500 ppm/° C., it is preferred that the inclination of resistance value to the lamp temperature change can be made sufficiently large.
As described above, when a lamp mounted in the socket is judged to be a lamp adaptable to the lighting apparatus
1
and the lighting apparatus drive starting signal is output to the oscillator
24
of the controlling circuit
12
, the controlling circuit
12
drives the driving circuit
11
. When the driving circuit
11
is driven, the starting circuit
4
is also driven and a starting pulse is given to the high pressure discharge lamp
6
, which is an adapted lamp, and the high pressure discharge lamp lights.
Further, as a resistance value of the detecting element
42
is set at larger than an equivalent resistance value when the arc tube
41
is turned on, the power loss when electric power is applied to the detecting element
42
can be made relatively small.
Furthermore, as the detecting element
42
is connected to the wires
45
and
46
as described above, it contributes to improve the mounting strength of the arc tube
41
.
Next, a second embodiment of the present invention will be described.
FIG. 4
is a circuit diagram of a lighting apparatus
60
showing the second embodiment of the present invention and is for alternate current.
In
FIG. 4
, the circuit elements assigned with the same reference numerals as in
FIGS. 1 and 2
are the same as those in the first embodiment of the present invention and therefore, the detailed explanations thereof will be omitted.
As shown in
FIG. 4
, the lighting apparatus
60
is equipped with a lighting circuit
63
comprising a DC—DC converter
61
and an inverter circuit
62
.
The DC—DC converter
61
is composed of a switching element
64
, a choke coil
65
, a diode
66
, etc. and a signal voltage is applied to the gate of the switching element
64
from a controlling circuit
75
.
The inverter circuit
62
is a full-bridge circuit comprising four switching elements
71
,
72
,
73
and
74
. The switching elements
71
,
72
,
73
and
74
are turned on/off to drive the high pressure discharge lamp
6
by alternate current.
A controlling circuit
75
turns on/off the switching element
64
by outputting signals having different duty ratios.
The lighting apparatus
60
is provided with a plurality of stages of the lamp mounting detector circuit
5
(
3
stages in this embodiment), and in each of the lamp mounting detector circuits
5
, various reference voltages are set for the comparators
51
and
52
.
Next, the operation of the lighting apparatus
60
will be described.
As the lighting apparatus
60
is provided with a plurality of stages of the lamp mounting detector circuits
5
(
3
stages in this embodiment) and in each of the lamp mounting detector circuits
5
, various reference voltages are set for the comparators
51
and
52
. Thus, it is possible to set divided voltage in various ranges of different fixed numerical values according to size of resistance of the high pressure discharge lamp
6
, that is, the detecting element
42
, that can be detected in each of the lamp mounting detector circuits
5
.
Then, each of the different fixed numerical value ranges is brought to correspond to a plurality of kinds of rated lamp power (for instance, 70, 150 and 250 watts) of the high pressure discharge lamp
6
. It is therefore possible to judge whether the type of the lamp is proper or whether its rated power is proper according to whether a signal is output from lamp mounting detector circuit
5
.
When no signal is input to the controlling circuit
75
from any lamp mounting detector circuit
5
, the switching element
64
is not turned on/off. Therefore, as the lighting circuit
63
is not driven, a lamp mounted in the socket is judged to be not adaptable. Accordingly, that lamp is an adapted lamp (an incandescent lamp, etc.) and does not light.
When a signal is input to the controlling circuit
75
from one of the lamp mounting detector circuits
5
, the ON time ratio of the switching element
64
is changed according to the lamp mounting detector circuit
5
from which that signal is output. According to this change in ON time ratio, the rated lamp power of a mounted lamp that is an adapted lamp is judged and the output corresponding to that rated lamp power is output from the DC—DC converter
61
.
Next, a third embodiment of the present invention will be described.
FIG. 5
is a circuit diagram of a lighting apparatus
80
showing the third embodiment of the present invention. In this
FIG. 5
, the circuit elements assigned with the same reference numerals as those shown in
FIGS. 1 and 2
are the same as those in the first embodiment of the present invention and therefore, the detailed explanations thereof will be omitted.
The lighting apparatus
80
is the lighting apparatus
1
added with a pulse generation deactive circuit
81
.
The pulse generation deactive circuit
81
is composed of a switching element
82
comprising the capacitor
31
with an emitter and a collector connected to its two sides, a timer
83
connected to the gate side of the switching element
82
for turn on/off the switching element
82
, a DC power source
84
, etc. The DC power source
84
supplies the electric power to the timer
83
to drive it when the starting circuit
4
is operated.
Next, the operation of the lighting apparatus
80
will be described.
When the switch
54
is closed, a lamp mounted in the socket is judged as to whether it is an adapted lamp, the first embodiment. When the lamp is judged to be an adapted, the starting circuit
4
generates the starting pulse and tries to start the lamp.
The timer
83
starts the counting for a preset fixed amount of time. When this fixed time is over, the voltage is output from the timer
83
to the gate side of the switching element
82
and the switching element
82
is turned on. When the switching element
82
is turned on, the circuit between the switching element
82
and the capacitor
31
is short-circuited and the charging of the capacitor
31
is interrupted and therefore, the starting circuit
4
stops the subsequent operation.
To turn on the high pressure discharge lamp
6
when it is not sufficiently cooled down after it was turned off, the lamp mounting detector circuit
5
may not be able to judge a mounted lamp to be an adapted lamp due to the temperature characteristic of the detecting element
42
in some cases. When a mounted lamp was sufficiently cooled down and the lamp mounting detector circuit
5
judges it to be an adapted lamp, the starting circuit
4
starts to generate the starting pulse. Then, interlocking with the start of the starting circuit
4
, the timer
83
is also energized and begins the counting for a fixed time. Even when the high pressure discharge lamp
6
is pulled out of the socket or becomes defective during this period, it is tried to start the lamp for the fixed time when the timer
83
is counting and then, the starting circuit
4
is stopped. Therefore, the useless pulse generation is prevented and the dielectric breakdown of the base of a lamp mounted in the socket and adverse effects to other electric/electronic equipment will never be caused.
Then, a fourth embodiment of the present invention will be described.
FIG. 6
is a circuit diagram of a lighting apparatus
90
showing the fourth embodiment of the present invention. In
FIG. 6
, the circuit elements assigned with the same reference numerals as those shown in
FIGS. 1 and 2
are the same as those in the first embodiment of the present invention and therefore, the detailed explanations thereof will be omitted.
The lighting apparatus
90
is equipped with a lighting circuit
93
comprising a DC—DC converter
91
and a driving circuit
92
. The DC—DC converter
91
is composed of a switching element
94
, a choke coil
95
, a diode
96
, a smoothing capacitor
97
, etc.
The driving circuit
92
is connected to the gate of the switching element
94
and turns the switching element
94
on/off at a fixed ON time ratio.
The resistor
53
is connected to the output line at the minus side of the DC—DC converter
91
and the switch
54
is connected so as to by-pass the switching element
94
without passing through the resistor
53
.
A lamp lighting detector circuit
101
is connected in parallel with a lamp mounted in the socket and detects the lighting of the mounted lamp according to fluctuation of divided voltage of the mounted lamp.
A timer
105
starts the counting for a fixed time and when it was not lighted until the counting time was over, the timer
105
outputs a signal to a controlling circuit
103
. Upon receipt of this signal, the controlling timer
103
outputs a drive stopping signal to the driving circuit
92
and the starting circuit
4
.
The lamp mounting detector circuit
5
starts the counting for a fixed time by a timer
104
when judging that a lamp mounted in the socket is an adapted lamp. When this counting is completed, the controlling circuit
103
sends a signal to the driving circuit
92
which in turn drives the DC—DC converter
91
.
In the high pressure discharge lamp
6
, a thermally-actuated element
106
such as a bimetal switch is connected to turn off the power supplied to the detecting element
42
according to temperature rise. The thermally-actuated element
106
is arranged near the arc tube
41
so as to be able to perceive heat of the arc tube
41
sufficiently as shown in FIG.
7
.
Next, the operation of the lighting apparatus
90
will be described.
When the high pressure discharge lamp
6
which is an adapted lamp is mounted in the state where the switch
54
is closed and no lamp is mounted in the lighting apparatus
90
, the lamp mounting detector circuit
5
judges the mounted lamp to be an adapted lamp according to the divided voltage of the detecting element
42
. According to this judgment, the controlling circuit
103
outputs a control signal to drive the lighting circuit
93
and in addition, the starting circuit
4
is driven to light the high pressure discharge lamp
6
. Therefore, it is possible to automatically light a lamp only when an adapted lamp is mounted.
In this case, the lamp mounting detector circuit
5
does not light a lamp immediately after detecting an adapted lamp but waits until a time set on the timer
104
is over. Accordingly, it is possible to wait the start of lighting a lamp until the mounting work of an adapted lamp in the socket is completely finished and since it is prevented to supply the starting pulse to the lamp after the lamp mounting in the socket, the safety can be enhanced.
Further, when the starting circuit
4
operates, the timer
105
starts the counting and the lamp lighting detector circuit
101
detects the lighting of an adapted lamp and when the adapted lamp does not light until the counting time is over, a signal is output to the controlling circuit
103
and a drive stopping signal is output to the starting circuit
4
. Accordingly, even when an adapted lamp becomes defective and does not light, the output of useless pulse is prevented and the dielectric breakdown of the base of a lamp mounted in the socket and adverse effects to other electric/electronic equipment will never be caused.
When a lamp did not light within the counting time by the timer
105
and thereafter, a mounted lamp was exchanged, the lamp mounting detector circuit
5
judges again whether the exchanged lamp is an adapted lamp and if it is an adapted lamp, after the waiting time of the timer
104
, the controlling circuit
103
outputs a signal to the driving circuit
92
and the automatic lighting is tried as in the above.
Further, when the adapted lamp
6
lights and after a while, the lamp temperature rises, the power to the detecting element
42
is turned off by the thermally- actuated element
106
and thus, the power loss by the detecting element
42
is prevented.
Claims
- 1. A lighting apparatus comprising:a high pressure discharge lamp including an outer bulb, an arc tube being suspended in the outer bulb, a base being mounted on the outer bulb for detachably coupling to a socket, and an indicating element (i) located outside the arc tube and within the outer bulb, (ii) connected in parallel with the arc tube, and (iii) having a predetermined electrical characteristic for indicating a type of the high pressure discharge lamp; a first power supply circuit electrically connected to the socket and configured for supplying a first level power to the indicating element for judging the electrical characteristic, the first level power being indicative of the electrical characteristic; a detecting circuit (i) electrically connected to the first power supply, (ii) being responsive to the first level power, and (iii) configured to discriminate the electrical characteristic of the indicating element prior to the arc tube being illuminated; and a second power supply circuit electrically connected to the socket and configured for supplying a second level power to the high pressure discharge lamp according to an output from the detecting circuit, wherein the second level power illuminates the arc tube.
- 2. A lighting apparatus according to claim 1, wherein the indicating element is connected to a discharge path electrically in parallel.
- 3. A lighting apparatus according to claim 1, further comprising:a starting circuit configured to start the discharge lamp according to the output from the detecting circuit; wherein the second power supply circuit stably illuminates the arc tube.
- 4. A lighting apparatus according to claim 3, wherein:said detecting circuit comprises a judging circuit configured to judge the discharge lamp to be an adapted lamp when the output of the detecting circuit is within a specified range; and said apparatus further comprises a controlling circuit configured to operate the starting circuit and the second power supply circuit when the discharge lamp is judged to be an adapted lamp.
- 5. A lighting apparatus according to claim 4, further comprising:a controlling circuit configured to control the outputs of the starting circuit and the second power supply circuit according to he output of the detecting circuit.
- 6. A lighting apparatus according to claim 4, further comprising:a timer configured to count a preset time after the judging circuit judged a mounted lamp to be an adapted lamp; and a deactivating circuit configured to keep the starting circuit stopped during the counting by the timer.
- 7. A lighting apparatus according to claim 6, wherein the starting circuit includes means for applying a starting pulse to the discharge lamp.
- 8. A lighting apparatus according to claim 3, further comprising:a timer configured to count a continuous time for generating starting pulses when the starting circuit generates the starting pulses; and a deactivating circuit configured to stop the starting circuit when the time counted by the timer exceeds a preset time.
- 9. A lighting apparatus according to one of claims 1 to 8, wherein the indicating element has resistance or impedance value larger than a resistance or impedance value of the arc tube when the arc tube is lighted.
- 10. A lighting apparatus according to one of claims 1 to 8, further comprising:a thermally-actuated element which is provided in the discharge lamp and is actuated according to the temperature rise when the discharge lamp is ON and turns off the power supplied to the indicating element.
- 11. A lighting apparatus according to one of claims 1 to 8, wherein the indicating element has a resistance value of temperature coefficient of resistance more than 500 ppm/° C.
- 12. A lighting apparatus according to claim 1, wherein said detecting circuit is operative to prevent lighting circuit from lighting the discharge lamp when the electrical characteristic of the detecting element is outside of a predetermined range.
Priority Claims (1)
Number |
Date |
Country |
Kind |
P09-162325 |
Jun 1997 |
JP |
|
US Referenced Citations (14)
Foreign Referenced Citations (5)
Number |
Date |
Country |
091728 |
Oct 1983 |
EP |
2072958 |
Oct 1981 |
GB |
2132834 |
Jul 1984 |
GB |
2318932 |
May 1998 |
GB |
8-31589 |
Feb 1996 |
JP |