This application claims the benefit of Taiwan application Serial No. 102119282, filed May 31, 2013, and the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to a lighting apparatus, and more particularly to a lighting apparatus with adjustable lighting characteristics.
2. Description of the Related Art
Light emitting diode (LED) bulb, having the characteristics of low power consumption and high brightness, has become more and more popular. However, most lamps (such as bulb lamps, projection lamps, and recessed lamps) have fixed color and color temperature, which are difficult to be adjusted. If a user has different requirements regarding the color and the color temperature, the user needs to replace the current lamp with a lamp having different color(s) and color temperature(s).
A commonly used method for adjusting the color or the color temperature employs several LEDs providing different color lights taken in conjunction with an IC element for controlling the intensity of the current of each LED. However, said method requires a large number of LEDs, and the IC element used for controlling electric signals incurs extra power consumption and material costs. Therefore, an effective solution is still unavailable.
The disclosure is directed to a lighting apparatus. According to the lighting apparatus of the embodiments, the light flux of a light emitted by one of two light emitting elements out of the light cover can be adjusted by moving the light cover with respect to the two light emitting elements having different wavelengths, so as to change the ratio of the light fluxes of the lights emitted by the two light emitting elements out of the light cover and achieve the effect of adjusting the lighting characteristics of the lighting apparatus, such as color(s) or color temperature(s).
According to one embodiment of the present invention, a lighting apparatus is provided. The lighting apparatus comprises a base, a light cover and at least a first light emitting element and at least a second light emitting element. The light cover having an opening is disposed on the base and together with the base forms a holding space. The first light emitting element and the second light emitting element are disposed in the holding space. The wavelength of a light emitted from the first light emitting element is different from that emitted from the second light emitting element. The light cover is movable with respect to the first light emitting element. When the light cover is moved with respect to the first light emitting element, the light flux of the first light emitting element out of the light cover is changed.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiment(s). The following description is made with reference to the accompanying drawings.
According to the lighting apparatus of the present embodiment, the light flux of one of two light emitting elements out of the light cover can be adjusted by moving the light cover with respect to the two light emitting elements having different wavelengths, so as to change the ratio of the light fluxes of the two light emitting elements out of the light cover, and the effect of adjusting the lighting characteristics of the lighting apparatus, such as color(s) or color temperature(s), can thus be achieved. Detailed descriptions of the embodiments of the present disclosure are elaborated below with accompanying drawings. The identical or similar elements of the embodiments are designated with the same reference numerals. It should be noted that the accompanying drawings are simplified for the convenience of describing the embodiments of the disclosure, and detailed structures disclosed in the embodiments of the disclosure are for detailed descriptions only, not for limiting the scope of protection of the present disclosure. Anyone who is skilled in the technology field of the present disclosure can make necessary modifications or changes to these structures according to the needs in practical implementations.
Referring to
In the present embodiment, when the light cover 120 is moved with respect to the first light emitting element 130, the light flux of the second light emitting element 140 out of the light cover 120 maintains constant. In other words, the light flux of the second light emitting element 140 out of the light cover 120 is not affected by the movement of the light cover 120. When the light cover 120 is moved with respect to the first light emitting element 130, the light flux of the first light emitting element 130 out of the light cover 120 is changed, while the light flux of the second light emitting element 140 out of the light cover 120 remains unchanged. Therefore, by changing the relative position of the light cover 120 with respect to the first light emitting element 130, the light flux of the first light emitting element 130 out of the light cover 120 can be changed, so as to change the ratio of the light flux of the first light emitting element 130 out of the light cover 120 to the light flux of the second light emitting element 140 out of the light cover 120 accordingly.
In an embodiment, the relative position between the first light emitting element 130 and the second light emitting element 140 is fixed. That is, when the light cover 120 is moved with respect to the first light emitting element 130, the light cover 120 is also moved with respect to the second light emitting element 140.
In the present embodiment, the wavelength of the light emitted from the first light emitting element 130 is different from that emitted from the second light emitting element 140. The wavelength of a light obtained by mixing the lights emitted from the light emitting elements 130 and 140 is different from the wavelengths of the lights emitted from the light emitting elements 130 and 140, and the lighting characteristics of the mixed light, such as the color or the color temperature, are also different from that of the lights emitted from the light emitting elements 130 and 140. When the ratio of the light flux of the first light emitting element 130 out of the light cover 120 to that of the second light emitting element 140 out of the light cover 120 is changed, the color or the color temperature of the mixed light out of the light cover 120 will be changed accordingly. Therefore, by moving the light cover 120, the light flux of the first light emitting element 130 out of the light cover 120 will be changed, and the lighting characteristics of the lighting apparatus 100, such as color(s) or color temperature(s), will also be changed accordingly.
In the present embodiment, as indicated in
In the present embodiment, when the light cover 120 is moved with respect to the first light emitting element 130, the second light emitting element 140 is not blocked by the light blocking structure 150, so that the light flux of the second light emitting element 140 out of the light cover 120 maintains constant. According to the present embodiment, when the light cover 120 is moved with respect to the first light emitting element 130, the light flux of the first light emitting element 130 out of the light cover 120 is changed, because the first light emitting element 130 is blocked by the light blocking structure 150, while the light flux of the second light emitting element 140 out of the light cover 120 remains unchanged. Consequentially, the ratio of the light flux of first light emitting element 130 out of the light cover 120 to that of the second light emitting element 140 out of the light cover 120 is changed, and the color or the color temperature of the mixed light out of the light cover 20 is changed accordingly. Therefore, by moving the light cover 120 together with the light blocking structure 150, the light flux of the first light emitting element 130 out of the light cover 120 is changed, and the lighting characteristics of the lighting apparatus 100, such as color(s) and color temperature(s), is changed accordingly.
In the present embodiment, as indicated in
In the present embodiment, as indicated in
For example, as indicated in
In the present embodiment, the light-transmitting region 150b may be an opening or a light-transmitting element.
In the present embodiment, the lighting characteristics of the lighting apparatus 100, such as color(s) or color temperature(s), can be changed by simply moving the light cover 120, on which the light blocking structure 150 is fixed, and installation of extra IC control elements are not required. The lighting apparatus 100 of the present embodiments has simple structure requiring no expensive parts; therefore, the cost for manufacturing the lighting apparatus 100 with adjustable lighting characteristics can be largely reduced.
Referring to
In the present embodiment, as indicated in
In the present embodiment, the second light emitting element 140 is not electrically connected to the adjustable resistor element 360. When the light cover 120 is moved with respect to the first light emitting element 130, the light intensity of the second light emitting element 140 is not affected by the change of the resistance of the adjustable resistor element 360; accordingly, the light intensity of the second light emitting element 140 maintains constant. Therefore, the light flux of the second light emitting element 140 out of the light cover 120 maintains constant. In the present embodiment, when the light cover 120 is moved with respect to the first light emitting element 130, the light intensity of the first light emitting element 130 is changed due to the increase/decrease of the resistance of the adjustable resistor element 360, making the light flux of the first light emitting element 130 out of the light cover 120 changed accordingly. Since the light flux of the second light emitting element 140 out of the light cover 120 maintains constant, the ratio of the light flux of the first light emitting element 130 out of the light cover 120 to the light flux of the second light emitting element 140 out of the light cover 120 will be changed, and so will the color or the color temperature of the mixed light out of the light cover 120 be changed accordingly. Therefore, by moving the light cover 120 to change the resistance of the adjustable resistor element 360 and accordingly change the light flux of the first light emitting element 130 out of the light cover 120, the lighting characteristics of the lighting apparatus 100, such as color(s) or color temperature(s), will be changed.
In the present embodiment, as indicated in
In the present embodiment, the moving structure 370 has a chamber 370a. The adjustable resistor element 360 is disposed in the chamber 370a and connected to the moving structure 370. When the moving structure 370 is moved with respect to the first light emitting element 130, the resistance of the adjustable resistor element 360 is changed accordingly.
For example, assuming that the resistance of the adjustable resistor element 360 is equal to 1 when the light cover 120 and the moving structure 370 are located at the positions as indicated in
In the present embodiment, the adjustable resistor element 360 may be at least one of a pulse width modulation (PWM) controller, a voltage controller, or a current controller.
In the present embodiment, by simply disposing the adjustable resistor element 360 in the lighting apparatus 200, the lighting characteristics, such as color(s) or color temperature(s), of the lighting apparatus 200 can be changed by simply moving the light cover 120 for changing the resistance of the adjustable resistor element 360, without any installation of complicated IC components. In addition, the moving structure 370 is fixed on the light cover 120; accordingly, the moving structure 370 is moved along with the movement of the light cover 120, such that the resistance of the adjustable resistor element 360 can be changed through a simple action of moving the light cover 120. The lighting apparatus of the present embodiments has a simple structure requiring no expensive parts; hence the cost for manufacturing the lighting apparatus 200 with adjustable lighting characteristics can be largely reduced.
While the invention has been described by way of example and in terms of the preferred embodiment (s), it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
102119282 | May 2013 | TW | national |