1. Field of the Invention
The present invention relates to a lighting apparatus using a plane light source represented by, for example, an organic EL (electroluminescence) element.
2. Description of the Related Art
Since an organic EL element is driven by a low DC voltage, it has a high luminous efficiency and can be reduced in weight and thinned, as well as it has a feature that it generates substantially no heat. Therefore, it is used for a flat panel display (FPD) in some portable devices etc. By employing the element as a plane light source, it is also arranged to be used as, for example, a back light of a liquid crystal display element.
Further, by selection of a material used for an EL luminescence layer, the above-mentioned organic EL element may provide luminescence colors of R (red), G (green), B (blue), or others. Therefore, by using each of the above-mentioned luminescence colors independently or combining a plurality of types of luminescence colors, white or near white luminescence color may be obtained. Thus, by constructing the organic EL element as the plane light source (light emitting panel), it can be used as the light source for decoration and an efficient light source which illuminates the interior of a room etc.
Japanese Patent Application Publication No. 2007-173424 discloses a ceiling-mounted lighting apparatus in which the above-mentioned organic EL element is formed as a circular or ring-shaped plane light emitter.
Incidentally, according to the lighting apparatus as disclosed in Japanese Patent Application Publication No. 2007-173424, it aims to providing a lighting apparatus which omits an outer frame and emits light to an edge, taking advantage of the feature of the above-mentioned organic EL element.
For this reason, an engaging portion to be engaged with a ceiling hook attached to the ceiling is provided in the central portion of the lighting apparatus. Further, Japanese Patent Application Publication No. 2007-173424 discloses that a light emitting unit having the organic EL element formed in the shape of a ring may be in the shape of a single ring or may be divided into a plurality narrow rings, and that the light emitting unit may be formed so as to further extend radially from the center.
However, in the above-mentioned lighting apparatus, it only suggests that a luminescence pattern in a flat luminescence surface is devised, and it has no distinctions, lacks a cubic effect, and remains monotonous in the devised range of the above-mentioned luminescence pattern. Therefore, it is impossible to allow the illumination to give a gorgeous stage effect etc.
The present invention arises in view of the above-mentioned problem, and aims at providing a lighting apparatus in which a large number of plane light emitters represented by organic EL elements are arranged in a specific configuration so that a high-class feeling and a cubic effect are obtained, or a gorgeous interior design may be allowed to have an appearance like a chandelier, so to speak.
The lighting apparatus in accordance with the present invention made in order to solve the above-mentioned problem is characterized by being provided with light emitting units of a plurality of rings including at least the light emitting units of a first ring arranged such that a plurality of planar frames each having mounted thereon a plane light emitter are connected mutually and annularly, and the light emitting units of a second ring arranged such that a plurality of planar frames each having mounted thereon a plane light emitter are connected mutually and annularly, each frame circumscribing a perimeter of a respective one of the above-mentioned frames which constitute the light emitting unit of the above-mentioned first ring.
In this case, it is desirable that the plane light emitter sides in the frames which constitute the light emitting units of the above-mentioned rings are arranged to form a dome shape. Further, it is preferably arranged that the numbers of the frames which constitute the light emitting units of the respective rings are set as the same number for the light emitting units of the respective rings.
Further, in a preferred embodiment, it is constituted by the light emitting units of the first-third rings, each of the above-mentioned frames which constitute the light emitting units of each ring is formed to be square, and opposed corner portions of the respective frames are connected together annularly, so that the light emitting units of the above-mentioned first-third rings are respectively arranged. It is desirable that the plane light emitter to be mounted to one surface of each of the above-mentioned planar frames is constituted by an organic EL element.
According to the above-mentioned lighting apparatus, the planar frames having mounted thereon the plane light emitter are connected mutually and annularly so that the light emitting units of one ring are arranged, and a plurality of light emitting units of other rings are similarly arranged and formed concentrically, so to speak. Therefore, a stainless steel plate may be used for the planar frames which constitute the light emitting units of each of the above-mentioned rings, and subjected to decoration processing, such as for example hairline processing etc., so that the lighting apparatus can be provided having a high-class feeling and a stately feeling, or having an appearance like a chandelier, so to speak.
In addition, a mounting side of the plane light emitter in each frame is arranged to form a dome shape, so that a cubic effect can be obtained further and it is possible to realize the lighting apparatus which can aim at giving a gorgeous interior design, a good stage effect, and a good atmosphere.
Further, it is possible to realize the lighting apparatus in which an organic EL element can be used as a plane light emitter to be mounted to each of the above-mentioned frames, a high luminous efficiency can be obtained by means of a low-voltage drive power source without heat generation, and an excellent decoration effect can be obtained as compared with an image of the lighting apparatus using a conventional fluorescent light, an electric bulb, etc.
Hereafter, a lighting apparatus in accordance with the present invention will be described with reference to the preferred embodiment shown in the drawings.
Hereinafter, a structure of each part in which the same portion is indicated by the same reference numeral will be described with reference to reference numerals. It should be noted that, in order to avoid complications, in each drawing as will be explained, only typical elements are shown by the reference numerals and some of the reference numerals are suitably omitted according to the drawing.
Reference numeral 1 shows a lighting apparatus in accordance with the present invention. As shown in
That is, in this preferred embodiment, the light emitting units of the first to third rings are arranged and connected concentrically, and reference numeral 2 shows one of the planar frames which constitute the light emitting units of the first ring in the innermost periphery. Further, reference numeral 3 shows one of the planar frames which constitute the light emitting units of the second ring formed outside the light emitting units of the above-mentioned first ring. Furthermore, reference numeral 4 shows one of the planar frames which constitute the light emitting units of the third ring formed further outside the light emitting unit of the above-mentioned second ring.
An outer shape of each of the frames which constitute the light emitting units of the above-mentioned first to third rings is substantially square. Twelve (which is the same number) frames are each used for the light emitting units of the first to third rings. Therefore, a frame 2 constituting the light emitting unit of the first ring which is the innermost periphery is arranged to have the smallest outer shape, and the frames 3 and 4 which respectively constitute the light emitting units of the second and third rings are arranged to have larger outer shapes in order.
Further, as for the respective frames 2 which constitute the light emitting units of the first ring, opposed corner portions are connected together annularly so that the light emitting units of the above-mentioned first ring are arranged. Furthermore, as for the respective frames 3 which constitute the light emitting units of the second ring, opposed corner portions are similarly connected together annularly so that the light emitting units of the above-mentioned second ring are arranged, and these frames 3 are each connected at opposed corner portions of the frames 2 and 3 so as to circumscribe a perimeter of each of the above-mentioned frames 2 which constitute the light emitting units of the first ring.
Still further, as for the respective frames 4 which constitute the light emitting units of the third ring, opposed corner portions are similarly connected together annularly so that the light emitting units of the above-mentioned third ring are arranged, and these frames 4 are each connected at opposed corner portions of the frames 3 and 4 so as to circumscribe a perimeter of each of the above-mentioned frames 3 which constitute the light emitting units of the second ring.
Further, plane light emitters to be mentioned later 5, 6, and 7 sides in the respective frames 2, 3, and 4 which constitute the light emitting units of the above-mentioned respective rings are arranged so as to form a dome shape. In other words, as shown in
As shown in
The above-mentioned one unit is shown as B in
In addition,
According to the organic EL element having such a structure, it is arranged that the light from the above-mentioned light-emitting functional layer comes out through the above-mentioned transparent electrode and the substrate made of a transparent material. Further, although it is preferable that a luminescence color of the organic EL element generally is white, it is possible to employ various luminescence colors, as desired, by selecting a material for the light-emitting functional layer.
According to the above-mentioned structure, the number of the plane light emitters of different sizes 5, 6, and 7 which constitute the light emitting units of the first-third rings is 36, therefore it is possible to realize various lighting operations, including a blink operation, such as lighting for each ring, lighting the light emitting units of one ring intermittently, etc.
As is seen from the above description, according to the lighting apparatus in accordance with the present invention, it is arranged that the planar frames having mounted thereon the plane light emitter are connected mutually and annularly so as to constitute the light emitting units of one ring and a plurality of light emitting units of other rings are similarly arranged concentrically, so to speak. Thus, it is possible to obtain the operational effects as described above, such as an excellent decoration effect, as compared with an image of the lighting apparatus using a conventional fluorescent light, an electric bulb, etc.
In addition, in the preferred embodiment as described above, although each of the planar frames and plane light emitters which constitute the light emitting units of the first-third rings is formed to be square, their shapes may be of other shapes, such as for example a round shape etc. and allow the same operational effect. Further, in the preferred embodiment, although the annularly connected light emitting units are arranged to have three different diameters, the number of diameters may be set up arbitrarily.
Furthermore, in the lighting apparatus in accordance with the present invention, while the organic EL element is desirably used as the plane light emitter, it is also possible to use plane light emitting elements, such as an inorganic EL element etc. instead.
Number | Date | Country | Kind |
---|---|---|---|
2008-049422 | Feb 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3634678 | Glass et al. | Jan 1972 | A |
6183100 | Suckow et al. | Feb 2001 | B1 |
6483254 | Vo et al. | Nov 2002 | B2 |
7079041 | Fredericks et al. | Jul 2006 | B2 |
7108392 | Strip et al. | Sep 2006 | B2 |
7168827 | Stein et al. | Jan 2007 | B2 |
7841741 | Chan et al. | Nov 2010 | B2 |
20030038291 | Cao | Feb 2003 | A1 |
20060126328 | Coushaine | Jun 2006 | A1 |
20090027889 | Kang et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
101025257 | Aug 2007 | CN |
201000010 | Jan 2008 | CN |
1431656 | Jun 2004 | EP |
2006-147262 | Jun 2006 | JP |
2007-173424 | Jul 2007 | JP |
Entry |
---|
Chinese Office Action dated Oct. 10, 2011, issued in corresponding Chinese Patent Application No. 200910117960. |
European Search Report dated Apr. 20, 2010, issued in corresponding European Patent Application No. 09002852.3. |
Number | Date | Country | |
---|---|---|---|
20090219718 A1 | Sep 2009 | US |