The described embodiments relate generally to lighting. More particularly, the described embodiments relate to methods, apparatuses and systems for lighting control through an automatic mode and a bypass mode.
Lighting control can be used to automatically control lighting under certain conditions, thereby conserving power. However, lighting control, specifically advanced lighting controls have not been widely adopted in the general commercial market because the installation, setup related costs and complexity have made these lighting systems prohibitively expensive for most commercial customers. Additionally, if these systems include intelligence, they are generally centrally controlled. Central control typically interprets Boolean (for e.g. contact closure) inputs from sensors and reacts according to pre-configured settings.
However, the people who are presently implementing intelligent lighting control systems are typically building facility managers who are generally a conservative group of people with a very skeptical view of new technology. Therefore, these people tend to be a part of the late majority in adopting new products.
It is desirable to have light systems that are robust and fault-tolerant. However, even robust, fault-tolerant systems can suffer from software bugs and be susceptible to cyber-attacks.
It is desirable to have a lighting method, apparatus and system for intelligent control of lighting that offers a fail-safe mode in case of failure of the intelligent lighting control.
One embodiment includes a method of controlling a light through an automatic mode and a bypass mode. The method includes receiving physical signaling. Detection of a predetermined sequence of the physical signaling is used to determine whether to control the light in the automatic mode or the bypass mode. The automatic mode provides network control of the light, and the bypass mode bypasses the network control of the light.
Another embodiment includes a lighting system. The lighting system includes a light, a sensor for receiving and sensing the physical signaling, and a controller detecting a predetermined sequence of the physical signaling. Detection of a predetermined sequence of the physical signaling is used to determine whether to control the light in the automatic mode or the bypass mode. The automatic mode provides network control of the light, and the bypass mode bypasses the network control of the light.
Other aspects and advantages of the described embodiments will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the described embodiments.
The described embodiments are embodied in methods, apparatuses and systems for controlling operating modes of a light. A first mode is an automatic mode and a second mode is a bypass mode. Generally, the automatic mode includes a network controlling the light and the bypass mode includes bypassing the network control. Sequences of the physical signaling are used to allow an operator to set the lighting control in either the automatic mode or the bypass mode. The physical signaling can be sensed and the sequences detected by a controller.
Typically, the network manager 110 provides timer and zone controls of area that are lit by the multiple lights 130, 132, 134. The timer and zone controls defined the behavior of the lights 130, 132, 134. For example; typically; the lights 130, 132, 134 automatically turn off at night, and lights near windows may be dimmed during the day. Control of the network manager 110 can also be used to override the controlled behavior.
However, it may be desirable to disable (bypass) the automatic control, and provide physical control of one or more of the lights 130, 132, 134. To enable such control, the system of
For an embodiment, the sensor 160 senses a power supply voltage from, for example, a voltage power supply 150. The voltage sensed by the sensor 160 can be cycled on and off by, for example, by user control of a manual switch 140. The user can signal to the controllers 120, 122, 124 to change the mode of operation of the lights 130, 132, 134 by power cycling the voltage received by the sensor 160. The power cycling can be performed by the user by cycling (turning the manual switch 140 “off” and “on”) the settings of the manual switch 140 according to a predetermined, known sequence.
Though the sensor 160 of
The mode selection (automatic and bypass) can be selected by a single sequence, wherein detection of the single sequence causes the mode to toggle from one mode to the other mode. Alternatively, detection of a first sequence can cause the mode to be automatic, and detection of a second sequence can cause the mode to be bypass. However, as will be shown and described, an embodiment includes the first sequence and the second sequence being non-overlapping or orthogonal to avoid mis-detection between the two modes.
The network manager 110 can be interfaced with an external network during the automatic mode. For an embodiment, the bypass mode includes converting all control of the lights 130, 132, 134 to the network manager 110. That is, the external network loses all control of the lights 130, 132, 134 in the bypass mode, but the external network has control through the network manager 110 in the automatic mode.
For an embodiment, an external controller controls the light 230 through the light controller 220 in the automatic mode. In the bypass mode, the user has direct control of the light 230 using the switch 240. In another embodiment, the light controller 220 can be bypassed as well.
A sensor 360 must be able to sense the physical signaling signals. The sequences can then be detected by the light controller for setting the lighting control apparatus into the selected mode.
For an embodiment, detection of the predetermined sequence toggles the light from a one of the automatic mode and the bypass mode to the other of the automatic mode and the bypass mode.
An embodiment further includes a first predetermined sequence and a second predetermined sequence, wherein detection of the first predetermined sequence causes the light to be operated in the automatic mode and detection of the second predetermined sequence causes the light to be operated in the bypass mode. As described, for an embodiment, the first predetermined sequence and the second predetermined sequence are non-overlapping. Also as described, for an embodiment, the first predetermined and the second predetermined sequences are orthogonal.
As described, for an embodiment, the physical signaling is provided through a power supply of the light, and the predetermined sequence is detected by detecting power cycling of the power supply. For another embodiment, the physical signaling is provided through a sensor sensing light, and the predetermined sequence is detected by detecting intensity cycling of a source of light. The source of light can be, for example, a flash light is cycled by an operator flashing the light on and off in succession according to one of the predetermined sequences. Clearly, other types of physical signaling can alternatively be utilized, for example, motion, such as, clapping.
An embodiment includes the first predetermine sequence and the second predetermined sequence setting the light in the automatic mode or the bypass mode based upon timing of a plurality of sensed power cycles of the power supply. That is, a timing of power cycling of the power supply according to the first sequence puts the light in the bypass mode and timing of power cycling of the power supply according to the second sequence puts the light in the automatic mode. Further, as will be shown in
As shown and described, for an embodiment the network is interfaced with an external network in the automatic mode, and the network is disconnected from the external network in the bypass mode. For another embodiment, the light is manually controlled by a user in the bypass mode.
A benefit of the described embodiments is that the bypass mode can act to restore confidence of a user in an intelligent lighting system in case of catastrophic software, communication failure or a cyber-attack/disgruntled employee attack. Historically, lighting in buildings has been robust and is more or less taken for granted. A change in this eco-system is not to be taken lightly. Additionally, the mode selections provided by the described embodiments provide a parachute when all else fails. In most cases, the parachute (bypass mode) brings the user back to where the user was before implementing the intelligent light system.
In at least some embodiments of the light control through an automatic mode and a bypass mode light control, entering the bypass mode does not require the light or the lighting control to be physically manipulated.
At startup or power up of the light or lighting system, an embodiment of the lighting controller is reset with a ToByPass flag not being set, a ToByPass counter set to zero and a ToAuto counter set to zero. The ToByPass flag is set or reset (not set) to control whether the lighting system is in bypass or automatic modes. The counters (ToByPass and ToAuto) are used to count power cycling (physical signaling) to determine whether a user is attempting to put the lighting control in bypass or automatic modes. More specifically, the counters count the cycling, and the timing of the cycling is also used for determining detection of the first and second predetermined sequences. As will be described, the bypass (ToByPass) flag is reset upon powering up the light, and the bypass flag is further set or reset based upon sensing (detecting) the first sequence or the second sequence, and the setting of the bypass flag (ToByPass) determines whether the light is to be in the automatic mode or the bypass mode.
At startup, and power cycle 610 is sensed. A step 620 checks if the InByPass flag is not set (as it would not be at startup). If not, a step 630 checks the ToByPass count. If less than 3 (clearly, the count can be adjusted to a different number), a step 640 includes waiting for 5 seconds before incrementing the ToByPass counter (step 650), followed by a step 660 that includes waiting for another 15 seconds. If (step 670) a power cycle is detected within the 15 second wait (of step 660), the power cycle step 610 is repeated. If a power cycle is not detected, then the ToByPass counter is reset to zero (step 680) and the lighting control goes into (actually stays) in the automatic mode (step 690) until another detected power cycle (step 692) takes the process back to step 610.
To leave the automatic mode and go to the bypass mode, the power cycling must occur three time within the 15 second window of step 630. When this occurs, the ToByPass counter is set to zero, and the InByPass flag is set (step 686) is puts the lighting control in the bypass mode (step 687). The next power cycle (step 688) sends the process back to the start (step 610), the InByPass flag is set (step 620) and the ToAuto count is checked to determine if it has reached 3 (step 635). Steps 655, 665, 675 increment (step 655) the ToAuto counter each time a power cycle is detected within 3 seconds (step 665) to determine whether a sequence is detected that then puts the lighting control back into the automatic mode. Otherwise, the ToBypass counter is set to zero (step 685) and the lighting control remains in the bypass mode (step 687). If the ToAuto counter is detected to reach 3 (step 635), the ToAuto counter is reset to zero, and the InByPass flag is reset (step 688), whereby, the lighting control goes back to the automatic mode (690).
Although specific embodiments have been described and illustrated, the described embodiments are not to be limited to the specific forms or arrangements of parts so described and illustrated. The embodiments are limited only by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4797568 | Gumbs | Jan 1989 | A |
5101141 | Warner et al. | Mar 1992 | A |
5179324 | Audbert | Jan 1993 | A |
5191265 | D'Aleo et al. | Mar 1993 | A |
5283516 | Lohoff | Feb 1994 | A |
5812422 | Lyons | Sep 1998 | A |
6057654 | Cousy et al. | May 2000 | A |
6188181 | Sinha et al. | Feb 2001 | B1 |
6342994 | Cousy et al. | Jan 2002 | B1 |
6548967 | Dowling et al. | Apr 2003 | B1 |
7309985 | Eggers et al. | Dec 2007 | B2 |
7348736 | Piepgras et al. | Mar 2008 | B2 |
7382271 | McFarland | Jun 2008 | B2 |
7437596 | McFarland | Oct 2008 | B2 |
7550931 | Lys et al. | Jun 2009 | B2 |
7566137 | Veskovic | Jul 2009 | B2 |
7792956 | Choong et al. | Sep 2010 | B2 |
7925384 | Huizenga et al. | Apr 2011 | B2 |
8476844 | Hancock et al. | Jul 2013 | B2 |
20040002792 | Hoffknecht | Jan 2004 | A1 |
20050169643 | Franklin et al. | Aug 2005 | A1 |
20050231112 | Woo et al. | Oct 2005 | A1 |
20060275040 | Franklin | Dec 2006 | A1 |
20070057807 | Walters et al. | Mar 2007 | A1 |
20070061050 | Hoffknecht | Mar 2007 | A1 |
20070086128 | Lane et al. | Apr 2007 | A1 |
20070215794 | Cernasov et al. | Sep 2007 | A1 |
20080185977 | Veskovic et al. | Aug 2008 | A1 |
20080244104 | Clemente | Oct 2008 | A1 |
20090026966 | Budde et al. | Jan 2009 | A1 |
20090179596 | Willaert et al. | Jul 2009 | A1 |
20090195161 | Lane et al. | Aug 2009 | A1 |
20090261732 | Bouchard | Oct 2009 | A1 |
20100034386 | Choong et al. | Feb 2010 | A1 |
20100135186 | Choong et al. | Jun 2010 | A1 |
20100264846 | Chemal et al. | Oct 2010 | A1 |
20100270933 | Chemal et al. | Oct 2010 | A1 |
20100295482 | Chemal et al. | Nov 2010 | A1 |
20100301777 | Kraemer | Dec 2010 | A1 |
20110031897 | Henig et al. | Feb 2011 | A1 |
20110144821 | Nerone et al. | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120229049 A1 | Sep 2012 | US |