This application claims priority to PCT Patent Application No. PCT/EP2015/064576, filed 26 Jun. 2015, which itself claims priority to German Application No. 10 2014 109115.9, filed 30 Jun. 2014, the entirety of both of which are hereby incorporated by reference.
The invention relates to a lighting device for vehicles having a multitude of light modules, each comprising a light source arranged on a substrate and a lens arranged at a distance to the light source, for the creation of a given light distribution.
A lighting device for vehicles is known from WO 2009/020000 A1, which has a light module working according to the projection principle. A light source embodied as an LED light source is arranged on a substrate being fastened to a heatsink. In the area of the light source, a cut-off line screen is provided for the generation of a cut-off line. A lens arranged at a distance forms the light source for the generation of the light distribution. To this end, the light source respectively the cut-off line screen is arranged in the area of a focal point of the lens. Also a plurality of such light modules may be arranged in a housing of the lighting device, as is known from U.S. Pat. No. 8,506,137 B2. The embodiment of one of the light modules in a movable manner is known which ensures the optimal illumination of the road space during cornering by illuminating an extended lateral area. This has the disadvantage, that an actuator must be assigned to the light module to be moved, which takes up additional space. In particular, the lighting device has a relatively large installation depth due to this.
It is, therefore, the task of the present invention to develop further a lighting device for vehicles with a multitude of light modules working according to the projection principle in a manner, that a light distribution extended in the lateral direction is ensured with little effort, wherein particularly the required space is to be kept at a minimum.
To solve this task, the invention in connection with the preample of claim 1 is characterized in that a fixed side light module and a fixed main light module are provided as a light module, wherein the side light module has an asymmetric lens, so that a light beam radiated by the side light module creates a side light distribution extending the main light distribution created by the main light module in the lateral direction.
The particular advantage of the invention is that by providing a fixed side light module, a main light distribution created by at least one further main light module can be extended in the lateral direction, so that a total light distribution enlargened in the horizontal direction can be created. The creation of a side light distribution by the side light module is achieved by an asymmetric lens, which is embodied in a fixed manner. In comparison with the main light module, no additional component parts are required. The extending side light distribution is achieved by the design of the lens, so that the lighting device has, overall, a relatively flat layout. In addition, the contour of a bezel encircling the light modules can be adhered to.
According to a preferred embodiment of the invention, the asymmetric lens has a cut edge whose distance to a central axis of the asymmetric lens is smaller than a distance of an opposite outer edge to the same. By means of the cut edge, a limitation of the side light distribution on a free lateral end of the same is achieved.
According to a further development of the invention, the side light module as well as the main light module are positioned so that a vertical cut-off line of the side light distribution and a vertical cut-off line of the main light distribution run on a common plane. Advantageously, a defined connection of the side light distribution to an end of the main light distribution is achieved. In the switched-off condition of the side light module, the total light distribution ends at this vertical cut-off line of the main light distribution.
According to a further development of the invention, the side light module can be switched on and off depending on a steering direction of the vehicle, so that it can be used as a bend lighting function of the lighting device.
According to a further development of the invention, the side light module and the main light module each have a lens holder being fastened on a heat sink carrying the substrates of the respective light sources or on a carrier frame carrying the respective light sources. Advantageously, the light modules have an identical design and may have identical dimensions, so that a uniform appearance is provided particularly in the switched-off state.
According to a further development of the invention, the lens of the main light module is embodied plano-convex and the lens of the side light module is embodied partly plano-convex, the lens of the side light module having a cut-off lateral area. Due to the similar dimensioning of the lenses, these have a similar appearance in the switched-off state of the lighting device.
According to a further development of the invention, the arrangement of the side light module and the main light module is offset in parallel, so that the light modules always have the same alignment in the housing.
Reference is now made more particularly to the drawings, which illustrate the best presently known mode of carrying out the invention and wherein similar reference characters indicate the same parts throughout the views.
A lighting device according to the invention is preferably used for headlamps of vehicles. A left-hand headlamp with regard to a longitudinal vehicle axis in the driving direction, as well as a right-hand headlamp have one housing 1 each, in which a multitude of main light modules 2 and a side light module 3 are arranged. The
The right-hand headlamp, which is not represented, has a housing in which three identical main light modules 2 and a single side light module are arranged. The main light modules 2 serves the creation of the high beam distribution LF .The side light module serves the creation of a side light distribution which abuts in the horizontal direction on a right-hand edge 26 resp. right-hand cut-off line of the high beam light distribution LF. The side light distribution LS therefore extends the high beam light distribution LF by a lateral connection area on a left-hand side of the same.
The light modules (main light module 2, side light module 3) of the lighting device have a similar design. Each has a heatsink 4 serving as a carrier for a substrate on which a light source 5, 5′ is positioned. Furthermore, the light modules 2, 3 each have a lens holder and a lens which is arranged at a distance a in the main radiation direction H.
The side light module 3 differs from the main light module 2 essentially in that the lens of the side light module is embodied as an asymmetric lens 6 having a cut off lateral area 7 on a side facing toward the lateral connection area of the main light distribution LF to be illuminated. The asymmetric lens 6 of the side light module 3 represented in
As can be seen in
The light source 5 of the main light module 2 is arranged centrically relative to a central axis M of the lens arranged in front of it, respectively to a bezel 9 encircling this lens. As the light source 5, like the light source 5′, consists of 5 LED light sources 8, the central LED light source 8 cuts the vertical central axis M, respectively the optical axis A of the same.
A horizontal offset of the side light distribution LS relative to the high beam light distribution LF is realized by the horizontal relative offset of the light source 5 of the main light module 2 on one hand and the light source 5′ of the side light module 3 on the other hand, relative to the respective optical axes A of the lenses arranged in front of them.
For the side light distribution LS to be embodied in a tapering manner while forming an inclined upper cut-off line 10 and an inclined lower cut-off line 11 in the direction of a free lateral end 17, the light source 5′ of the side light module 3 is arranged rotated around the optical axis A by an angle φ relative to the light source 5 of the main light module 2. In the present embodiment of the invention, the light source 5 of the main light module 2 extends in the horizontal direction, so that all LED-light sources 8 of the light source 5 are arranged on a horizontal plane 12 cutting the optical axis A of the main light module 2. In contrast to this, the row of LED light sources 8 of the side light module 3 is arranged tilted by the angle φ relative to the horizontal plane 12, the LED light sources 8 left of the optical axis A in the driving direction being arranged below the horizontal plane 12 and the LED light sources 8 right of the optical axis A in the driving direction being arranged above the horizontal plane 12.
The lens of the main light module 2 is embodied plano-convex. The asymmetric lens 6 of the side light module 3 is embodied partly plano-convex. As can be seen in
The lens of the main light module 2 has a symmetrical embodiment with regard to the center plane M, with edges 15 of identical depth being provided on opposite sides. The asymmetric lens 7 of the side light module 3 is different from the lens of the main light module 2 in that it is cut off in a lateral area.
The light source 5′ of the side light module 3 can be activated or deactivated independent of the light source of the main light module 2. The light source 5′ of the side light module 3 can preferably be activated or deactivated depending on a steering direction of the vehicle, so that the light module 3 serves the creation of a bend lighting function. If for example the steering wheel of the vehicle is turned toward the left, the side light module 3 of the left-hand headlamp is switched on to illuminate a left-hand lateral area abutting on the main light distribution (LF) in the horizontal direction. If the steering wheel of the vehicle is turned toward the right, the side light module 3 of the right-hand headlamp is switched on to illuminate a right-hand lateral area abutting on the main light distribution (LF) which extends the main light distribution in the horizontal direction.
According to one embodiment of the invention, the LED light sources 8 of the light source 5′ can be switched on optionally in a dimmed state in order to reduce the light intensity toward the end 17 of the total light distribution L. The LED light sources 8 providing a share of the illumination of a zone close to the end 17 are preferably provided with less power thank the LED light sources 8 of the light source 5′ being used for the illumination of a zone of the side light distribution LS facing toward the high beam light distribution LF.
The side light module is arranged offset in parallel relative to the main light module 2. The asymmetric lens 6 of the side light module 3 can be arranged on a common plane with the lens of the main light module 2. Optionally, the asymmetric lens 6 of the side light module 3 can also be arranged offset in the main radiation direction H relative to the lens of the main light module 2.
The asymmetric lens 6 of the side light module 3 respectively the lens of the main light module 2 can be made from a glass material or a transparent plastic material.
The asymmetric lens 6 is arranged on a lens holder 18 in a welded manner. The lens holder 18 is attached to the heatsink 4 in a customary manner. The bezel 9′ encircling the asymmetric lens 6 as well as the bezel 9 encircling the lens of the main light module 2 are preferably fastened on a common housing 1. The lens holders 18 of the side light module 3 and of the main light module 2 can be fastened to the common heatsink 4.
On the one hand, the light distribution L represented in
Number | Date | Country | Kind |
---|---|---|---|
10 2014 109115 | Jun 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/064576 | 6/26/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/001098 | 1/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7988345 | Rosenhahn | Aug 2011 | B2 |
20100002460 | Rosenhahn et al. | Jan 2010 | A1 |
20120038272 | De Castro | Feb 2012 | A1 |
20130010485 | Sikkens | Jan 2013 | A1 |
20130169154 | Kay | Jul 2013 | A1 |
20140313762 | Owada | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
102966896 | Mar 2013 | CN |
102010017275 | Apr 2011 | DE |
102012211613 | Jan 2014 | DE |
2009020000 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20170167682 A1 | Jun 2017 | US |