The field of the disclosure relates generally to natural lighting systems. More specifically, the disclosure relates to natural lighting systems that include light pipes. More particularly, the disclosure relates to a light pipe device having an anti-bird perch system to discourage birds from perching, nesting or roosting on or around the light pipes on the rooftop of a building.
This section is intended to provide a background or context to the invention recited in the claims. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, what is described in this section is not prior art to the description and claims in this application and is not admitted to be prior art by inclusion in this section.
Natural lighting devices such as skylights, domed windows, domed light pipes and the like for allowing ambient or natural lighting (e.g. sunlight, etc.) to enter an enclosure such as a building are generally known and have an effectiveness that relies at least partially on an amount of light that can enter through (or be received by) the lighting device. Accordingly, objects that tend to block or reduce the transmission of light from local surroundings into the lighting device will tend to decrease the effectiveness of the lighting device. Among objects that tend to block the light from being received by the lighting device are birds that occasionally roost, perch or nest on the rooftops of buildings and on, or in close proximity to, the lighting device. However, the known anti-bird perch features, such as an array of spines, spikes or the like are generally not desirable as they tend to interfere with transmission of light from local surroundings into the lighting device.
Accordingly, it would be desirable to provide a lighting device with an anti-bird perch system that reduces the tendency of birds to perch, roost or nest on the rooftop of a building near the lighting device, and minimizes any associated reduction in natural light reception by the lighting device.
In an exemplary embodiment, an anti bird-perch lighting system for use with a facility includes a plurality of light pipes, each having a substantially dome-shaped light collector and a projection extending from the light collector, and at least one filament extending between two or more of the projections to define a filament network.
In another exemplary embodiment, an anti bird-perch lighting system for use with a facility includes a plurality of dome-shaped light collectors disposed on a roof of the facility, with a projection extending from an apex of the light collector, and at least one filament extending from substantially all of the projections so that each projection is connected to two or more of the other projections to define a filament network disposed above the roof and proximate a top of the plurality of light collectors.
In another exemplary embodiment an anti bird-perch lighting system for use with a facility having a roof includes a plurality of light collectors disposed on the roof and configured to collect sunlight, and a projection extending from each of the light collectors, and a filament interconnecting the projections on the light collectors to define a filament network disposed above the roof and proximate a top of the plurality of light collectors.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Exemplary embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
a depicts a cross sectional side view of a light pipe system providing natural light and including an anti-bird perch feature in accordance with an exemplary embodiment.
b depicts a detailed side cross sectional view of the mounting between a diffuser and a reflective tube of the light pipe system of
a depicts a detailed cross sectional side view of the mounting between a light collection system and the reflective tube of the light pipe system of
b depicts a detailed cross sectional side view of the mounting between a flashing and a mounting flange of the light pipe system of
With reference to
Diffuser 200 may be a prismatic diffuser. In the exemplary embodiment of
With continuing reference to
With reference to
With reference to
Clamp ring 302 is positioned over flange 406 of light collector 300. Clamp ring 302 may include first fastener holes 400. Mounting flange 304 may include a flange 408 and a wall 410 which extends from flange 408 at an approximately 90 degree angle though other angles may be used. In an exemplary embodiment, flange 408 and wall 410 extend approximately 1.5 inches. Flange 408 of mounting flange 304 may include second fastener holes 402. In general, first fastener holes 400 are formed in clamp ring 302 to align with second fastener holes 402 of mounting flange 304 so that flange 406 of light collector 300 can be mounted and held between clamp ring 302 and flange 408 of mounting flange 304. Mounting flange 304 and clamp ring 302 may be formed of aluminum.
With reference to
With reference to
With reference to
With reference to
With reference to
In an alternative embodiment, a different fastening mechanism may be used to connect the components of light pipe system 102. For example, a question mark fastener comprising a band clamp or a barrel clamp type of fastener may be used with a T-bolt or straight hex bolt to close the clamp. Flange 408 of mounting flange 304 and flange 406 of light collector 300 are positioned within an open upper end of the question mark section of the question mark fastener. The clamp may replace fastener 900 and clamp ring 302. A V-section clamp may also be used with bolt anchor points added to a V section of the V-section clamp.
A first gasket 908 may be positioned between first mounting surface 702 of flashing 306 and wall 206 of reflective tube 202 to abut against transition surface 704 of mounting wall 606. In an exemplary embodiment, first gasket 908 is a horsehair gasket. A second gasket 910 may be positioned between shell 404 of light collector 300 and second mounting surface 706 of flashing 306. In an exemplary embodiment, second gasket 910 is a horsehair gasket. First gasket 908 and second gasket 910 reduce airflow and keep contaminants from entering light pipe system 102. Fewer or additional gaskets may be included. In an exemplary embodiment, silicone may be applied between flashing 306 and reflective tube 202 to reduce airflow and keep contaminants from entering light pipe system 102. A second fastener 912 extends through a first fastener hole in second mounting surface 706 of flashing 306 and through a first fastener hole of wall 206 of reflective tube 202 to mount flashing 306 to reflective tube 202. Second fastener 912 extends into the interior space formed by reflective tube 202. Second fastener 912 is positioned above flange 406 of light collector 300 along shell 404 of light collector 300. In an exemplary embodiment, second fastener 912 is a sheet metal screw formed of stainless steel. Clamp ring 302 may be formed of a plurality of sections which may overlap to form various size rings.
With reference to
In an exemplary embodiment, an insulation sleeve may be positioned between flashing 306 and reflective tube 202 to reduce airflow and keep contaminants from entering light pipe system 102 and to reduce heat loss from light pipe system 102. The insulation sleeve may be formed of a fiberglass material. The insulation sleeve may be taped to an inside surface of flashing 306 and may extend from approximately adjacent first gasket 908 to the roofing/wall or 2-3 inches below/into the roofing/wall. A counter flashing may be positioned between mounting flange 304 and an exterior surface of the roofing/wall to deflect moisture away from light pipe system 102. The counter flashing may be mounted to mounting flange 304 using first fastener holes 400 and second fastener holes 402. Additionally, in an alternative embodiment, a plurality of rods (not shown) may mount to mounting flange 304 extending upward toward shell 404. A filament may be extended between the plurality of rods to discourage birds from roosting on light pipe system 102.
With reference to
The Applicants believe that a substantially clear or transparent filament tends to be more effective because it is less readily detectable (and thus not easily circumvented) by birds and thus constitutes more of a potential hazard that, once the birds are familiar with the network (i.e. after a suitable “learning period”) and develop a certain “discomfort” with the network, they tend to avoid. Whereas, when the filament network is readily visible or detectable, it is more readily noticed and circumvented by birds, and tends to be less effective in discouraging the birds from perching, nesting or roosting on the rooftop in the vicinity of the network and lighting devices. The Applicants currently believe that the effectiveness of the filament network is attributable (at least in part) to the creation and presence of a potential hazard that birds become aware of over time, but have difficulty detecting and circumventing; rather than the formation of a physical barrier (e.g. in the manner of a screen of the like). Accordingly, the filament network is more effective in discouraging birds from perching, roosting or nesting not only on the individual collectors 300, but also over the broader rooftop area of the building (unlike conventional spikes or the like which are effective only on the particular object from which the spikes extend).
According to one embodiment the network comprises a geometrically symmetric pattern; according to other embodiments, the network comprises geometrically asymmetric patterns, depending on the number and arrangement of light pipes, obstructions (if any) between the light pipes, or other factors. The Applicants believe that asymmetric patterns that have a more “random” structure may also tend to create a certain discomfort for birds because the randomness tend to creates more difficulty for the birds to circumvent. The filament(s) may also be coupled to other structures on the roof, such as stacks, utility supports, ventilation hoods or equipment and the like.
According to other embodiments, the filaments may be provided with visual indicators to further establish the presence of the network. Such visual indicators may include coloring (e.g. monochrome or multi-colored) of the filament itself, or suspension of objects (e.g. tags, flags, markers, etc.—which may be stationary or movable, such as by wind or other source) from the filament, or the filament may have a light-reflective surface configured to reflect light from the sun or other sources to enhance visual perception of the presence of the network.
Although the light pipes are shown by way of example as installed on a substantially planar rooftop with a correspondingly planar filament network, the anti-bird perch system is equally adaptable for use with light pipes (or other suitable lighting devices) installed on a sloped, contoured, or multi-level rooftops where the filaments, as extended from one light pipe to the next, tend to follow the contour of the rooftop. According to a further embodiment, the filaments may be provided with one or more tensioning device(s) 12 (e.g. springs, mass-pulley, etc.) intended to maintain a desired tension on the filaments during various weather conditions (e.g. hot, cold, wet, dry, wind, etc.) and to accommodate creep or stretch of the filament material, so that the filament network retains a desired tension or taughtness so that the filament network extends over the plurality of light pipes on the facility. According to other embodiments, a certain level of “sag” or “droop” of the network is permitted and tensioning devices may be omitted. According to one embodiment, network 112 is intended to appear as a “floating” web or filament network extending along at an elevation at, or slightly above, the top of the collectors 300 of the light pipes on the rooftop of the building. The Applicants believe that the network positioned at such an elevation tends to be most effective at discouraging the presence of birds on the rooftop in the vicinity of the light pipes, and is usually sufficiently high to avoid being covered by snow during the winter months or in cold climates, yet is sufficiently low and unobtrusive to avoid being an unsightly detraction from the building's aesthetic appearance.
Each segment of the filament network 112 may be a separate segment connected at each end to a projection 405 on an associated light collector 300. According to another embodiment, the segments of the filament network may be provided by one or more multi-segmented filaments that are coupled to their associated projections 405, or a single filament may be used for the entire network. The filament(s) may be coupled to the projections by tying, wrapping, routing through an aperture, or any other suitable manner intended to secure the filament(s) to the projection to create the filament network. According to a further embodiment, one or more posts may be provided to elevate certain portions of the filament network to create a filament network with a contoured topography.
According to any exemplary embodiment, an anti bird-perch system provides a network of filaments (which may be substantially clear) suspended from a top of the light collectors on light pipes disposed on the rooftop of a building, in order to discourage birds from populating the area of a rooftop around the location of the light pipes.
The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”.
The foregoing description of exemplary embodiments of the invention have been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The functionality described may be distributed among modules that differ in number and distribution of functionality from those described herein. Additionally, the order of execution of the functions may be changed depending on the embodiment. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
The present Application claims the benefit of priority as a continuation-in-part of co-pending U.S. patent application Ser. No. 11/771,317 titled “Method and System for Controlling a Lighting System” filed on Jun. 29, 2007, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11771317 | Jun 2007 | US |
Child | 12203825 | US |