1. Field of the Invention
The present invention generally relates to lighting devices and more particularly to portable lighting devices which may be selectively secured to convenient locations.
2. Related Art
Portable lighting devices such as flashlights, headlamps, and other types of lighting devices are often employed by hikers, climbers, search/rescue teams, and other users to conveniently illuminate areas of interest. In certain environments, it is often important that a user's hands remain relatively free and unencumbered so that the user can perform various tasks while an area of interest is illuminated, rather than the user being required to continuously hold the lighting device by hand.
For example, conventional headlamps may be used to secure a light source to a user's head. Unfortunately, many existing headlamps suffer from limitations which compromise their usefulness and reliability. In this regard, certain conventional headlamps provide a light source that extends outward in a cantilevered fashion from a base member positioned on or near a user's forehead. In such implementations, the light source is supported by a single mounting point on the base member which is prone to failure. Gravity-induced torque on the cantilevered light source (e.g., in a downward direction) can stress the mounting point. Over time, this stress can cause the light source to sag under its own weight. As a result, the light source may not remain pointed in a direction desired by a user, or the mounting point may fail and cause the light source to become detached from the mounting point. Accordingly, there is a need for an improved lighting device that overcomes one or more of the deficiencies discussed above.
Various lighting devices and methods of operation are provided which may be used to advantageously illuminate areas of interest in a reliable, convenient manner. In one embodiment, a lighting device includes a cradle comprising two support members. The lighting device also includes a main body comprising a light source, a housing, and two mounting members attached to substantially opposite sides of the housing. The main body is adapted to be selectively connected to the cradle in response to a user inserting the mounting members in the support members. The main body is adapted to be selectively disconnected from the cradle in response to the user removing the mounting members from the support members. The mounting members are adapted to rotate relative to the support members while the mounting members are in the support members to permit the main body to rotate relative to the cradle to adjust an angle of light emitted by the light source.
In another embodiment, a method of operating a lighting device includes inserting a main body of the lighting device into a cradle of the lighting device to connect the main body to the cradle. The cradle comprises two support members. The main body comprises a light source, a housing, and two mounting members attached to substantially opposite sides of the housing. The two mounting members are adapted to be selectively inserted into or removed from the support members by a user. The method also includes rotating the main body relative to the cradle to adjust an angle of light emitted by the light source, wherein the mounting members are adapted to rotate relative to the support members while the mounting members are in the support members.
The scope of the invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly.
Embodiments of the present invention and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures.
Main body 101 of lighting device 100 is configured to be inserted into cradle 120 and also maybe selectively removed from cradle 120. In this regard, main body 101 maybe advantageously attached to cradle 120 and positioned in any convenient location where cradle 120 is positioned. For example, in one embodiment, cradle 120 may be positioned on a user's head to facilitate using lighting device 100 as a headlamp. However, lighting device 100 need not be limited to headlamp applications. For example, in other embodiments, cradle 120 may be positioned in other locations, such as on a belt, clothing, wrist strap, or other locations which may be convenient to a user. In other embodiments, main body 101 may be removed from cradle 120 to facilitate handheld use of main body 101 (e.g., as a flashlight) by a user or placement of main body 101 in other locations.
Main body 101 includes a housing 151 having a substantially elongate shape extending in a substantially vertical direction. Main body 101 includes mounting members 165 exhibiting substantially cylindrical exterior surfaces on either side of housing 151. Main body 101 may be selectively connected to cradle 120 through engagement of mounting members 165 with cradle 120. In this regard, cradle 120 includes two support members 124 which have substantially arcuate interior surfaces 125 that may be engaged with the substantially cylindrical exterior surfaces of mounting members 165 when mounting members 165 are inserted into support members 124.
While main body 101 is engaged with cradle 120 (e.g., through engagement of mounting members 165 and support members 124), housing 151 may be rotated relative to cradle 120 along an axis 102 in the directions denoted by arrows 153 to adjust the angle of light emitted by one or more light sources 166A-E further described herein.
Advantageously, the weight of housing 151 is supported by both of support members 124. Because housing 151 is engaged with cradle 120 through support members 124 and mounting members 165, the center of gravity of main body 101 is situated in close proximity to support members 124 and the remaining portions of cradle 120.
Main body 101 includes end caps 152 connected to mounting members 165 on either side of housing 151. A user may grasp housing 151 or end caps 152 to rotate main body 101 relative to cradle 120. Advantageously, the shape of housing 151 permits the center of gravity of main body 101 to be horizontally positioned between support members 124 and vertically positioned substantially level with or lower than (e.g., below) axis 102, support members 124, and/or mounting members 165. Such positioning of the center of gravity allows gravitational forces to substantially pull housing 151 into a stable position (e.g., without causing main body 101 to be top heavy or cantilevered which could result in unintentional rotation of main body 101). As a result, cradle 120 is configured to hold housing 151 in a stable, reliable manner while still permitting housing 151 to rotate.
Cradle 120 includes connecting members 122 and 126 that include apertures 128 and 129 which may receive various straps or other mounting devices for positioning cradle 120 in desired locations. For example,
As another example,
Main body 101 also includes a user control 154 mounted substantially on a top side of housing 151. User control 154 may be rotated relative to housing 151 to adjust a potentiometer or other appropriate control of lighting device 100 to adjust, for example, the intensity of light emitted by one or more of light sources 166A-E. For example, the user may grasp user control 154 to rotate user control 154 in the directions denoted by arrows 155 relative to body 150. Advantageously, the location of user control 154 on the top side of housing 151 permits a user to adjust user control 154 without causing housing 151 to rotate along axis 102. As a result, main body 101 can remain in a desired position (e.g., rotated to a desired angle relative to cradle 120) while the user operates user control 154.
In addition, the position of user control 154 on the top side of housing 151 permits the user to adjust user control 154 without unintentionally interfering with the light provided by light sources 166A-E. In this regard, the user's hand may be placed on the top side of housing 151 rather than in front of light sources 166A-E (e.g., within beam patterns emitted by light sources 166A-E) which could otherwise interrupt beam patterns emitted by light sources 166A-E. As a result, the user can avoid inadvertently interrupting beam patterns emitted by light sources 166A-E (e.g., avoid casting a shadow) over an illuminated area of interest while adjusting user control 154.
Although user control 154 is illustrated as a user-rotatable dial (e.g., a knob), other embodiments are also contemplated. For example, in other embodiments, user control 154 may be implemented as a slider (e.g., connected to a potentiometer that slides along an axis), a spring loaded lever, a toggle switch, a switch having separate increment and decrement positions, two or more switches (e.g., an increment switch and a decrement switch), or other appropriate controls.
Lighting device 100 includes five light sources labeled 166A-E. Although five light sources are shown, any desired number of light sources, and any desired types of light sources may be used. For example, in various embodiments, light sources 166A-E may be implemented as light emitting diodes (LEDs), incandescent light sources, visible light sources, non-visible light sources (e.g., emitting infrared, ultraviolet, and/or other light wavelengths), spotlights, floodlights, and/or other appropriate types of light sources as may be desired in particular implementations.
Light sources 166A-E are mounted within a lens assembly 167 (e.g., which may be implemented to include a plurality of lenses, each of which may provide total internal reflection of light from a corresponding one or more of light sources 166A-E) in housing 151. Light sources 166A-E and lens assembly 167 are mounted within housing 151 behind a window assembly 168.
As shown in
For example,
In addition,
The implementation of switch 190 and other relevant components of lighting device 100 may be changed in embodiments having different implementations of user control 154. For example, switch 190 may be implemented in an appropriate manner (e.g., as a potentiometer that slides along an axis, a switch responsive to a spring loaded lever, a switch responsive to a toggle switch, a switch having separate increment and decrement positions, two or more switches, or other appropriate switch implementations) to engage with user control 154 in such embodiments.
Although the following descriptions of
As previously described, light sources 166A-C may be implemented as different types of light sources. As such, light sources 166A-C may exhibit different beam patterns (e.g., different dispersion patterns) as denoted by the different widths of beam patterns 602, 604, and 606. For example, in one embodiment, light source 166A may be implemented as a spotlight having a relatively narrow beam pattern as indicated by the narrow width of beam pattern 602. In another embodiment, light source 166B may be implemented as a floodlight having a relatively wide beam pattern as indicated by the wide width of beam pattern 604 in comparison to beam pattern 602. In another embodiment, light source 166C may be implemented as a light source having an intermediate beam pattern as indicated by the intermediate width of beam pattern 606 in comparison to beam patterns 602 and 604.
For purposes of illustration, beam patterns 602, 604, and 606 are shown separately from each other. However, in various embodiments, beam patterns 602, 604, and 606 may overlap with some or all of each other.
In various embodiments, light sources 166A-C may be implemented with similar or different minimum and maximum brightness levels. For example, in one embodiment, the minimum and maximum brightness levels of light sources 166A-C may be substantially similar to each other. In another embodiment, the maximum brightness levels of light sources 166A-C may differ from each other such that, for example, when light sources 166A and 166B are both set to their maximum brightness levels, light source 166B may still be brighter than light source 166A. In another embodiment, the minimum brightness levels of light sources 166A-C may differ from each other such that, for example, when light sources 166A and 166B are both set to their minimum brightness levels, light source 166B may still be brighter than light source 166A.
The operation of user control 154 will now be further described with regard to beam patterns 602, 604, and 606. When user control 154 is at a minimum position 610 (e.g., an off position), all of light sources 166A-C remain turned off (e.g., exhibiting minimum brightness).
As user control 154 is adjusted from position 610 to position 620, light source 166A turns on and gradually increases in brightness until reaching approximately 50 percent brightness when user control 154 reaches position 620. Light sources 166B-C remain turned off as user control 154 transitions from position 610 to position 620.
As user control 154 is adjusted from position 620 to position 630, light source 166A further increases in brightness until reaching approximately 80 percent brightness when user control 154 reaches position 630. Light source 166B turns on as user control passes position 620 and further increases in brightness until reaching approximately 30 percent brightness when user control 154 reaches position 630. Light source 166C remains turned off as user control 154 transitions from position 620 to position 630.
As user control 154 is adjusted from position 630 to position 640, light source 166A further increases in brightness until reaching its maximum brightness when user control 154 reaches position 640. Light source 166B further increases in brightness until reaching approximately 50 percent brightness when user control 154 reaches position 640. Light source 166C turns on as user control passes position 630 and further increases in brightness until reaching approximately 50 percent brightness when user control 154 reaches position 640.
As user control 154 is adjusted from position 640 to position 650, light source 166A remains at its maximum brightness level. Light source 166B further increases in brightness until reaching approximately 80 percent brightness when user control 154 reaches position 650. Light source 166C further increases in brightness until reaching its maximum brightness when user control 154 reaches position 650.
As user control 154 is adjusted from position 650 to position 660, light source 166A remains at its maximum brightness level. Light source 166B further increases in brightness until reaching its maximum brightness level when user control 154 reaches position 660. Light source 166C remains at its maximum brightness level as user control is adjusted from position 650 to position 660.
As user control 154 is adjusted in the reverse direction from position 660 through positions 650, 640, 630, and 620 to position 610, the brightness levels of light sources 166A-C decrease in a similar staggered fashion. As a result, light sources 166A-C may turn on, turn off, and vary in brightness in a staggered fashion as user control 154 is adjusted.
The particular staggered implementation shown in
Advantageously, user control 154 permits a user to adjust the on/off states and brightness of all of light sources 166A-C using only a single control. This feature is desirable for users whose hands must remain free as much as possible to perform other tasks. In particular, such users may adjust a plurality of light sources 166A-C using only a single hand, without requiring manipulation of a plurality of different controls.
Referring now to
Thus, the adjustment of user control 154 can cause control signals 708 to be provided from user control circuit 704 to light source control circuit 702 to identify the position of user control 154 (e.g., positioned at any of the positions 610 to 660 identified in
In response to control signals 708, light source control circuit 702 may generate control signals 706A-C to adjust the brightness of light sources 166A-C in a staggered fashion, such as the implementation identified in
User control circuit 804 provides a control signal 808 to programmable controller 810, for example, in response to adjustment of potentiometer 890 by a user operating user control 154. In response to control signal 808, programmable controller 810 of light source control circuit 802 may generate a control signal 806A to adjust the brightness of light source 166B, and may further generate a control signal 806B to adjust the brightness of light sources 166A and 166C-E. In this regard, control signals 806A-B control the operation of transistors 812A-B which cause changes in the brightness of light sources 166A-E. For example, in this embodiment, the brightness of light source 166B may be controlled independently from the brightness of light sources 166A and 166C-E to achieve any desired staggered or non-staggered changes in brightness levels.
Although two control signals 806A and 806B are shown in circuit diagram 800, any desired number of control signals may be generated and used in other embodiments to independently control any desired number of light sources in any desired staggered or non-staggered pattern, such as in accordance with the various patterns previously described herein.
Where applicable, the various components set forth herein can be combined into composite components and/or separated into sub-components without departing from the spirit of the present invention. Similarly, where applicable, the ordering of various steps described herein can be changed, combined into composite steps, and/or separated into sub-steps to provide features described herein.
The foregoing disclosure is not intended to limit the present invention to the precise forms or particular fields of use disclosed. It is contemplated that various alternate embodiments and/or modifications to the present invention, whether explicitly described or implied herein, are possible in light of the disclosure.
Embodiments described above illustrate but do not limit the invention. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the present invention. Accordingly, the scope of the invention is defined only by the following claims.