1. Field of the Invention
The invention relates to lighting devices and more particularly to a lighting device, in which the light emitting from its light source is reflected off an enclosure element to form a virtual light source.
2. Description of the Related Art
Lighting devices are classified into two categories, direct lit or indirect lit, depending on whether the illumination of the lighting devices comes directly from the light source of the devices or indirectly from a reflector. Most lighting devices, such as candle, incandescent, halogen, and LED lamps are direct-lit lighting devices, with or without an optical filter or lens. Fluorescent lamps are also considered direct-lit lighting devices since the light comes directly from the lighting surface of the fluorescent lamps. In contrast, indirect-lit lighting devices provide illumination by using a reflecting mechanism to reflect the light from the light source of the lighting device off a reflecting mechanism, often in a direction opposite to the original lighting direction of the light source.
The present invention combines at least one light source and one enclosure element wherein at least one portion of the enclosure element has a focus-forming curvature such that when the light from the light source is reflected off the enclosure element the reflected light intersects at the focus of the curvature and creates a virtual light source at the focus. The virtual light source which is created off the reflected light becomes a new direct-lit light source.
The present invention combines at least one light source and one enclosure element whereas at least one portion of the enclosure element. The present invention is characterized by that at least one portion of the enclosure element takes on the geometric shape of a focus-forming curvature so that when the light from the light source is reflected off the focus-forming portion of the enclosure element, the reflected light intersects at the focus of the geometric shape and creates a virtual light source at that focus. This virtual light source of the lighting device becomes the new light source for illumination, rather than the original light source.
Two examples of focus-forming geometric shape for forming virtual light source are ellipsoid and paraboloid. With an ellipsoid, the original light source of the lighting device is placed at one of the two focuses of an ellipsoid and thus creates the virtual light source at the other focus of the ellipsoid. With a paraboloid, multiple original light sources are placed at any positions on the open end of the paraboloid, and the reflected light intersects at the focus of the paraboloid.
In one aspect of the present invention, an optical lens is placed between the light source and the focus of the focus-forming curvature of the enclosure element such that the optical lens changes the lighting angle of the light source and subsequently changes the shape and size of the intersection of the light reflected off the focus-forming curvature. In this case, the reflected light intersects at a focus region, rather than a focus point, and the size and shape of the focus region is determined by the design of the optical lens.
One type of optical lens that is used for changing the shape and size of the intersection region of the reflected light is a diffuser lens. A diffuser lens has the effect of widening the lighting angle of the original light source and results in extending the intersection region of the reflected light from the focus of the focus-forming curvature of the enclosure element toward the light source.
In another aspect of the present invention, a reflective means is used on the focus-forming curvature of the enclosure element for increasing the light reflection off the enclosure element and subsequently enhancing the intensity of light that intersects at the focus. In one embodiment, the reflective means is implemented via the application of a reflective coating on the portion of the enclosure element with the focus-forming curvature. In another embodiment, the reflective means is implemented by using a reflective material to fabricate the portion of the enclosure element with the focus-forming curvature. In yet another embodiment, the reflective means is implemented by placing a curved mirror adjacent to the portion of the enclosure element with the focus-forming curvature for light reflection.
In another aspect of the present invention, a reflective means is placed at the focus of the focus-forming curvature of the enclosure element to redirect the reflected light that intersects at the focus. In one embodiment, the reflective means is implemented by a mirror ball for creating a uniform reflecting effect. In another embodiment, the reflective means is implemented via a reflector of a particular shape and pattern so as to create a non-uniform reflecting effect.
In another aspect of the present invention, a light collecting means is placed between the light source and the enclosure element such that the light from the light sources is collected by the light collecting means and redirected toward the focus-forming curvature with the effect of increasing the intensity of light that intersects at the focus of the curvature. One embodiment of the light collecting means is a ball lens. By covering the light source with a ball lens inside a paraboloidal enclosure element, the light from the light source will be redirected in the direction that is parallel to the axis of the paraboloid, thus increasing the amount of light that will be reflected off the enclosure element and intersect at the focus of the paraboloid.
Another embodiment of the light collecting means is to use a paraboloidal reflector behind the light source such that any portion of the light emitting away from the focus of the focus-forming curvature is collected and redirected by the paraboloidal reflector toward the virtual light source.
The present invention differs from the prior art in that it is neither direct-lit nor indirect-lit. Rather, it uses a portion of the enclosure element with a focus-forming curvature such that the light emitting from the original light source and reflected off the enclosure intersects at or around the focus of the curvature and the intersection of the reflected light becomes the new virtual light source of the lighting device.
The claims and advantages will be more readily appreciated as the same becomes better understood by reference to the following detailed description and the accompanying drawings showing exemplary embodiments, in which like reference symbols designate like parts. For clarity, various parts of the embodiments in the drawings are not drawn to scale.
Various implementations of the present invention and related inventive concepts are described below. It should be acknowledged, however, that the present invention is not limited to any particular manner of implementation, and that the various embodiments explicitly discussed herein are primarily for purposes of illustration. For example, the various concepts discussed herein may be suitably implemented in a variety of luminaires having different form factors and light output.
When a ball lens 660 is placed over the light source 620B, it collects and redirects all light 670A and 670B from the light source 620B toward the direction that is parallel to the axis 611 of the paraboloid, as illustrated by the light 680A and 680B. As a result, additional reflected light 690A and 690B intersects at the focus 650 of the paraboloid, with the net effect of increasing the intensity of the light of the virtual light source at the focus 650.
The light 770A and 770B emitted from the light source 720B in the direction away from the focus 750 is collected and redirected by the paraboloidal reflector 760 toward the direction that is parallel to the axis 711 of the paraboloid enclosure element, as illustrated by the light 780A and 780B. As a result, additional reflected light 790A and 790B intersects at the focus 750 of the paraboloid enclosure element, with the net effect of increasing the intensity of the light of the virtual light source at the focus 750.
While the invention has been described and illustrated in its preferred embodiments, it should be understood that departure therefrom may be made within the scope of the invention, which is not limited to the specific details disclosed herein. Furthermore, it should be understood that the features of illustrated embodiments can be combined in any way, form, or fashion, to create another embodiment.