The invention relates to a lighting device comprising a carrier for positioning relative to a surface and at least one light source, and to a system comprising the lighting device and a control unit.
Such lighting device is known for example from US2012/0002409 A1 which discloses a mount having at least one semiconductor light source, where the mount has an elongated basic form and is designed to include at least two functionalities. Of which at least one is a lighting functionality. To implement the at least one lighting functionality, the mount includes at least one semiconductor light source, in particular a LED light source.
In order to prevent dazzle, the lighting device of US2012/0002409 A1 screens its light source from external view by substantially having an H-shape or T-shape cross section. In particular, a view screening element can then be mounted on the side facing away from the semiconductor light source. Although dazzle is somewhat prevented, it is a disadvantage that such lighting device is still limited in application to prevent further dazzle or glare. US2012/0002409 A1 comprises a mount with multiple functionalities, of which at least one is a lighting functionality, a disadvantage of such a mount remains that the lighting application cannot be utilized in its full potential.
It is an object of the invention to provide a lighting device, which prevents glare irrespective of a position of the lighting device relative to a surface and at the same time to allow the light effect of the lighting device to be controlled.
Thereto, the invention provides a lighting device comprising a surface-mountable elongated carrier for positioning relative to a surface, at least one light source, and an adjustable cover; wherein the elongated carrier comprises opposite to each other a first face on a first side and a second face on a second side, the at least one light source is located on the first and second face; and wherein the elongated carrier comprises a third face on a third side for facing the surface in mounted position; and wherein the adjustable cover is in connection with the carrier and is positioned on a fourth side of the carrier opposite to the third side, and wherein the adjustable cover is movable relative to the elongated carrier for controlling a light effect originating from the at least one light source, wherein the at least one light source comprises a LED light source. Said light effect may be to prevent the perception of glare being observed by an observer facing the surface. The glare is being caused by the at least one light source and the position of the carrier relative to the surface.
Said at least one light source is a LED light source.
Said surface may be an architectonic surface, like a wall, a ceiling, a window, a façade, or a floor. The surface may also be a surface of another object like furniture, a screen or a vehicle. In an embodiment, the elongated carrier comprises a third face on a third side, which is facing towards the surface in mounted position.
Said first, second, third and fourth side can be considered as one of the six sides of a cube (e.g. top, bottom, left, right, front back) within a Cartesian coordinate system. The shortest distance between opposite sides is then the line orthogonal between corresponding opposite faces of the cube.
Said third side is the side on which the lighting device projects the light effect on the surface. The fourth side is the side of the lighting device where the adjustable cover is present and is typically in connection with the elongated carrier. Alternatively, the adjustable cover may be connected to the carrier via the first or second faces, or via the end faces of the elongated carrier, which mark the ends of the elongated carrier in the elongated direction.
The elongated carrier is mountable to a surface. The surface to which the lighting device is mounted does not have to be the same to the surface towards which the lighting device is positioned to. The phrase mountable is in this application not limited to only mechanical means of mounting, but also includes alternatives, like means of mounting comprising gravitational force if the lighting device is supported by a surface without being fixed to the surface, magnetic force, chemical bonds like adhesive force. As mentioned before, the surface-mountable elongated carrier is not restricted to be mountable to the surface the lighting device is positioned to. The elongated carrier can also be mountable to any other surface suitable for mounting the described lighting device. For example, a surface mountable elongated carrier that is placed on a floor (or stands on an edge) is mounted to the floor (or edge) by means of gravitational force; and further, while mounted to the floor, the surface mountable elongated carrier can be positioned facing towards a wall, which will be the said third side.
The adjustable cover is in connection with the carrier and is positioned on a fourth side opposite to the third side. On said fourth side, a fourth face of the elongated carrier, which is opposite to the third face, will be facing the adjustable cover. The phrase in connection with is not limited in this application to only mechanical means of being in connection, but also includes alternative means of being in connection with. The adjustable cover can be in connection with the carrier by means of mechanical connection elements like e.g. screws, nails, clips, snap-fits, rods, tight fits, bearings; or by means of alternative forces like e.g. magnetic force, adhesive force, and friction forces. Being in connection with the carrier, the position of the adjustable cover can be varied with respect to the carrier.
The elongated carrier of the lighting device is furthermore easily mountable and de-mountable, such that the elongated carrier can be easily re-positioned relative to a surface.
One advantage of such a lighting device is that glare can be prevented for each position the lighting device is positioned relative to a surface, because the adjustable cover can be repositioned and thus block the at least one light source from a line of sight. More specifically, when the lighting device is positioned below an observer's point of view, the adjustable cover can be moved upwards to shield the light source from direct view by said observer and prevent glare; and when the lighting device is positioned above an observer's point of view, the adjustable cover can be moved downwards to shield the light source from direct view by said observer and prevent glare. In case the lighting device is positioned at an alternative height of an observer's point of view, the adjustable cover can be positioned such that a desired result is achieved. The adjustable cover will therefore add value to the functionality of the lighting device. The proposed lighting device provides, for example, an advantage for use in retail, use in entertainment sector, domestic use, interior design, exhibitions and hospitality sector; because in these sectors lighting devices may be relocated to accommodate another lighting setting for multiple observers, thus the lighting device according to the present invention may be useful in providing the ability to be re-positioned such that glare is prevented irrespective of a position of the lighting device relative to a surface.
Another advantage of such a lighting device is that the cut-off angle of the at least one light source may be controlled by the adjustable cover. As the cut-off angle of light determines the smoothness, light transition and overall quality of the light projection on a surface, the presence of the adjustable cover will enable achieving a desired light effect. For example, the lighting device may be positioned to a wall and used to project light as a wall-washing effect, while simultaneously projecting a ceiling-washing effect on a ceiling. In this case, the ceiling-washing effect uses a larger cut-off angle to illuminate the ceiling, while the wall-washing effect uses a small cut-off angle. By moving the adjustable cover downwards, the light sources are blocked such that the abovementioned cut-off angles are set accordingly. At the same time, glare is prevented.
Hence, in an embodiment, the light effect originating from the at least one light source on the first and second face of the elongated carrier is controlled simultaneously by the positioning of the adjustable cover with respect to the elongated carrier.
In case more than one light source is present in the lighting device, the more than one light source can, as mentioned before, be located on the first and second face of the elongated carrier. For example, the location of the more than one light source may be all on the first face and all on the second face of the elongated carrier, whereby more than one light source is positioned consecutively in the direction perpendicular to the square plane set by the first, second, third and fourth side (i.e. the elongated direction of the carrier, the direction between the end faces of the elongated carrier). Thus, the location of the more than one light source may also be on both the first face and the second face. If more than one light source is present on one face, they are positioned consecutively in the direction perpendicular to the square plane set by the first, second, third and fourth side (i.e. the elongated direction of the elongated carrier, the direction between the end faces of the elongated carrier). Considering the Cartesian coordinate system mentioned before, the first and second side may thus be top and bottom, while the third and fourth side may be front and back, and the elongated direction of the carrier may be the axis between the remaining fifth (left) and sixth (right) side. As mentioned before, the end faces of the elongated carrier will thus be the faces that mark the ends of the elongated carrier, the end faces thus being on said fifth and sixth side.
The adjustable cover can thus be used to advantageously control the light effect originating from the at least one light source, which includes controlling the perception of glare caused by the at least one light source and the positioning of the carrier relative to the surface. Hence, in an embodiment, the adjustable cover is moveable with respect to the carrier in a direction perpendicular to the direction defined by the shortest distance between the third side and fourth side. As mentioned before, the adjustable cover is also moveable relative to the elongated carrier for controlling a light effect originating from the at least one light source. The movement of the adjustable cover may include translation and/or rotation within the plane set by the direction perpendicular to the direction defined between the third side and the fourth side. Rotational and translational movement enables more control of the at least one light source to prevent glare, to set desired cut-off angles, and to enable various light effects.
Furthermore, in an embodiment, the adjustable cover is only moveable with respect to the carrier in the direction perpendicular to the direction defined by the shortest distance between the third side and the fourth side, whereby said perpendicular direction is the direction defined by the shortest distance between the first side and the second side. By limiting the movement of the adjustable cover to only said perpendicular direction defined by the shortest distance between the first side and the second side, more dedicated control is achieved to prevent glare, to set desired cut-off angles, and to enable various light effects corresponding to that direction.
The positioning of the adjustable cover with respect to the elongated carrier is relevant for the light effect generated by the at least one light source. This light effect may be any effect that is physically possible by the at least one light source and the positioning of the adjustable cover. In an embodiment, the at least one light source and the adjustable cover are arranged for generating a light effect such as a wall-washing effect or a ceiling washing effect. As the lighting device provides the advantages mentioned before related to glare prevention and cut-off angle setting, the functionality of the lighting device suites well with providing surface-washing or ceiling-washing effects.
In other embodiments, the light effect may be derived from scenes in nature, which are subsequently mimicked by means of actively controlling the light output of the at least one light source with a control unit. Said scenes of nature may be: sunset and sunrise, in which a projected light image of a sun is rising, setting or periodically moving along the first or second side of the elongated carrier. The light effect derived from scenes in nature may further comprise any one or a combination of the following light effects. Moonlight, in which a moon is projected as light effect in an evening or night sky. Cloudy skies, in which clouds and the movement of clouds are projected as light effect either on the first or second side or both. Rainfall, in which raindrops are projected as light effect together with or separately from cloudy skies. Waterfronts, in which the horizon of a water entity is mimicked within the light effect. Waterfalls or water flow, in which the movement of water is projected as light effect on the projected surface. Turbulence, in which the turbulent flow of natural convection or any other source of turbulence in nature is mimicked as light effect onto the surface. Tree-line, in which a colored forest is mimicked as light effect by a light source on the first side and the sky or a lake is projected as light effect by a light source on the second side. Fire, in which fire is projected as light effect on the projected surface either with or without additional presence of fireflies.
Due to the presence of straight separations usually extending horizontally in many scenes in nature, the lighting device as presented in this application—comprising a surface-mountable elongated carrier for positioning relative to a surface, at least one light source and an adjustable cover—is therefore well suited to mimic said scenes in nature. These scenes in nature may for example be used to calm observers (e.g. patients) in a room.
Besides scenes in nature, the light effect may also be derived from other non-nature scenes like: projection of a light effect comprising a representation of time in general, for example a calendar or clock. Projection of a predefined dynamic light choreography, or projection of a light effect to emphasize a sound or music arrangement, or projection of a light effect to mimic fluid dynamics patterns.
In some embodiments, to support the perception of the light effect of the lighting device, the adjustable cover may have a color matching the light effect. The color of the adjustable cover may be changed by replacing covers which have physically different colors, or dynamically by enabling light sources within the adjustable cover to change its color together with optics to diffuse this light. Thereto, in an embodiment, the adjustable cover is at least partly made out of a translucent material. The translucent material may be glass or colored glass or laminates with glass or plastics. It is also possible for the adjustable cover to consist of multiple parts. In an embodiment, the adjustable cover is at least partly made out of a translucent material; wherein the adjustable cover comprises an enclosing surface on which LED's are located facing inwards, such that the adjustable cover is illuminated by said LED's. In an embodiment, the adjustable cover comprises separately at least a first cover and a second cover, whereby the at least first cover and second cover are adjustable individually to determine the overall positioning of the adjustable cover with respect to the carrier. Hereby, the at least first cover and second cover may for example overlap partly, have a gap in between, or about each other. In another embodiment, the adjustable cover is made out of a flexible material. In these embodiments the cut-off angle and the prevention of glare can be controlled locally, while the overall effect remains.
The surface-mountable elongated carrier has an elongated form. In an embodiment, the shortest distance between the third face and the fourth face is equal to or smaller than four times the width of the largest light source present in the lighting device, wherein the width of the largest light source is defined by the shortest direction between the third side and the fourth side, and wherein the largest light source is defined as the light source having the largest width. Yet in other embodiments, the shortest distance between the third face and the fourth face is preferably not smaller than one and halve times the width of the largest light source present in the lighting device. Here, the phrase largest light source present in the lighting device comprises the at least one light source located on the faces of the elongated carrier. The largest width of the light source may, for example, include the width of a PCB on which a LED package is mounted to form a lighting device. These embodiments enable the lighting device to be advantageously compact. For example: a quite common option to create a wall-washing effect is to use a cove, which requires an expensive architectural approach or dedicated building elements. By using a surface-mountable elongated carrier, with the abovementioned distance between the third side and fourth side, the same wall-washing effect is achieved with a more compact, less expensive, more flexible, single lighting device.
In an embodiment, the surface-mountable elongated carrier consist out of a single, preferably extruded, piece. Alternatively, injection Extruded material of the elongated carrier might be a plastic, copper, carbon fiber, aluminum or a similar metal. For example, injection molding and extrusion enable the elongated carrier of the lighting device to be a single part, extrusion has the advantage of cheaper and faster production and easy mounting. The surface-mountable carrier will then typically be an elongated profile. This elongated profile may have the shape of an I, L, H, T, Y beam or any other shape able to host at least one light source and opposite to each other provide a first face on a first side and a second face on a second side. Injection molding has the advantage of enabling more complicated shapes and cavities for the elongated carrier of the lighting device.
In an embodiment, the surface-mountable elongated carrier is hollow. Being hollow, the surface-mountable elongated carrier comprises a cavity which is able to accommodate parts that enable the lighting function of the lighting device, e.g.: drivers, chipsets, heat sinks, wires, batteries. This enables a more compact lighting device. For example, the end faces of the elongated carrier may have a hollow rectangular cross-section, such that an elongated hollow rectangular profile is achieved in the elongated direction of the carrier. Said hollow rectangular cross-section improves the rigidity of the elongated carrier and comprises a cavity which is able to accommodate parts of the lighting device.
The term elongated means that the length of the carrier of the lighting device in the direction perpendicular to the direction defined by the shortest distance between the third side and the fourth side, and perpendicular to the direction defined by the shortest distance between the first side and second side, is at least 4 times, preferably at least 12 times larger than the distance defined by the shortest distance between third side and the fourth side. As a result of this, the lighting device is able to provide a light effect on a larger section of surface. For example surface-washing effects are improved with this elongated carrier.
Due to the development of LED lighting in general, lighting devices are able to produce more complicated light effects, while the size of the lighting device is decreased. Dynamic light effects are also made possible by LED lighting and control of LED lighting. Hence, as mentioned before, the at least one light source comprises a semiconductor lighting device, preferably a LED, OLED, LED strip, or a high density LED strip. This facilitates the lighting device of this application to achieve more versatile and functional light effects. These light effects are furthermore enhanced by the use of novel high density LED-strip arrangements, in which more LED's are able to be placed per meter. This prevents the pixilation of LED's and gives better surface-washing effects. Hence, in another embodiment, the at least one light source comprises a semiconductor lighting device with at least 90 LED light sources per meter or more, e.g. 100 LED light sources per meter, 120 LED light sources per meter, or 150 light sources per meter. Pixilation of the light sources of the lighting device will therefore be prevented and an increased range of opportunities will be possible for rendering light effects. In yet another embodiment, the at least one light source is located on the first and second face, wherein the at least one light source is arranged closer to the fourth face than to the third face of the elongated carrier. Thus the at least one light source is closer to the adjustable cover than to the third face. As a result of this arrangement, pixilation of the at least one light source of the lighting device, which may be seen in the light effect projected to the surface, is prevented due to improved mixing, because the at least one light source is arranged closer to the adjustable cover than to the third face of the elongated carrier. Another benefit of this arrangement is that the adjustable cover may be smaller in height as the at least one light source is arranged closer to the adjustable cover than to the third face of the elongated carrier. In another embodiment, the at least one light source has a fixed illumination direction. As a result, no moving parts are required in the lighting device, such that said embodiment with a fixed illumination direction will enable a more compact and less complicated lighting device.
The application of a LED strip as the at least one light source will enable the lighting device to be compact, such that it can be positioned closer to the surface, while still having an advantageous effect with respect to glare prevention and cut-off angle control of the light effect. Thus, in an embodiment, the adjustable cover is only moveable with respect to the carrier in the direction perpendicular to the direction defined by the shortest distance between the third side and the fourth side, whereby said perpendicular direction is the direction defined by the shortest distance between the first side and the second side; and, the at least one light source comprises two LED strips; whereby the first LED strip is located on the first face and the second LED strip on the second face of the elongated carrier; and, the light effect originating from the LED strips on the first and second face is controlled simultaneously by the positioning of the adjustable cover with respect to the elongated carrier; and, the shortest distance between the third face and the fourth face is equal to or smaller than four times the width of the first LED strip, wherein the width of the first LED strip is defined by the shortest direction between the third side and the fourth side, and wherein the largest LED strip is defined as the LED strip having the largest width. Alternatively, the LED strips may be identical.
As mentioned before, the adjustable cover is movable relative to the elongated carrier for controlling a light effect originating from the at least one light source. While being in connection with the elongated carrier, the movement of the adjustable cover relative to the elongated carrier is enabled by means of a mechanism. Said mechanism can be guide vanes, bearings, rods, flexible members, screws or other mechanical supports that allow sufficient degrees of freedom to position the adjustable cover with respect to the carrier. This may also include attachment and detachment of the adjustable cover to the elongated carrier. Said movement can be achieved by manual force, an electromotor, piezo-actuators, springs or magnetic force. Thus, in an embodiment, the lighting device comprises an electrically activated moving mechanism for moving the adjustable cover relative to the elongated carrier.
Light effects, including the abovementioned light effects, may be generated by means of a controller that controls the at least one light source and the adjustable cover in the lighting device. Hence, the invention further relates to a system comprising the lighting device according to the invention and a control unit, wherein the control unit is arranged for receiving an input signal containing a command and for sending out a control signal based on the command; and wherein the lighting device comprises an electrically activated moving mechanism for moving the adjustable cover relative to the elongated carrier; and wherein the control signal of the control unit drives the movement of the adjustable cover by activating the electrically activated moving mechanism; and/or wherein the control signal of the control unit drives the at least one light source to generate a light effect.
In an embodiment, the control unit comprises a communication device to communicate with other devices, wherein other devices are selected from the groups consisting of sensors, lighting devices or home electronics. Said communication enables the system comprising the lighting device and the control unit to engage with multiple other devices to create a single or combined light effect. The interplay of devices, preferable lighting devices, enables for more functional and decorative light applications to be generated.
It also facilitates the prevention of glare by communicating with other devices which are able to provide information on the prevention of glare, for example the positioning of the lighting device, the positioning of the elongated carrier with respect to the surface, the current positioning of the adjustable cover with respect to the elongated carrier, the presence of observers in an environment, or the light intensity in the environment.
Said control unit may be integrated in the lighting device, or may be separate from the lighting device like a bridge or smart phone, or may partly be integrated in the lighting device while the remaining part is separate from the lighting device.
Said communication with other devices may be by infrared, RF, visible light communication, Bluetooth, Wi-Fi, ZigBee, or a wired connection. These devices may include, but are not limited to, remote controls, screens, televisions, computers, lighting devices, smartphones, sensors, or audio-devices.
Said control unit, through which communication is enabled between the lighting device and other devices, can for example communicate with sensors related to the positioning of the lighting device. These sensors may for example be cameras, light intensity sensors, electromagnetic proximity sensors or ultrasonic proximity sensors. Said sensors may also be separate from the lighting device as a standalone unit, or be part of the elongated carrier of the lighting device. In an embodiment, a control unit drives the adjustable cover relative to the carrier, wherein the control unit comprises a communication device to communicate with a proximity sensor, which is able to detect, when the lighting device is placed on a surface that is bound between a floor and a ceiling, the distance of the lighting device to the floor and ceiling.
Referring to the embodiment disclosed in
Said surface-mountable elongated carrier 200 has an elongated form. As mentioned before, the term elongated means that the length of the carrier 200 of the lighting device 100, also referred to as length L in
Still referring to the embodiment disclosed in
Still referring to the embodiment disclosed in
In the embodiment depicted in
Still referring to the embodiment disclosed in
Still referring to the embodiment disclosed in
As mentioned before, the lighting device 100 is positioned relative the surface 300. The lighting device 100 will render a light effect 600 on the surface 300, while the at least one light source 400 will also be a source for glare. The control of the perception of glare is schematically depicted in
Referring to the embodiment depicted in
Still referring to the embodiment disclosed in
Still referring to the embodiment disclosed in
Referring to
Still referring to the embodiment depicted in
Still referring to the embodiment disclosed in
As mentioned before, the surface-mountable elongated carrier 200 is mountable to a surface. The surface 301 to which the lighting device 100 is mounted does not have to be similar to the surface 300 towards which the lighting device 100 is positioned to. The elongated carrier 200 can also be mountable to any other surface suitable for mounting the described lighting device 100. The phrase mountable is in this application not limited to only mechanical means of mounting, but also includes alternatives, like means of mounting comprising gravitational force if the lighting device 100 is supported by a surface without being fixed to the surface.
The lighting device 100 depicted in
Referring to
Referring to
Still referring to
Number | Date | Country | Kind |
---|---|---|---|
16173665.7 | Jun 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/062265 | 5/22/2017 | WO | 00 |