The field of the disclosure relates generally to energy conservation. More specifically, the disclosure relates to lighting devices that convey light from a source (e.g. sunlight or light from other sources) to an environment (e.g. a room or other interior space such as within a building or the like). More particularly, the disclosure relates to a lighting device, such as a light pipe, having a supplemental light source. More particularly, the disclosure also relates to a lighting device, such as a light pipe, having an angled diffuser for distribution of light within the environment.
According to the International Energy Outlook 2006, Report No. DOE/EIA-0484(2006) from the U.S. Dept. of Energy, the world's total net electricity consumption is expected to more than double during the period 2003-2030. Much of the electricity is expected to be used to provide commercial and residential lighting. Adoption of energy-efficient technologies can help to conserve electricity thereby slowing the growth in both the “peak demand” and “base demand” components of electricity demand. Base demand is the steady-state, or average, demand for electricity, while peak demand occurs when the demand for electricity is the greatest, for example, during a hot summer day when electricity use for air conditioning is very high. Reducing either type of demand is desirable, but a reduction in peak demand generally is more valuable because of the relatively high unit cost of the capacity required to provide the peak demand.
One way to conserve energy is to replace existing light fixtures that use older, less-efficient lighting technologies with light fixtures that use newer, more efficient lighting technologies. For example, highly efficient compact fluorescent light fixtures are commonly used to replace less-efficient incandescent lamps in existing household fixtures. To further reduce electricity demand, one or more light pipes may be incorporated into a wall or roof of a building. A light pipe distributes natural light from a source such as the sun or moon into an interior space. However, the generally known light pipes tend to distribute light in a generally downward manner (e.g. from a ceiling and onto a floor of the interior space). What is needed is a lighting device that can distribute light more accurately to other areas within the interior space to provide a more uniform distribution of light.
In an exemplary embodiment, a lighting device includes a substantially cylindrical tube defining an interior and an exterior, and a longitudinal axis extending between a first end and a second end. The first end of the tube defines a substantially cylindrical opening disposed in a plane at a first angle that is substantially perpendicular to the longitudinal axis, and the second end of the tube defines a substantially elliptical opening disposed in a plane at a second angle that is substantially non-perpendicular to the longitudinal axis. A reflective surface is provided on the interior of the tube, and a substantially cylindrical flashing is provided about the exterior of the tube. A substantially transparent dome is coupled to the tube proximate the first end, and a diffuser is coupled to the tube proximate the second end.
In another exemplary embodiment, a lighting device includes a tube defining an interior and an exterior, and a longitudinal axis extending between a first end and a second end, where the first end of the tube configured to receive light from a light source, and the second end of the tube configured to emit light to an interior of a building. A reflective surface is disposed on the interior of the tube, and a flashing is disposed about the exterior of the tube. A substantially transparent dome is coupled to the tube proximate the first end, and a diffuser is coupled to the tube at an angle that is non-perpendicular to the longitudinal axis and configured to direct the light into the interior of the building in a direction that is non-parallel to the longitudinal axis.
In another exemplary embodiment, a method of making a lighting device is disclosed. The method including the steps of providing a tube defining an interior with a reflective surface and an exterior, and a longitudinal axis extending between a first end and a second end, the first end of the tube configured to receive light from a light source, and the second end of the tube configured to transmit the light to an interior of a building, and coupling a flashing about the exterior of the tube, and coupling a dome to the flashing proximate the first end of the tube, and providing at least one projection extending inwardly toward the axis and disposed proximate the second end of the tube, and supporting a diffuser at least temporarily on the projection, and applying a bead of a hot melt silicone material substantially along an interface between the second end of the tube and the perimeter of the diffuser, and curing the hot melt silicone material while the diffuser is supported on the projection.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Exemplary embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
a depicts a cross sectional side view of light pipe system providing natural light in the automated lighting system of
b depicts a detailed side cross sectional view of the mounting between a diffuser and a reflective tube of the light pipe system of
c depicts a cross sectional side view of light pipe system providing natural light in the automated lighting system of
a depicts a detailed cross sectional side view of the mounting between a light collection system and the reflective tube of the light pipe system of
b depicts a detailed cross sectional side view of the mounting between a flashing and a mounting flange of the light pipe system of
a-36b depicts a flow diagram illustrating exemplary operations performed in installing the light pipe system of
With reference to
Controller 106 may include a display 110, an input interface 112, a memory 112, a communication interface 116, a processor 118, and a light controller application 120. Different and additional components may be incorporated into controller 106. Display 110 presents information to a user of controller 106 as known to those skilled in the art. For example, display 110 may be a thin film transistor display, a light emitting diode display, a liquid crystal display, or any of a variety of different displays known to those skilled in the art now or in the future.
Input interface 112 provides an interface for receiving information from the user for entry into controller 106 as known to those skilled in the art. Input interface 112 may use various input technologies including, but not limited to, a keypad, a keyboard, a pen and touch screen, a mouse, a track ball, a touch screen, one or more buttons, a rotary dial, etc. to allow the user to enter information into controller 106 or to make selections presented in a user interface displayed on display 110. Input interface 112 may provide both an input and an output interface. For example, a touch screen both allows user input and presents output to the user. Controller 106 may have one or more input interfaces that use the same or a different technology.
Memory 114 is an electronic holding place or storage for information so that the information can be accessed by processor 118 as known to those skilled in the art. Controller 106 may have one or more memories that use the same or a different memory technology. Memory technologies include, but are not limited to, any type of RAM, any type of ROM, any type of flash memory, etc. Controller 106 also may have one or more drives that support the loading of a memory media such as a compact disk, digital video disk, or a flash stick.
Communication interface 116 provides an interface for receiving and transmitting data between devices using various protocols, transmission technologies, and media as known to those skilled in the art. The communication interface may support communication using various transmission media that may be wired or wireless. Controller 106 may include a plurality of communication interfaces that use the same or a different transmission technology.
Processor 118 executes instructions as known to those skilled in the art. The instructions may be carried out by a special purpose computer, logic circuits, or hardware circuits. Thus, processor 118 may be implemented in hardware, firmware, software, or any combination of these methods. The term “execution” is the process of running an application or the carrying out of the operation called for by an instruction. The instructions may be written using one or more programming language, scripting language, assembly language, etc. Processor 118 executes an instruction, meaning that it performs the operations called for by that instruction. Processor 118 operably couples with display 110, with input interface 112, with memory 114, and with communication interface 116 to receive, to send, and to process information. Processor 118 may retrieve a set of instructions from a permanent memory device and copy the instructions in an executable form to a temporary memory device that is generally some form of RAM. Controller 106 may include a plurality of processors that use the same or a different processing technology.
Light controller application 120 performs operations associated with controlling a light level of an interior space. The operations may be implemented using hardware, firmware, software, or any combination of these methods. With reference to the exemplary embodiment of
Light sensor 104 and controller 106 may be integrated into a single device. Light sensor 104 and controller 106 may be connected directly. For example, light sensor 104 may connect to controller 106 using a cable. Additionally, light sensor 104 may connect to controller 106 using a network that may be wired or wireless.
With reference to
Diffuser 200 may be a prismatic diffuser. In the exemplary embodiment of
With continuing reference to
With reference to
According to one embodiment, light source 221 is intended to provide supplemental lighting to supplement the amount of external light transmitted to the interior space by the light pipe system during “intermediate” periods when available external light is almost, but not entirely, sufficient to provide the desired light level within the interior space, as detected by light sensors within the interior space. According to one embodiment where interior artificial lighting sources are controlled by light sensors within the interior space (i.e. lights energized when light from the light pipe system decreases to a certain level and lights de-energized when light from the light pipe system increases to a certain level), the supplemental light from light source 221 can be sufficient to delay or avoid energizing the artificial lighting sources during periods of “intermediate” external brightness, or if the artificial light sources are energized, the supplemental light from light source 221 may permit the artificial lighting sources to be de-energized. The supplemental light from light source 221 is intended to provide a low-cost, efficient source of light that can minimize or avoid the need to energize interior artificial lighting during periods of intermediate external light availability.
Operation of supplemental light source 221 may be controlled by the same sensors used to control the artificial lighting for the interior space. For example, when the sensors determine that the light level within the interior space has decreased to a predetermined level and increased lighting is required, the controllers for the artificial light sources may first send a signal to supplemental light source 221 to energize. When the sensors determine that the light level within the interior space has decreased to a predetermined level with the supplemental light source 221 energized and increased light level is still required, the controllers for the artificial light sources may then send a signal to de-energize supplemental light source 221 and to energize the artificial light source within the interior space according to a pre-established control scheme such as those further described herein. Supplemental light sources 221 may be controlled by (or otherwise interface with) a wireless communication device such as a transceiver 219 operating on a suitable radio frequency or the like for communicating with the controller and/or sensors. Alternatively, light source 221 may have a transceiver with an integrated sensor that directly controls operation of light source 221 and communicates the status of the light source 221 to the controller. According to the illustrated embodiment, transceiver 219 is disposed on an outside surface of wall 206 and communicates with light source 221 through a suitable connection (e.g. wired connection, etc.). Transceiver 219 may include a sensor for control of light source 221 and may be configured to interface or communicate with a master controller or transceiver, or with other local transceivers associated with other light pipes. Transceiver 219 may also include suitable control equipment for switching the light source on/off, and may include suitable memory for logging the time on/off of the supplemental light source. Transceiver 219 may also provide an appropriate switching device(s) for turning on and off a supply of electrical power to the LEDs (e.g. switches, relays, etc.) which are operably coupled to a suitable electrical power supply. According to one embodiment, the electrical power supply includes a solar power generating device such as (but not limited to) a photovoltaic panel 217 (see
With reference to
According to one embodiment, the bottom wall portion 225 and side wall portions 227 are formed from a single wire 229 spirally wound from the center of the bottom wall to the outer edge of the bottom wall (where it joins the lower edge of the side wall) where a ring is formed, and then helically wound from the lower edge of the side wall to the upper edge of the side wall, where the wire is wound to form a ring. The wire of the spirally and helically wound wall portions is secured by radially extending wires 231 (e.g. spokes/ribs, etc.) that originate at or near the center of the bottom wall, and are bend at substantially 90 degrees at the outer edge of the bottom wall and lower edge of the side wall. According to one embodiment, the ribs 231 may extend above the ring at the upper end of the side wall 227 and are then bent at an angle of substantially 90 degrees and closed in a loop 233 (e.g. an attachment/fastening loop or eye, etc.) that is substantially parallel to a ceiling surface for use in fastening the guard to a ceiling surface with suitable fasteners or the like. At least several of the wire loops 233 may be arranged in a variably offset pattern or “turned” relative to the others (e.g. in a manner such that the loops are asymmetric with respect to one another and/or to the guard), for adaptation to ceiling surfaces having ridges or ribs (e.g. as are common in corrugated steel roof panels, and the like) so that the guard can be rotated to a position about the light fixture so that all or most of the wire loops align with the rib or ridge portions of the roof panel to permit attachment of the guard to the panel at more locations than could otherwise be achieved with wire loops that are symmetrically disposed. Attachment of the guard to a relatively secure structure surrounding the light pipe is also intended to provide an enhancement for security of the building by providing a barrier or obstacle to unauthorized access to the facility by an intruder through the light pipe.
With reference to
With reference to
Clamp ring 302 is positioned over flange 406 of light collector 300. Clamp ring 302 may include first fastener holes 400. Mounting flange 304 may include a flange 408 and a wall 410 which extends from flange 408 at an approximately 90 degree angle though other angles may be used. In an exemplary embodiment, flange 408 and wall 410 extend approximately 1.5 inches. Flange 408 of mounting flange 304 may include second fastener holes 402. In general, first fastener holes 400 are formed in clamp ring 302 to align with second fastener holes 402 of mounting flange 304 so that flange 406 of light collector 300 can be mounted and held between clamp ring 302 and flange 408 of mounting flange 304. Mounting flange 304 and clamp ring 302 may be formed of aluminum.
With reference to
With reference to
With reference to
With reference to
With reference to
In an alternative embodiment, a different fastening mechanism may be used to connect the components of light pipe system 102. For example, a question mark fastener comprising a band clamp or a barrel clamp type of fastener may be used with a T-bolt or straight hex bolt to close the clamp. Flange 408 of mounting flange 304 and flange 406 of light collector 300 are positioned within an open upper end of the question mark section of the question mark fastener. The clamp may replace fastener 900 and clamp ring 302. A V-section clamp may also be used with bolt anchor points added to a V section of the V-section clamp.
A first gasket 908 may be positioned between first mounting surface 702 of flashing 306 and wall 206 of reflective tube 202 to abut against transition surface 704 of mounting wall 606. In an exemplary embodiment, first gasket 908 is a horsehair gasket. A second gasket 910 may be positioned between shell 404 of light collector 300 and second mounting surface 706 of flashing 306. In an exemplary embodiment, second gasket 910 is a horsehair gasket. First gasket 908 and second gasket 910 reduce airflow and keep contaminants from entering light pipe system 102. Fewer or additional gaskets may be included. In an exemplary embodiment, silicone may be applied between flashing 306 and reflective tube 202 to reduce airflow and keep contaminants from entering light pipe system 102. A second fastener 912 extends through a first fastener hole in second mounting surface 706 of flashing 306 and through a first fastener hole of wall 206 of reflective tube 202 to mount flashing 306 to reflective tube 202. Second fastener 912 extends into the interior space formed by reflective tube 202. Second fastener 912 is positioned above flange 406 of light collector 300 along shell 404 of light collector 300. In an exemplary embodiment, second fastener 912 is a sheet metal screw formed of stainless steel. Clamp ring 302 may be formed of a plurality of sections which may overlap to form various size rings.
With reference to
In an exemplary embodiment, an insulation sleeve may be positioned between flashing 306 and reflective tube 202 to reduce airflow and keep contaminants from entering light pipe system 102 and to reduce heat loss from light pipe system 102. The insulation sleeve may be formed of a fiberglass material. The insulation sleeve may be taped to an inside surface of flashing 306 and may extend from approximately adjacent first gasket 908 to the roofing/wall or 2-3 inches below/into the roofing/wall. A counter flashing may be positioned between mounting flange 304 and an exterior surface of the roofing/wall to deflect moisture away from light pipe system 102. The counter flashing may be mounted to mounting flange 304 using first fastener holes 400 and second fastener holes 402. Additionally, in an exemplary embodiment, a plurality of rods may mount to mounting flange 304 extending upward toward shell 404. A filament may be extended between the plurality of rods to discourage birds from roosting on light pipe system 102.
With reference to
With reference to
In the exemplary embodiment of
A third wire 1214 connects second ballast 1104 with a “hot” line of power connector 1016. A fourth wire 1216 connects second ballast 1104 with a ground line of power connector 1016. A first output wire 1218 connects second ballast 1104 with a fourth socket. A fifth socket and a sixth socket are connected in daisy chain fashion to the fourth socket using third sockets 1220 which may be included in second lampholder 1008 as known to those skilled in the art. Fourth sockets 1222 connect with the fourth lamp, the fifth lamp, and the sixth lamp at opposite ends relative to third sockets 1220. Fourth sockets 1222 may be included in first lampholder 1006 as known to those skilled in the art. Three wires 1224 connect fourth sockets 1222 with second ballast 1104. Thus, in the exemplary embodiment, light fixture 1000 includes two independently controllable lamp circuits which may be the same or different. If used with a dimmable ballast, additional control signal lines may connect power connector 1016 with first ballast 1102 and/or second ballast 1104.
With reference to
Each receiver 1302 may be assigned an address unique to the receiver, unique to the plurality of light fixtures 1300, and/or unique to the independently controllable lamp circuit of each light fixture. Thus, the same or different addresses may be assigned to each receiver/independently controllable lamp circuit, and the control signal may include an address for each independently controllable lamp circuit of each light fixture, an address for each light fixture of the plurality of light fixtures 1300, or an address for the plurality of light fixtures 1300 with an associated lighting indicator. A single receiver 1302 may be used to control the supply of power to multiple light fixtures that are “daisy chained” together using a “daisy chain” modular wiring system power supply line such as the one described in U.S. Pat. No. 6,746,274.
Transmitter 1304 may send the control signal using a radio frequency to any receivers 1302 within an effective range 1306 defined based on the characteristics of the transmitter as known to those skilled in the art. Thus, transmitter 1304 can simultaneously control one or more light fixtures/independently controllable lamp circuits. Transmitter 1304 may be configured to encode a receiver address in the control signal. Each receiver 1302 may be configured to respond only to control signals encoded with its receiver address. The light fixture associated with each receiver 1302 can be turned on or off or dimmed based on the value of the lighting indicator. The address and lighting indicator information may be encoded in the control signal using a variety of methods as known to those skilled in the art.
With reference to
Input interface 1402 provides an interface for receiving information from the user for input to controller 1404 as known to those skilled in the art. Input interface 1402 may use various input technologies including, but not limited to, a keypad, a keyboard, a pen and touch screen, a mouse, a track ball, a touch screen, one or more buttons, a rotary dial, etc. to allow the user to enter information into controller 1404 or to make selections presented in a user interface displayed on the display. Input interface 1402 may provide both an input and an output interface. For example, a touch screen both allows user input and presents output to the user. Transmitter 1304 may have one or more input interfaces that use the same or a different technology.
Logic circuit 1408 may monitor the input to input interface 1402. For example, logic circuit 1408 may monitor keystrokes entered into input interface 1402. The user may enter information into transmitter 1304 such as a value of the lighting indicator. Address jumpers 1412 may provide a receiver address of a destination receiver. Encoder 1410 encodes the entered lighting indicator and the provided receiver address into a baseband signal supplied to modulator 1414. In an exemplary embodiment, encoder 1410 may be a model PT2262 remote control encoder sold by Princeton Technology Corp. of Sindian City, Taipei 23145, Taiwan. Other encoders may be used. Modulator 1414 provides a modulated signal to antenna 1416 for sending the control signal. In an exemplary embodiment, modulator 1414 is a radio frequency modulation circuit constructed of discrete components or using an integrated circuit.
With reference to
Address jumpers 1508 may be used to define the address of receiver 1302 and to provide the address to decoder 1506 for comparison with the receiver address extracted from the control signal. Decoder 1506 may recognize only control signals encoded with a receiver address that matches the address of receiver 1302. In an alternative embodiment, decoder 1506 may recognize all received control signals, irrespective of the receiver address encoded in the control signal. Controller 1510 may determine which control signals to process based on a receiver address supplied to controller 1510, for example, using switches, address jumpers 1508, values stored in a memory, etc.
Controller 1404 can be any suitable logic device, for example, a microprocessor or microcontroller, programmable logic controller, custom logic circuitry, etc. In the exemplary embodiment of
In an alternative embodiment, dimmer circuitry may be used instead of relays to control each independently controllable lamp circuit based on a light level defined by the extracted value of the lighting indicator. Receiver 1302 may be used to control a dimmable ballast in the light fixture. In this configuration, power may be connected directly to the light fixture. Receiver 1302 provides a low voltage control signal to the dimmable ballast. The low voltage control signal could be generated, for example, by a resistive divider network configured by output selector 1512. The low voltage control signal may be supplied to one or more of the one or more relays 1514 by output selector 1512. The other side of the relay may be connected to a control signal input terminal on a dimmable electronic ballast in the light fixture. Instead of using relays to supply the low voltage control signals, receiver 1302 may include one or more digital to analog converter circuits to provide continuously variable low voltage control signals to the dimmable ballast in the light fixture according to the extracted value of the lighting indicator.
In another exemplary embodiment, a transmitter may integrate with or otherwise interact with controller 106. With reference to
With reference to
Light controller application 120 may determine the receiver addresses and the value of the lighting indicator for each receiver address using a light level measured by light sensor 104. Light sensor 104 may periodically measure a light level and store the measured light level in memory 114 so that light controller application 120 can access the information. As known to those skilled in the art, light sensor 104 may be configured to send the measured light level in a message to light controller application 120 without storing the value in memory 114.
Light controller application 120 may accept a lighting control value entered by a system user to set the desired light level in the interior space. For example, the user may enter the desired light level using input interface 112. The user may enter a table of desired light levels which may define the desired light level, for example, as a function of the time of day, of the date, etc. The desired light level(s) may be stored in memory 114. Light controller application 120 compares the desired light level with the light level measured by light sensor 104 and received by light controller application 120. Based on the comparison, light controller application 120 determines the receiver addresses and the value of the lighting indicator for each receiver address. Light controller application 120 may interact with a plurality of light sensors and a plurality of transmitters.
Transmitter 1700 may include an encoder 1702, modulator 1414, and antenna 1416. Encoder 1702 receives the determined receiver addresses and lighting indicator values for each receiver address. Encoder 1702 encodes the received addresses and lighting indicators into a baseband signal supplied to modulator 1414.
With reference to
Transmitter 1304 may be configured to encode a receiver address or a repeater address in the control signal. In an exemplary embodiment, the address assigned to each repeater is different from any address assigned to a receiver 1302. Transmitter 1304 may send control signals to receivers within effective range 1306. In an alternative embodiment, transmitter 1304 may be configured to encode only a repeater address in the control signal so that transmitter 1304 does not send control signals encoded for processing by receivers 1302. In such a configuration, the plurality of light fixtures are positioned within first repeater effective range 1802 or second repeater effective range 1806. First repeater 1800 sends control signals to the receivers 1302 within first repeater effective range 1802 and to second repeater 1804. Second repeater 1804 sends control signals to the receivers 1302 within second repeater effective range 1806. Thus, first repeater 1800 and second repeater 1804 may encode a receiver address and/or a repeater address with the lighting indicator value. Additional repeaters may be positioned within effective range 1306, first repeater effective range 1802, and/or second repeater effective range 1806 to provide additional areas of coverage. Use and positioning of repeaters provides lighting control over a potentially wide area and around obstacles and/or electromagnetic interference sources.
With reference to
Receive antenna 1900 receives the control signal, for example, from transmitter 1304. Receive antenna 1900 may receive a radio frequency signal. Power supply 1902 provides power to first repeater 1800. Demodulator 1904 demodulates the received control signal to a baseband signal. In an exemplary embodiment, demodulator 1904 may be a model TDL9927 superheterodyne receiver sold by Foshan Tuodi Electronics Co., Ltd. of Bao'an District of Shenzhen City, Guangdong Province, China. First address jumpers 1906 may be used to define the address of first repeater 1800 and to provide the address to decoder 1908 for comparison with the repeater address extracted from the control signal. Decoder 1908 decodes the demodulated control signal to extract the values of the repeater address. In an exemplary embodiment, decoder 1908 may be a model PT2272 remote control decoder sold by Princeton Technology Corp. of Sindian City, Taipei 23145, Taiwan. Decoder 1908 may respond to only control signals encoded with a repeater address that matches the address of first repeater 1800. In an alternative embodiment, decoder 1908 may respond to all received control signals, irrespective of the repeater address encoded in the control signal. Decoder 1908 decodes the demodulated control signal to extract one or more receiver address and associated lighting indicator value.
Controller 1910 may determine which control signals to process based on a repeater address supplied to controller 1910, for example, using switches, first address jumpers 1906, values stored in a memory, etc. Controller 1910 can be any suitable logic device, for example, a microprocessor or microcontroller, programmable logic controller, custom logic circuitry, etc. Controller 1910 includes an output bus that supplies the extracted one or more receiver address and associated lighting indicator values to an appropriate encoder.
Second address jumpers 1912 may be used to define the address of second repeater 1804 and to provide the address to repeater encoder 1914. Repeater encoder 1914 encodes the extracted one or more receiver address and associated lighting indicator values and the repeater address provided by second address jumpers 1912 into a baseband signal supplied to modulator 1920. In an exemplary embodiment, repeater encoder 1914 may be a model PT2262 remote control encoder sold by Princeton Technology Corp. of Sindian City, Taipei 23145, Taiwan. Other encoders may be used.
Third address jumpers 1916 may be used to define the address of one or more receivers 1302 and to provide the address to receiver encoder 1918. Receiver encoder 1918 encodes the receiver address provided by third address jumpers 1916 the lighting indicator value associated with the receiver address into a baseband signal supplied to modulator 1920. In an exemplary embodiment, receiver encoder 1918 may be a model PT2262 remote control encoder sold by Princeton Technology Corp. of Sindian City, Taipei 23145, Taiwan. Other encoders may be used.
Additional second address jumpers 1912 and repeater encoder 1914 combinations may be used, for example, if first repeater 1800 is responsible for communicating with multiple repeaters positioned within first repeater effective range 1802. First repeater 1800 may not include second address jumpers 1912 and repeater encoder 1914 if a repeater is not positioned within first repeater effective range 1802. Additional third address jumpers 1916 and receiver encoder 1918 combinations also may be used, for example, if receivers are assigned different addresses in order to independently control the lighting level at different light fixtures and first repeater 1800 is responsible for communicating with multiple receivers positioned within first repeater effective range 1802.
Light fixtures/independently controllable lamp circuits may be controlled independently or based on defined groupings depending on how the receive addresses are defined. For example, if all receivers 1302 are assigned the same address, the light fixtures/independently controllable lamp circuits are controlled using the same lighting indicator value. If all receivers 1302 are assigned a unique address, the light fixtures/independently controllable lamp circuits can be controlled independently using potentially different lighting indicator values associated with each receiver address. Additionally, receivers 1302 may divided into sub-groups which have a common address within the group so that groups of light fixtures/independently controllable lamp circuits can be controlled independently using potentially different lighting indicator values associated with each group address. Repeaters and/or receivers may receive multiple control signals thereby providing signal redundancy and increasing system reliability. A ping-pong effect is avoided through the use of uniquely assigned repeater addresses and assigned repeater communication paths based on the address jumpers and repeater encoders.
Modulator 1920 provides a modulated signal to transmit antenna 1922 for sending the control signal to second repeater 1804 and/or one or more receivers 1302. In an exemplary embodiment, modulator 1920 is a radio frequency modulation circuit constructed of discrete components or using an integrated circuit. Additionally, in an exemplary embodiment, modulator 1920 is configured to provide amplitude shift keying modulation and/or frequency shift keying modulation at a nominal operating frequency of 315 megahertz (MHz) with a transmission power of about 6 millivolts/meter (mV/m) at 3 meters. However, this is not required, and other operating frequencies, modulation schemes, and transmission power levels can be used. For example, frequencies in the range of 27-930 MHz, and particularly within about 5% of 315, 434, 868, and/or 915 MHz may be used. Additionally, other frequencies such as 2.4 gigahertz may be used. Transmitter 1304, 1600, receiver 1302, and first repeater 1800 may be designed to qualify as unlicensed radio frequency devices under the Federal Communications Commission rules found in 47 C.F.R. 15.
With reference to
In an operation 2006, a receiver address is identified for receiving the determined lighting indicator value. Depending on the embodiment, multiple receivers may receive the same lighting indicator value. Alternatively, each receiver may receive a different lighting indicator value. Additionally, each receiver may have a unique address, may have the same address, or may have a receiver group address. In an operation 2008, a control signal is defined for the identified receiver. The control signal includes the lighting indicator value. For example, the control signal may be encoded and modulated. Multiple control signals may be defined if multiple receivers are sent independent lighting indicator values. In an operation 2010, the defined control signal is sent to the identified receiver. For example, the defined control signal may be sent by a transmit antenna using a radio frequency pulse.
In an operation 2012, one or more repeater address is identified for receiving the determined lighting indicator value associated with one or more receiver address. In an operation 2014, a repeater of the identified repeater(s) is selected. In an operation 2016, a control signal is defined for the selected repeater. The control signal includes the address for the selected repeater and the determined lighting indicator value(s) associated with one or more receiver address. For example, the control signal may be encoded and modulated. In an operation 2018, the defined control signal is sent to the selected repeater. For example, the defined control signal may be sent by a transmit antenna using a radio frequency pulse. In an operation 2020, a determination is made concerning whether or not another repeater was identified in operation 2012. If another repeater was identified in operation 2012, processing continues at operation 2014. If another repeater was not identified in operation 2012, processing continues at operation 2000.
With reference to
If there is a match between the identified repeater address and the repeater address, processing continues in an operation 2110. In operation 2110, a lighting indicator value is identified from the control signal. In an operation 2112, a receiver address associated with the lighting indicator value is identified. Depending on the embodiment, multiple lighting indicator values may be determined for different light fixtures/independently controllable lamp circuits. In an operation 2114, a control signal is defined for the identified receiver. In an operation 2116, the control signal is sent to the identified receiver. A control signal may be defined and sent for each identified receiver. Thus, a plurality of control signals may be sent.
In an operation 2118, one or more repeater address is identified for receiving the determined lighting indicator value(s) associated with one or more receiver address. In an operation 2120, a repeater of the identified repeater(s) is selected. In an operation 2122, a control signal is defined for the selected repeater. The control signal includes the address for the selected repeater and the determined lighting indicator value(s) associated with one or more receiver address. For example, the control signal may be encoded and modulated. In an operation 2124, the defined control signal is sent to the selected repeater. For example, the defined control signal may be sent by a transmit antenna using a radio frequency pulse. In an operation 21226, a determination is made concerning whether or not another repeater was identified in operation 2118. If another repeater was identified in operation 2118, processing continues at operation 2120 by selecting the next repeater. If another repeater was not identified in operation 2118, processing continues at operation 2100.
With reference to
If there is a match between the identified receiver address and the local receiver address, processing continues in an operation 2210. In operation 2210, a lighting indicator value is identified from the control signal. Depending on the embodiment, multiple lighting indicator values may be determined for independently controllable lamp circuits. In an operation 2212, the light level of the light fixture is adjusted based on the identified lighting indicator value. A control signal may be received for each independently controllable lamp circuits. Thus, a plurality of control signals may be received and processed to adjust the light level of the light fixture.
With reference to
With reference to
With reference to
With continuing reference to
With continuing reference to
With reference to
With reference to
With continuing reference to
In an operation 2320, a vacuum is drawn to pull sheet 2700 into a desired shape. For example, approximately 1.6-6 inches of mercury may be drawn on the vacuum. Seal 2406 assists in maintaining a vacuum in tub 2402. In an operation 2322, sheet 2700 is cooled with compressed air. For example, compressed air at approximately 80 pounds per square inch supply pressure is circulated circumferentially around sheet 2700. In an operation 2324, a determination is made concerning whether or not a desired shape is achieved. If a desired shape is achieved, processing continues at an operation 2326. If a desired shape is not achieved, processing continues at operation 2320. In an exemplary embodiment, 2-3 repetitions of operations 2320-2324 may be performed. In operation 2326, the sheet of light collector material is allowed to cool further. In an operation 2328, light collector 300 is released from positioning clamp 2500 and mounting clamp 2702 by removing fasteners 2708.
With reference to
With reference to
With reference to
With reference to
In an operation 3618, a center position of the installed light pipe system is identified on the roof/wall on which light pipe system 102 is to be mounted. In an operation 3620, template 3000 is centered on the identified center position. In an operation 3622, an edge is defined using the template on the roof/wall to identify a cutting pattern. In an operation 3624, an aperture is cut in the exterior surface of the roof/wall using the defined edge. The aperture is cut though to the interior surface of the roof/wall. In an operation 3626, flashing 306 is positioned on the exterior surface of the roof/wall. In an exemplary embodiment, mounting flange 304 is already attached to flashing 306 as described with reference to operation 2916. Flashing 306 generally is centered about the aperture cut in the exterior surface of the roof/wall. In an operation 3628, a flange edge around flange 604 of flashing 306 is defined on the exterior surface of the roof/wall. In an operation 3630, a bead of sealant is applied to a surface of flange 604 of flashing 306 which abuts the exterior surface of the roof/wall. In an operation 3632, the surface of flange 604 of flashing 306 including the bead of sealant is repositioned against the exterior surface of the roof/wall using the defined flange edge.
In an operation 3634, flashing 306 is mounted to the exterior surface of the roof/wall. For example, roof grip screws may be used which extend through a portion of flange 604 of flashing 306 and into the surface of the roof/wall. In an operation 3636, an insulation sleeve is mounted to an interior surface of flashing 306. In an operation 3638, first gasket 908 is positioned on an interior surface of flashing 306 as shown with reference to
In an operation 3652, the protective covering of reflective tube 202 is removed from reflective tube 202. In an operation 3654, light collector 300 is positioned over flashing 306. In an exemplary embodiment, light collector 300 is snap fit onto second mounting surface 706 of flashing 306. In an operation 3656, clamp ring 302 is positioned over flange 406 of light collector 300. For example, a plurality of fasteners 900 are used to connect clamp ring 302 and flange 408 of mounting flange 304 as shown with reference to
With reference to
Diffuser 4200 may be a prismatic diffuser and may be planar (as shown) or may have a concave shape such as that shown in
With further reference to
The angular positioning of diffuser 4202 is intended to direct light from tube 4202 in a direction that is primarily non-parallel to the longitudinal axis, such that light is directed laterally outward in a room in a manner that is substantially normal or perpendicular to the angle of the diffuser. The ability to disperse light in a laterally outward direction (as opposed to vertically downward direction) is intended to permit customizing the illumination pattern within the room (e.g., toward walls, corners, recesses, etc.) by setting the diffuser at a desired angle within the tube, and by rotating the light pipe system to the desired polar orientation within an opening in the rooftop before fixing the light pipe in place. According to one embodiment, a light pipe system 102 as previously shown and described may be used within a central or main portion of a room to be illuminated, and a light pipe system 4102 may be used in peripheral or other suitable locations of the room to provide enhanced illumination of walls or other locations along the sides of the room.
With reference to
With further reference to
As shown in
With reference to
With reference to
According to other embodiments, the features of this light pipe system 4102 with the angled diffuser for lateral illumination within a room may include any one or more of the components and features shown and described with reference to light pipe system 102 and
The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”. The exemplary embodiments may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a device to implement the disclosed embodiments. The term “computer readable medium” can include, but is not limited to, magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, . . . ), optical disks (e.g., compact disk, digital versatile disk, . . . ), smart cards, flash memory devices, etc. Additionally, it should be appreciated that a carrier wave can be employed to carry computer-readable media such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network. The network access may be wired or wireless.
The foregoing description of exemplary embodiments of the invention have been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The functionality described may be distributed among modules that differ in number and distribution of functionality from those described herein. Additionally, the order of execution of the functions may be changed depending on the embodiment. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
The present Application is a Continuation of U.S. patent application Ser. No. 12/559,240, filed Sep. 14, 2009 (now U.S. Pat. No. 8,376,600), which is a Continuation-in-Part of U.S. patent application Ser. No. 11/771,317 titled “Method and System for Controlling a Lighting System” filed on Jun. 29, 2001 (now U.S. Pat. No. 7,638,743). The entire disclosures of U.S. patent application Ser. No. 12/559,240 and U.S. patent application Ser. No. 11/771,317 are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1254520 | MacDuff | Jan 1918 | A |
2403240 | Sawin | Jul 1946 | A |
2636977 | Foster | Apr 1953 | A |
3337035 | Pennybacker | Aug 1967 | A |
3511559 | Foster | May 1970 | A |
3757290 | Ross et al. | Sep 1973 | A |
4023043 | Stevenson | May 1977 | A |
4114186 | Dominguez | Sep 1978 | A |
4135181 | Bogacki et al. | Jan 1979 | A |
4144462 | Sieron et al. | Mar 1979 | A |
4190800 | Kelly et al. | Feb 1980 | A |
4204194 | Bogacki | May 1980 | A |
4204195 | Bogacki | May 1980 | A |
4306769 | Martinet | Dec 1981 | A |
4360881 | Martinson | Nov 1982 | A |
4387417 | Plemmons et al. | Jun 1983 | A |
4489386 | Breddan | Dec 1984 | A |
4727593 | Goldstein | Feb 1988 | A |
4733505 | Van Dame | Mar 1988 | A |
4809468 | Bareiss | Mar 1989 | A |
4883340 | Dominguez | Nov 1989 | A |
4998095 | Shields | Mar 1991 | A |
5099622 | Sutton | Mar 1992 | A |
5165465 | Kenet | Nov 1992 | A |
5371661 | Simpson | Dec 1994 | A |
5426620 | Budney | Jun 1995 | A |
5546712 | Bixby | Aug 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5598042 | Mix et al. | Jan 1997 | A |
5644173 | Elliason et al. | Jul 1997 | A |
5655339 | DeBlock et al. | Aug 1997 | A |
5717609 | Packa et al. | Feb 1998 | A |
5729387 | Takahashi et al. | Mar 1998 | A |
5758331 | Johnson | May 1998 | A |
5956462 | Langford | Sep 1999 | A |
5962989 | Baker | Oct 1999 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6257735 | Baar | Jul 2001 | B1 |
D447266 | Verfuerth | Aug 2001 | S |
6363667 | O'Neill | Apr 2002 | B2 |
D463059 | Verfuerth | Sep 2002 | S |
6467933 | Baar | Oct 2002 | B2 |
6528782 | Zhang et al. | Mar 2003 | B1 |
6528957 | Luchaco | Mar 2003 | B1 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6585396 | Verfuerth | Jul 2003 | B1 |
D479826 | Verfuerth et al. | Sep 2003 | S |
6622097 | Hunter | Sep 2003 | B2 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6644836 | Adams | Nov 2003 | B1 |
D483332 | Verfuerth | Dec 2003 | S |
6671586 | Davis et al. | Dec 2003 | B2 |
6717660 | Bernardo | Apr 2004 | B1 |
6731080 | Flory | May 2004 | B2 |
D494700 | Hartman et al. | Aug 2004 | S |
6785592 | Smith et al. | Aug 2004 | B1 |
6828695 | Hansen | Dec 2004 | B1 |
6832135 | Ying | Dec 2004 | B2 |
6894609 | Menard et al. | May 2005 | B2 |
6938210 | Huh | Aug 2005 | B1 |
6979097 | Elam et al. | Dec 2005 | B2 |
6983210 | Matsubayashi et al. | Jan 2006 | B2 |
6990394 | Pasternak | Jan 2006 | B2 |
7027736 | Mier-Langner et al. | Apr 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7167777 | Budike, Jr. | Jan 2007 | B2 |
7259527 | Foo | Aug 2007 | B2 |
7264177 | Buck et al. | Sep 2007 | B2 |
D557817 | Verfuerth | Dec 2007 | S |
7307542 | Chandler et al. | Dec 2007 | B1 |
D560469 | Bartol et al. | Jan 2008 | S |
7369056 | McCollough, Jr. | May 2008 | B2 |
7401942 | Verfuerth et al. | Jul 2008 | B1 |
7446671 | Giannopoulos et al. | Nov 2008 | B2 |
7518531 | Butzer et al. | Apr 2009 | B2 |
D595894 | Verfuerth et al. | Jul 2009 | S |
7563006 | Verfuerth et al. | Jul 2009 | B1 |
7575338 | Verfuerth | Aug 2009 | B1 |
D606697 | Verfuerth et al. | Dec 2009 | S |
7628506 | Verfuerth et al. | Dec 2009 | B2 |
7638743 | Bartol et al. | Dec 2009 | B2 |
7660652 | Smith et al. | Feb 2010 | B2 |
D617028 | Verfuerth et al. | Jun 2010 | S |
D617029 | Verfuerth et al. | Jun 2010 | S |
7738999 | Petite | Jun 2010 | B2 |
7746003 | Verfuerth et al. | Jun 2010 | B2 |
7762861 | Verfuerth et al. | Jul 2010 | B2 |
D621410 | Verfuerth et al. | Aug 2010 | S |
D621411 | Verfuerth et al. | Aug 2010 | S |
7780310 | Verfuerth et al. | Aug 2010 | B2 |
7784966 | Verfuerth et al. | Aug 2010 | B2 |
D623340 | Verfuerth et al. | Sep 2010 | S |
7812543 | Budike, Jr. | Oct 2010 | B2 |
7847706 | Ross et al. | Dec 2010 | B1 |
7859398 | Davidson et al. | Dec 2010 | B2 |
D632006 | Verfuerth et al. | Feb 2011 | S |
8033686 | Recker et al. | Oct 2011 | B2 |
8035320 | Sibert | Oct 2011 | B2 |
D650225 | Bartol et al. | Dec 2011 | S |
8070312 | Verfuerth et al. | Dec 2011 | B2 |
8138690 | Chemel et al. | Mar 2012 | B2 |
8255090 | Frader-Thompson et al. | Aug 2012 | B2 |
8373362 | Chemel et al. | Feb 2013 | B2 |
8376600 | Bartol et al. | Feb 2013 | B2 |
8450670 | Verfuerth et al. | May 2013 | B2 |
8531134 | Chemel et al. | Sep 2013 | B2 |
8543249 | Chemel et al. | Sep 2013 | B2 |
8610377 | Chemel et al. | Dec 2013 | B2 |
8626643 | Verfuerth et al. | Jan 2014 | B2 |
20010055965 | Delp et al. | Dec 2001 | A1 |
20020060283 | Jordan et al. | May 2002 | A1 |
20020065583 | Okada et al. | May 2002 | A1 |
20020082748 | Enga et al. | Jun 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020162032 | Gundersen et al. | Oct 2002 | A1 |
20020172049 | Yueh | Nov 2002 | A1 |
20020173321 | Marsden et al. | Nov 2002 | A1 |
20030011486 | Ying | Jan 2003 | A1 |
20030016143 | Ghazarian | Jan 2003 | A1 |
20030036820 | Yellepeddy et al. | Feb 2003 | A1 |
20030041017 | Spool et al. | Feb 2003 | A1 |
20030041038 | Spool et al. | Feb 2003 | A1 |
20030046252 | Spool et al. | Mar 2003 | A1 |
20030084358 | Bresniker et al. | May 2003 | A1 |
20030084359 | Bresniker et al. | May 2003 | A1 |
20030093332 | Spool et al. | May 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030179577 | Marsh | Sep 2003 | A1 |
20040006439 | Hunter | Jan 2004 | A1 |
20040024483 | Holcombe | Feb 2004 | A1 |
20040076001 | Lutes | Apr 2004 | A1 |
20040078153 | Bartone et al. | Apr 2004 | A1 |
20040078154 | Hunter | Apr 2004 | A1 |
20040083163 | Cooper | Apr 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040128266 | Yellepeddy et al. | Jul 2004 | A1 |
20040193329 | Ransom et al. | Sep 2004 | A1 |
20040201448 | Wang | Oct 2004 | A1 |
20050027636 | Gilbert et al. | Feb 2005 | A1 |
20050034023 | Maturana et al. | Feb 2005 | A1 |
20050035717 | Adamson et al. | Feb 2005 | A1 |
20050038571 | Brickfield et al. | Feb 2005 | A1 |
20050043860 | Petite | Feb 2005 | A1 |
20050124346 | Corbett et al. | Jun 2005 | A1 |
20050232289 | Walko et al. | Oct 2005 | A1 |
20060002110 | Dowling et al. | Jan 2006 | A1 |
20060044152 | Wang | Mar 2006 | A1 |
20060065750 | Fairless | Mar 2006 | A1 |
20060085301 | Leahy | Apr 2006 | A1 |
20060125426 | Veskovic et al. | Jun 2006 | A1 |
20060253885 | Murphy et al. | Nov 2006 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070085701 | Walters et al. | Apr 2007 | A1 |
20070097993 | Bojahra et al. | May 2007 | A1 |
20070100571 | Miki | May 2007 | A1 |
20070145915 | Roberge et al. | Jun 2007 | A1 |
20070222581 | Hawkins et al. | Sep 2007 | A1 |
20070252528 | Vermuelen et al. | Nov 2007 | A1 |
20080143273 | Davidson et al. | Jun 2008 | A1 |
20080147465 | Raines et al. | Jun 2008 | A1 |
20080183337 | Szabados | Jul 2008 | A1 |
20080218317 | Choi | Sep 2008 | A1 |
20080266664 | Winston et al. | Oct 2008 | A1 |
20080275802 | Verfuerth et al. | Nov 2008 | A1 |
20080291054 | Groft | Nov 2008 | A1 |
20090000217 | Verfuerth et al. | Jan 2009 | A1 |
20090147507 | Verfuerth et al. | Jun 2009 | A1 |
20090150004 | Wang et al. | Jun 2009 | A1 |
20090222142 | Kao et al. | Sep 2009 | A1 |
20090243517 | Verfuerth et al. | Oct 2009 | A1 |
20090248217 | Verfuerth et al. | Oct 2009 | A1 |
20090251066 | Baaijens et al. | Oct 2009 | A1 |
20090299811 | Verfuerth et al. | Dec 2009 | A1 |
20090315485 | Verfuerth et al. | Dec 2009 | A1 |
20100061088 | Bartol et al. | Mar 2010 | A1 |
20100246168 | Verfuerth et al. | Sep 2010 | A1 |
20110060701 | Verfuerth et al. | Mar 2011 | A1 |
20110146669 | Bartol et al. | Jun 2011 | A1 |
20110235317 | Verfuerth et al. | Sep 2011 | A1 |
20110279063 | Wang et al. | Nov 2011 | A1 |
20120037725 | Verfuerth | Feb 2012 | A1 |
20120038281 | Verfuerth | Feb 2012 | A1 |
20120038490 | Verfuerth | Feb 2012 | A1 |
20120040606 | Verfuerth | Feb 2012 | A1 |
20120044350 | Verfuerth | Feb 2012 | A1 |
20120081906 | Verfuerth et al. | Apr 2012 | A1 |
20120167957 | Verfuerth et al. | Jul 2012 | A1 |
20120274222 | Verfuerth et al. | Nov 2012 | A1 |
20130006437 | Verfuerth et al. | Jan 2013 | A1 |
20130033183 | Verfuerth et al. | Feb 2013 | A1 |
20130094230 | Verfuerth et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
WO-2004023849 | Mar 2004 | WO |
Entry |
---|
U.S. Appl. No. 13/275,536, filed Oct. 18, 2011, Verfuerth et al. |
“About Sun Dome Tubular Skylights,” having a date indication of © 2009, 8 pages. |
Deru et al.; BigHorn Home Improvement Center Energy Performance; ASHRAE Transactions, Atlanta: 2006 vol. 112, 26 pages. |
Galasiu et al. “Energy saving lighting control systems for open-plan offices: a filed study”; Jul. 2007, National Research Council Canada; vol. 4; No. 1, pp. 1-28, 56 pages. |
Halliday, D., et al., Physics Part I and II; John Wiley& Sons, Inc. 1967 (9 pgs.). |
Harris, L. R., et al., “Pacific Northwest Laboratory's Lighting Technology Screening Matrix,” PNL-SA-23871, Apr. 1994, U.S. Department of Energy, Pacific Northwest Laboratory, Richland, Washington 99352, pp. 1-14. |
Notice of Acceptance (NOA) from Miami-Dade County, Building Code Compliance Office, Product Control Division, Approval Date Dec. 13, 2007, 2 pages. |
Sun-Dome /Tubular Skylight, Daylighting Technologies, Riviera Beach, FL, revision Oct. 22, 2007, 1 page. |
Number | Date | Country | |
---|---|---|---|
20130342911 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12559240 | Sep 2009 | US |
Child | 13769051 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11771317 | Jun 2007 | US |
Child | 12559240 | US |