The present application relates generally to the field of lighting systems and lighting fixtures. The present application further relates to lighting fixture control systems and methods.
Control of lighting fixtures has conventionally been accomplished via hardwired switches. Some conventional lighting fixtures include a wireless receiver or transceiver for receiving commands from a control station. Conventional lighting fixtures have typically not been adaptable to different environmental changes or situations.
One embodiment relates to a system for controlling lighting. The system includes a control module coupled to a driver. A light source coupled to the driver is configured to receive controlled power from the driver. A first sensor is configured to cooperate with the control module to detect occupancy and control the power delivered from the driver to the light source according to a signal provided to the control module by the first sensor, while a second sensor is configured to cooperate with the control module to detect ambient light and control the power delivered from the driver to the light source according to a signal provided to the control module by the second sensor. A graphical user interface (GUI) executing on a controller device wirelessly coupled to the control module is configured to communicate with the control module to configure the operation of the control module. The GUI is configured to execute on a touch-sensitive display configured to facilitate user interaction with the controller, and is operable to create one or more control groups, each group comprising multiple control modules. The GUI is also operable to control the driver to control the on/off state of the light source. The control module is programmable to cause the driver to control the light source according to the detection by the first sensor of occupancy, turning on the light source upon detecting that an area monitored by the first sensor is occupied and turning off the light source after a configurable delay period upon detecting that the area monitored by the first sensor is not occupied. The control module is programmable to cause the driver to control the light source according to the detection by the second sensor of ambient light. The system is configurable to include a switch to cause the light source to be turned on without regard to occupancy detected by the first sensor or ambient light detected by the second sensor.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
Referring generally to the Figures, a controller local to a lighting fixture is configured to intelligently utilize information available to the controller. The controller may conduct its own control decisions based on, for example, input from a motion sensor or ambient lighting sensor local to the controller. The controller may also include communications electronics for receiving “on/off” or other commands from a remote source (e.g., a network of lighting fixtures, a master controller, etc.). Regardless of the source for control decisions of the controller, the controller is configured to log usage information for the lighting fixture in memory local to the controller. In various exemplary embodiments, the controller includes communications electronics for communicating the logged information to other devices. The logged usage information may be used by other devices in the execution of a system-wide control scheme, in the execution of control algorithms relating particularly to the lighting fixture and controller that logged the information, or otherwise. The controller local to the lighting fixture can also use its own logged usage information during its local control decisions.
The controllers described herein can also relate to or be configured to control the electricity provided to devices other than lights. The controllers provided to lighting fixtures distributed around a space can advantageously be used to create a “grid” or wireless infrastructure in a facility that can be used to carry data communications from control systems and user interfaces to wireless relays located remotely from the control systems.
Referring now to
Referring still to
Referring now to
Referring now to
Control computer 202 is preferably configured to provide a graphical user interface to a local or remote electronic display screen for allowing a user to adjust control parameters, turn lighting fixtures on or off, or to otherwise affect the operation of lighting fixtures in a facility. For example, control computer 202 is further shown to include touch screen display 210 for displaying such a graphical user interface and for allowing user interaction (e.g., input and output) with control computer 202. Various exemplary graphical user interfaces for display on touch screen display 210 and control activities associated therewith are described in subsequent paragraphs and with reference to subsequent Figures of the present application. It should be noted that while control computer 202 is shown in
Referring further to
Referring now to
Controller 300 is shown to include power relays 302 configured to controllably switch on or off high voltage power outputs that may be provided to first ballast 104 and second ballast 106 via wires 280, 281. It should be noted that in other exemplary embodiments, power relays 302 may be configured to provide a low voltage control signal, optical signal, or otherwise to the lighting fixture which may cause one or more ballasts, lamps, and/or circuits of the fluorescent lighting fixture that the controller serves to turn on and off. While power relays 302 are configured to provide high voltage power outputs to ballasts 104, 106, it should be appreciated that controller 300 may include a port, terminal, receiver, or other input for receiving power from a high voltage power source. In embodiments where a relatively low voltage or no voltage control signal is provided by relays 302, power for circuitry of controller 300 may be received from a power source provided to the lighting fixtures or from another source. In any embodiment of controller 300, appropriate power supply circuitry (e.g., filtering circuitry, stabilizing circuitry, etc.) may be included with controller 300 to provide power to the components of controller 300 (e.g., relays 302).
Referring still to
When or after control decisions based on sensor 112 or commands received at wireless transceiver are made, in some exemplary embodiments, logic module 314 is configured to log usage information for the lighting fixture in memory 316. For example, if control circuit 304 causes power relays 302 to change states such that the lighting fixture turns on or off, control circuit 304 may inform logic module 314 of the state change and logic module 314 may log usage information based on the information from control circuit 304. The form of the logged usage information can vary for different embodiments. For example, in some embodiments, the logged usage information includes an event identifier (e.g., “on”, “off”, cause for the state change, etc.) and a timestamp (e.g., day and time) from which total usage may be derived. In other embodiments, the total “on” time for the lighting fixture (or lamp set) is counted such that only an absolute number of hours that the lamp has been on (for whatever reason) has been tracked and stored as the logged usage information. In addition to logging or aggregating temporal values, each logic module 314 may be configured to process usage information or transform usage information into other values or information. For example, in some embodiments time-of-use information is transformed by logic module 314 to track the energy used by the lighting fixture (e.g., based on bulb ratings, known energy draw of the fixture in different on/off/partial on modes, etc.). In some embodiments, each logic module 314 will also track how much energy savings the lighting fixture is achieving relative to a conventional lighting fixture, conventional control logic, or relative to another difference or change of the lighting fixture. For the purposes of many embodiments of this application, any such information relating to usage for the lighting fixture may be considered logged “usage information.” In other embodiments, the usage information logged by module 314 is limited to on/off events or temporal aggregation of on states; in such embodiments energy savings calculations or other calculations may be completed by a control computer 202 or another remote device.
In an exemplary embodiment, controller 300 (e.g., via wireless transceiver 306) is configured to transmit the logged usage information to remote devices such as control computer 202. Wireless controller 305 may be configured to recall the logged usage information from memory 316 at periodic intervals (e.g., every hour, once a day, twice a day, etc.) and to provide the logged usage information to wireless transceiver 306 at the periodic intervals for transmission back to control computer 202. In other embodiments, control computer 202 (or another network device) transmits a request for the logged information to wireless transceiver 306 and the request is responded to by wireless controller 305 by transmitting back the logged usage information. In a preferred embodiment a plurality of controllers such as controller 300 asynchronously collect usage information for their fixture and control computer 202, via request or via periodic transmission of the information by the controllers, gathers the usage information for later use.
Wireless controller 306 may also be configured to handle situations or events such as transmission failures, reception failures, and the like. Wireless controller 306 may respond to such failures by, for example, operating according to a retransmission scheme or another transmit failure mitigation scheme. Wireless controller 306 may also control any other modulating, demodulating, coding, decoding, routing, or other activities of wireless transceiver 306. For example, controller 300's control logic (e.g., controlled by logic module 314 and/or control circuit 304) may periodically include making transmissions to other controllers in a zone, making transmissions to particular controllers, or otherwise. Such transmissions can be controlled by wireless controller 306 and such control may include, for example, maintaining a token-based transmission system, synchronizing clocks of the various RF transceivers or controllers, operating under a slot-based transmission/reception protocol, or otherwise.
Referring still to
Referring yet further to
Referring yet further to
According to one embodiment, a self-diagnostic feature would monitor the number of times that a fixture or device was instructed to turn on (or off) based upon a signal received from a sensor (e.g. motion, ambient light level, etc.). If the number of instructions to turn on (or off) exceeded a predetermined limit during a predetermined time period, the logic module 314 and/or control circuit 304 could be programmed to detect that the particular application for the fixture or device is not well-suited to control by such a sensor (e.g. not an optimum application for motion control or ambient light-based control, etc.), and would be programmed to disable such a motion or ambient light based control scheme, and report/log this action and the basis. For example, if the algorithm is based on more than four instructions to turn on (or off) in a 24 hour period, and the number of instructions provided based on signals from the sensor exceeds this limit within this period, the particular sensor-based control function would be disabled, as not being optimally suited to the application and a notification would be logged and provided to a user or facility manager. Of course, the limit and time period may be any suitable number and duration intended to suit the operational characteristics of the fixture/device and the application. In the event that a particular sensor-based control scheme in a particular zone is disabled by the logic module and/or control circuit, the fixture or device is intended to remain operational in response to other available control schemes (e.g. other sensors, time-based, user input or demand, etc.). The data logged by the logic module and/or control circuit may also be used in a ‘learning capacity’ so that the controls may be more optimally tuned for the fixtures/devices in a particular application and/or zone. For example, the logic module and/or control circuit may determine that disablement of a particular sensor-based control feature occurred due to an excessive number of instructions to turn on (or off) based on signals from a particular sensor that occurred within a particular time window, and may be reprogrammed to establish an alternate monitoring duration that excludes this particular time window for the particular sensor-based control scheme to ‘avoid’ time periods that are determined to be problematic. This ability to learn or self-update is intended to permit the system to adjust itself to update the sensor-based control schemes to different time periods that are more optimally suited for such a control scheme, and to avoid time periods that are less optimum for such a particular sensor-based control scheme.
Referring now to
Referring further to
Touch screen display 210 and more particularly user interface module 408 are configured to allow and facilitate user interaction (e.g., input and output) with control computer 202. It should be appreciated that in alternative embodiments of control computer 202, the display associated with control computer 202 may not be a touch screen, may be separated from the casing housing the control computer, and/or may be distributed from the control computer and connected via a network connection (e.g., Internet connection, LAN connection, WAN connection, etc.). Further, it should be appreciated that control computer 202 may be connected to a mouse, keyboard, or any other input device or devices for providing user input to control computer 202. Control computer is shown to include a communications interface 220 configured to connect to a wire associated with master transceiver 240.
Communications interface 220 may be a proprietary circuit for communicating with master transceiver 240 via a proprietary communications protocol. In other embodiments, communications interface 220 may be configured to communicate with master transceiver 240 via a standard communications protocol. For example, communications interface 220 may include Ethernet communications electronics (e.g., an Ethernet card) and an appropriate port (e.g., an RJ45 port configured for CATS cabling) to which an Ethernet cable is run from control computer 202 to master transceiver 240. Master transceiver 240 may be as described in U.S. application Ser. No. 12/240,805, 12/057,217, or 11/771,317 which are each incorporated herein by reference. As described in U.S. application Ser. No. 12/240,805, in general, the master transceiver 240 can communicate with other devices using a network protocol (WiFi network, Ethernet network, IP network, LAN, WAN, ZigBee network, Bluetooth Piconet, etc.). Communications interface 220 and more generally master transceiver 240 are controlled by logic of wireless interface module 412. Wireless interface module 412 may include drivers, control software, configuration software, or other logic configured to facilitate communications activities of control computer 202 with lighting fixture controllers. For example, wireless interface module 412 may package, address format, or otherwise prepare messages for transmission to and reception by particular controllers or zones. Wireless interface module 412 may also interpret, route, decode, or otherwise handle communications received at master transceiver 240 and communications interface 220.
Referring still to
Control logic module 414 may be the primary logic module for control computer 202 and may be the main routine that calls, for example, modules 408, 410, etc. Control logic module 414 may generally be configured to provide lighting control, energy savings calculations, demand/response-based control, load shedding, load submetering, HVAC control, building automation control, workstation control, advertisement control, power strip control, “sleep mode” control, or any other types of control. In an exemplary embodiment, control logic module 414 operates based off of information stored in one or more databases of control computer 202 and stored in memory 404 or another memory device in communication with control computer 202. The database may be populated with information based on user input received at graphical user interfaces (e.g., shown in
Control logic module 414 may include any number of functions or sub-processes. For example, a scheduling sub-process of control logic module 414 may check at regular intervals to determine if an event is scheduled to take place. When events are determined to take place, the scheduling sub-process or another routine of control logic module 414 may call or otherwise use another module or routine to initiate the event. For example, if the schedule indicates that a zone should be turned off at 5:00 pm, then when 5:00 pm arrives the scheduling sub-process may call a routine (e.g., of wireless interface module) that causes an “off” signal to be transmitted by master transceiver 240. Control logic module 414 may also be configured to conduct or facilitate the completion of any other process, sub-process, or process steps conducted by control computer 202 described herein.
Referring further to
Fieldbus interfaces 416 and 420 and device interface module 410 may also be used in concert with user interface module 408 and control logic module 414 to provide control to the monitored devices 418, 422. For example, monitored devices 418, 422 may be mechanical devices configured to operate a motor, one or more electronic valves, one or more workstations, machinery stations, a solenoid or valve, or otherwise. Such devices may be assigned to zones similar to the lighting fixtures described above and below or controlled independently. User interface module 408 may allow schedules and conditions to be established for each of devices 418, 422 so that control computer 202 may be used as a comprehensive energy management system for a facility. For example, a motor that controls the movement of a spinning advertisement may be coupled to the power output or relays of a controller very similar if not identical to controller 300. This controller may be assigned to a zone (e.g., via user interfaces at touchscreen display 210) and provided a schedule for turning on and off during the day. In another embodiment, the electrical relays of the controller may be coupled to other building devices such as video monitors for informational display, exterior signs, task lighting, audio systems, or other electrically operated devices.
Referring further to
Referring now to
Referring still to
Referring now to
Referring now to
To implement zone control activities, each controller may be configured to store a lighting zone value in memory (e.g., memory 316). This value may be used, for example, to determine whether another device sending a command is associated with the lighting zone value stored in memory. For example, controller 271 may include a lighting zone value of “II” in memory and controller 300 may include data representative of controller 300's lighting zone value (e.g., “I”) with its transmission indicating that motion was detected. When controller 271 receives the lighting zone value, controller 271 (e.g., a control circuit or logic circuit thereof) may compare “I” and “II” and make a determination that controller 271 will not act on the received indication of motion (i.e., controller 271 leaves its relays off while all of the controllers in zone I switch their relays on.
Referring now to
Control Configurations and Related Graphical User Interfaces of the Control Computer
Referring now to
It should be noted that the screens shown in
One or more functions may be combined onto a few number of screens or expanded onto a greater number of screens. Aspects shown and described as being within dialog boxes may be options or controls shown on main screens, “next” screens in a sequence of screens, or otherwise. Items referred to as buttons may be any clickable, selectable, or otherwise interactive controls for facilitating the user interface features described. In yet other embodiments audio (e.g., via speakers integrated with control computer 202, via an external audio system coupled to control computer 202, etc.) may be used for prompting the user for input and/or for receiving input from a user (e.g., via a microphone and voice recognition circuit/module). Further, other user input mechanisms of the past, present or future may be provided to the systems described above to provide the features discussed throughout the present application or with particular reference to
Further, the construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing various operations. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium.
Combinations of the above are also included within the scope of machine-readable media. Machine-executable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various connection steps, processing steps, comparison steps and decision steps.
This application is a Continuation of U.S. application Ser. No. 14/330,231, filed Jul. 14, 2014, incorporated herein by reference in its entirety. U.S. application Ser. No. 14/330,231 is a Continuation of U.S. application Ser. No. 13/902,449, filed May 24, 2013, incorporated herein by reference in its entirety. U.S. application Ser. No. 13/902,449 is a Continuation of U.S. application Ser. No. 12/550,270, filed Aug. 28, 2009, incorporated herein by reference in its entirety. U.S. application Ser. No. 12/550,270 is a Continuation-In-Part of U.S. application Ser. No. 12/240,805, filed Sep. 29, 2008, incorporated herein by reference in its entirety, which is a Continuation-In-Part of U.S. application Ser. No. 12/057,217, filed Mar. 27, 2008, incorporated herein by reference in its entirety. U.S. application Ser. No. 12/550,270 is also a Continuation-In-Part of U.S. application Ser. No. 11/771,317, filed Jun. 29, 2007, incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1254520 | MacDuff | Jan 1918 | A |
2403240 | Sawin | Jul 1946 | A |
2485148 | Fralin | Oct 1949 | A |
2636977 | Foster | Apr 1953 | A |
3292319 | McCarthy | Dec 1966 | A |
3337035 | Pennybacker | Aug 1967 | A |
3416266 | Eron | Dec 1968 | A |
3511559 | Foster | May 1970 | A |
3757290 | Ross et al. | Sep 1973 | A |
4013922 | Van Der Meulen | Mar 1977 | A |
4023043 | Stevenson | May 1977 | A |
4114186 | Dominguez | Sep 1978 | A |
4135181 | Bogacki et al. | Jan 1979 | A |
4144462 | Sieron et al. | Mar 1979 | A |
4190800 | Kelly et al. | Feb 1980 | A |
4204194 | Bogacki | May 1980 | A |
4204195 | Bogacki | May 1980 | A |
4306769 | Martinet | Dec 1981 | A |
4360881 | Martinson | Nov 1982 | A |
4387417 | Plemmons et al. | Jun 1983 | A |
4489386 | Breddan | Dec 1984 | A |
4727593 | Goldstein | Feb 1988 | A |
4733505 | Van Dame | Mar 1988 | A |
4809468 | Bareiss | Mar 1989 | A |
4841914 | Chattan | Jun 1989 | A |
4860511 | Weisner et al. | Aug 1989 | A |
4883340 | Dominguez | Nov 1989 | A |
4998095 | Shields | Mar 1991 | A |
5099622 | Sutton | Mar 1992 | A |
5165465 | Kenet | Nov 1992 | A |
5253444 | Donoho et al. | Oct 1993 | A |
5261179 | Schwinler | Nov 1993 | A |
5353543 | Teraoka | Oct 1994 | A |
5371661 | Simpson | Dec 1994 | A |
5426620 | Budney | Jun 1995 | A |
5489827 | Xia | Feb 1996 | A |
5546712 | Bixby | Aug 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5598042 | Mix et al. | Jan 1997 | A |
5644173 | Elliason et al. | Jul 1997 | A |
5649394 | Ohba | Jul 1997 | A |
5655339 | Deblock et al. | Aug 1997 | A |
5713160 | Heron | Feb 1998 | A |
5717609 | Packa et al. | Feb 1998 | A |
5729387 | Takahashi et al. | Mar 1998 | A |
5758331 | Johnson | May 1998 | A |
5836114 | Ohba | Nov 1998 | A |
5918404 | Ohba | Jul 1999 | A |
5956462 | Langford | Sep 1999 | A |
5962989 | Baker | Oct 1999 | A |
6003471 | Ohba | Dec 1999 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6257735 | Baar | Jul 2001 | B1 |
D447266 | Verfuerth | Aug 2001 | S |
6363667 | O'Neill | Apr 2002 | B2 |
6367419 | Gosselin | Apr 2002 | B1 |
6418674 | Deraedt | Jul 2002 | B1 |
D463059 | Verfuerth | Sep 2002 | S |
6467933 | Baar | Oct 2002 | B2 |
6524175 | Beaudry et al. | Feb 2003 | B2 |
6528782 | Zhang et al. | Mar 2003 | B1 |
6528957 | Luchaco | Mar 2003 | B1 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6585396 | Verfuerth | Jul 2003 | B1 |
D479826 | Verfuerth et al. | Sep 2003 | S |
6622097 | Hunter | Sep 2003 | B2 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6644836 | Adams | Nov 2003 | B1 |
D483332 | Verfuerth | Dec 2003 | S |
6671586 | Davis et al. | Dec 2003 | B2 |
6710588 | Verfuerth et al. | Mar 2004 | B1 |
6717660 | Bernardo | Apr 2004 | B1 |
6724180 | Verfuerth et al. | Apr 2004 | B1 |
6731080 | Flory | May 2004 | B2 |
D494700 | Hartman et al. | Aug 2004 | S |
6774790 | Houston | Aug 2004 | B1 |
6785592 | Smith et al. | Aug 2004 | B1 |
6813864 | Landis | Nov 2004 | B2 |
6828695 | Hansen | Dec 2004 | B1 |
6832135 | Ying | Dec 2004 | B2 |
6894609 | Menard et al. | May 2005 | B2 |
6938210 | Huh | Aug 2005 | B1 |
6979097 | Elam et al. | Dec 2005 | B2 |
6983210 | Matsubayashi et al. | Jan 2006 | B2 |
6990394 | Pasternak | Jan 2006 | B2 |
7027736 | Mier-Langner et al. | Apr 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7167777 | Budike, Jr. | Jan 2007 | B2 |
7259527 | Foo | Aug 2007 | B2 |
7264177 | Buck et al. | Sep 2007 | B2 |
D557817 | Verfuerth | Dec 2007 | S |
7307542 | Chandler et al. | Dec 2007 | B1 |
D560469 | Bartol et al. | Jan 2008 | S |
7369056 | McCollough, Jr. | May 2008 | B2 |
7401942 | Verfuerth et al. | Jul 2008 | B1 |
7446671 | Giannopoulos et al. | Nov 2008 | B2 |
7518531 | Butzer et al. | Apr 2009 | B2 |
D595894 | Verfuerth et al. | Jul 2009 | S |
7563006 | Verfuerth et al. | Jul 2009 | B1 |
7575338 | Verfuerth | Aug 2009 | B1 |
D606697 | Verfuerth et al. | Dec 2009 | S |
7628506 | Verfuerth et al. | Dec 2009 | B2 |
7638743 | Bartol et al. | Dec 2009 | B2 |
7660652 | Smith et al. | Feb 2010 | B2 |
D617028 | Verfuerth et al. | Jun 2010 | S |
D617029 | Verfuerth et al. | Jun 2010 | S |
7738999 | Petite | Jun 2010 | B2 |
7746003 | Verfuerth et al. | Jun 2010 | B2 |
7762861 | Verfuerth et al. | Jul 2010 | B2 |
D621410 | Verfuerth et al. | Aug 2010 | S |
D621411 | Verfuerth et al. | Aug 2010 | S |
7780310 | Verfuerth et al. | Aug 2010 | B2 |
7784966 | Verfuerth et al. | Aug 2010 | B2 |
D623340 | Verfuerth et al. | Sep 2010 | S |
7812543 | Budike, Jr. | Oct 2010 | B2 |
7847706 | Ross et al. | Dec 2010 | B1 |
7859398 | Davidson et al. | Dec 2010 | B2 |
D632006 | Verfuerth et al. | Feb 2011 | S |
8033686 | Recker et al. | Oct 2011 | B2 |
8035320 | Sibert | Oct 2011 | B2 |
D650225 | Bartol et al. | Dec 2011 | S |
8070312 | Verfuerth et al. | Dec 2011 | B2 |
8138690 | Chemel et al. | Mar 2012 | B2 |
8255090 | Frader-Thompson et al. | Aug 2012 | B2 |
8344665 | Verfuerth et al. | Jan 2013 | B2 |
8373362 | Chemel et al. | Feb 2013 | B2 |
8450670 | Verfuerth et al. | May 2013 | B2 |
8531134 | Chemel et al. | Sep 2013 | B2 |
8543249 | Chemel et al. | Sep 2013 | B2 |
8604701 | Verfuerth et al. | Dec 2013 | B2 |
8610377 | Chemel et al. | Dec 2013 | B2 |
8626643 | Verfuerth et al. | Jan 2014 | B2 |
8779340 | Verfuerth et al. | Jul 2014 | B2 |
8794804 | Verfuerth et al. | Aug 2014 | B2 |
8884203 | Verfuerth et al. | Nov 2014 | B2 |
8921751 | Verfuerth | Dec 2014 | B2 |
20010055965 | Delp et al. | Dec 2001 | A1 |
20020060283 | Jordan et al. | May 2002 | A1 |
20020065583 | Okada et al. | May 2002 | A1 |
20020082748 | Enga et al. | Jun 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020162032 | Gundersen et al. | Oct 2002 | A1 |
20020172049 | Yueh | Nov 2002 | A1 |
20020173321 | Marsden et al. | Nov 2002 | A1 |
20030011486 | Ying | Jan 2003 | A1 |
20030016143 | Ghazarian | Jan 2003 | A1 |
20030036820 | Yellepeddy et al. | Feb 2003 | A1 |
20030041017 | Spool et al. | Feb 2003 | A1 |
20030041038 | Spool et al. | Feb 2003 | A1 |
20030046252 | Spool et al. | Mar 2003 | A1 |
20030084358 | Bresniker et al. | May 2003 | A1 |
20030084359 | Bresniker et al. | May 2003 | A1 |
20030093332 | Spool et al. | May 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030179577 | Marsh | Sep 2003 | A1 |
20030229572 | Raines et al. | Dec 2003 | A1 |
20040006439 | Hunter | Jan 2004 | A1 |
20040024483 | Holcombe | Feb 2004 | A1 |
20040076001 | Lutes | Apr 2004 | A1 |
20040078153 | Bartone et al. | Apr 2004 | A1 |
20040078154 | Hunter | Apr 2004 | A1 |
20040083163 | Cooper | Apr 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040128266 | Yellepeddy et al. | Jul 2004 | A1 |
20040193329 | Ransom et al. | Sep 2004 | A1 |
20040201448 | Wang | Oct 2004 | A1 |
20040243377 | Roytelman | Dec 2004 | A1 |
20050027636 | Gilbert et al. | Feb 2005 | A1 |
20050034023 | Maturana et al. | Feb 2005 | A1 |
20050035717 | Adamson et al. | Feb 2005 | A1 |
20050038571 | Brickfield et al. | Feb 2005 | A1 |
20050043860 | Petite | Feb 2005 | A1 |
20050124346 | Corbett et al. | Jun 2005 | A1 |
20050232289 | Walko et al. | Oct 2005 | A1 |
20050253538 | Shah | Nov 2005 | A1 |
20050263599 | Zhu | Dec 2005 | A1 |
20050265050 | Miller | Dec 2005 | A1 |
20060002110 | Dowling et al. | Jan 2006 | A1 |
20060044152 | Wang | Mar 2006 | A1 |
20060044789 | Curtis | Mar 2006 | A1 |
20060065750 | Fairless | Mar 2006 | A1 |
20060085301 | Leahy | Apr 2006 | A1 |
20060125426 | Veskovic et al. | Jun 2006 | A1 |
20060253885 | Murphy et al. | Nov 2006 | A1 |
20070027645 | Guenther et al. | Feb 2007 | A1 |
20070043478 | Ehlers et al. | Feb 2007 | A1 |
20070085701 | Walters et al. | Apr 2007 | A1 |
20070097993 | Bojahra et al. | May 2007 | A1 |
20070100571 | Miki | May 2007 | A1 |
20070145915 | Roberge et al. | Jun 2007 | A1 |
20070222581 | Hawkins et al. | Sep 2007 | A1 |
20070247859 | Haddad et al. | Oct 2007 | A1 |
20070252528 | Vermuelen et al. | Nov 2007 | A1 |
20080006698 | Kotlarsky | Jan 2008 | A1 |
20080143273 | Davidson et al. | Jun 2008 | A1 |
20080147465 | Raines et al. | Jun 2008 | A1 |
20080183337 | Szabados | Jul 2008 | A1 |
20080218317 | Choi | Sep 2008 | A1 |
20080266664 | Winston et al. | Oct 2008 | A1 |
20080275802 | Verfuerth et al. | Nov 2008 | A1 |
20080291054 | Groft | Nov 2008 | A1 |
20080315772 | Knibbe | Dec 2008 | A1 |
20080316743 | Shaneour | Dec 2008 | A1 |
20090000217 | Verfuerth et al. | Jan 2009 | A1 |
20090059603 | Recker et al. | Mar 2009 | A1 |
20090090895 | Hogan, Jr. | Apr 2009 | A1 |
20090147507 | Verfuerth et al. | Jun 2009 | A1 |
20090150004 | Wang et al. | Jun 2009 | A1 |
20090222142 | Kao et al. | Sep 2009 | A1 |
20090243517 | Verfuerth et al. | Oct 2009 | A1 |
20090248217 | Verfuerth et al. | Oct 2009 | A1 |
20090251066 | Baaijens et al. | Oct 2009 | A1 |
20090299811 | Verfuerth et al. | Dec 2009 | A1 |
20090315485 | Verfuerth et al. | Dec 2009 | A1 |
20100061088 | Bartol et al. | Mar 2010 | A1 |
20100246168 | Verfuerth et al. | Sep 2010 | A1 |
20110060701 | Verfuerth et al. | Mar 2011 | A1 |
20110146669 | Bartol et al. | Jun 2011 | A1 |
20110235317 | Verfuerth et al. | Sep 2011 | A1 |
20110279063 | Wang et al. | Nov 2011 | A1 |
20120037725 | Verfuerth | Feb 2012 | A1 |
20120038281 | Verfuerth | Feb 2012 | A1 |
20120038490 | Verfuerth | Feb 2012 | A1 |
20120040606 | Verfuerth | Feb 2012 | A1 |
20120044350 | Verfuerth | Feb 2012 | A1 |
20120081906 | Verfuerth et al. | Apr 2012 | A1 |
20120167957 | Verfuerth et al. | Jul 2012 | A1 |
20120274222 | Verfuerth et al. | Nov 2012 | A1 |
20130006437 | Verfuerth et al. | Jan 2013 | A1 |
20130033183 | Verfuerth et al. | Feb 2013 | A1 |
20130094230 | Verfuerth et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2237826 | May 1991 | GB |
2250172 | Jun 1992 | GB |
H05-336868 | Dec 1993 | JP |
2010-046091 | Mar 2010 | JP |
WO-2004023849 | Mar 2004 | WO |
Entry |
---|
U.S. Appl. No. 13/249,001, filed Sep. 29, 2011, Verfuerth et al. |
U.S. Appl. No. 13/333,293, filed Dec. 21, 2011, Verfuerth et al. |
“About Sun Dome Tubular Skylights,” having a date indication of C) 2009, 8 pages. |
Deru et al.; BigHorn Home Improvement Center Energy Performance; ASHRAE Transactions, Atlanta: 2006 vol. 112, 26 pages. |
Galasiu et al. “Energy saving lighting control systems for open-plan offices: a filed study”; Jul. 2007, National Research Council Canada; vol. 4; No. 1, pp. 1-28, 56 pages. |
Halliday, D., et al., Physics Part I and II; John Wiley& Sons, Inc. 1967 (9 pgs.). |
Harris, L. R., et al., “Pacific Northwest Laboratory's Lighting Technology Screening Matrix,” PNL-SA-23871, Apr. 1994, U.S. Department of Energy, Pacific Northwest Laboratory, Richland, Washington 99352, pp. 1-14. |
Non-Final Office Action on U.S. Appl. No. 13/902,449 (F&L 042365-1013), dated Aug. 28, 2013, 15 pgs. |
Non-Final Office Action on U.S. Appl. No. 13/932,962 (F&L 042365-1014), dated Aug. 28, 2013, 9 pgs. |
Notice of Acceptance (NOA) from Miami-Dade County, Building Code Compliance Office, Product Control Division, Approval Date Dec. 13, 2007, 2 pages. |
Sun-Dome /Tubular Skylight, Daylighting Technologies, Riviera Beach, FL, revision Oct. 22, 2007, 1 page. |
Office Action on U.S. Appl. No. 13/223,129, dated Oct. 2, 2012, 10 pages. |
Office Action on U.S. Appl. No. 13/223,135, dated Oct. 4, 2012, 10 pages. |
Office Action on U.S. Appl. No. 13/223,146, dated Oct. 22, 2012, 13 pages. |
Office Action on U.S. Appl. No. 13/223,149, dated Nov. 8, 2012, 11 pages. |
Office Action on U.S. Appl. No. 13/223,151, dated Oct. 4, 2012, 10 pages. |
Office Action on U.S. Appl. No. 13/453,805, dated Nov. 23, 2012, 17 pages. |
Office Action on U.S. Appl. No. 13/609,096, dated Nov. 29, 2012, 55 pages. |
Number | Date | Country | |
---|---|---|---|
20190045610 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14330231 | Jul 2014 | US |
Child | 16154322 | US | |
Parent | 13902449 | May 2013 | US |
Child | 14330231 | US | |
Parent | 12550270 | Aug 2009 | US |
Child | 13902449 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12240805 | Sep 2008 | US |
Child | 12550270 | US | |
Parent | 12057217 | Mar 2008 | US |
Child | 12240805 | US | |
Parent | 11771317 | Jun 2007 | US |
Child | 12057217 | US |