The present invention generally relates to a lighting fixture with controlled photometric emission, which can be installed in residential and/or industrial environments.
More particularly, the invention relates to a lighting fixture and, specifically, for the emergency lighting that uses LED light sources, whose photometric emission (i.e. the distribution of light intensity outputting from the LED light source) is modified, with respect to the prior art, through the use of additional lenses.
The lighting fixtures as well as apparatus for emergency lighting have several photometric emission characteristics, which depend on their actual usage.
For example, in special applications, such as, for example, emergency lights facilities installed in rooms used for public performances, luminaires with different types of light sources are used and, typically, some of said light sources are incandescent-type lights while some of them are fluorescent-type lights.
In normal operating conditions, i.e. when a power supply is connected, the low-power incandescent lamps are switched on, so as to provide a low luminous intensity and illuminate the signs stating the exits (the escape routes) from a room, without causing discomfort to the eyes of the viewers, and, when the power supply is interrupted, automatically the fluorescent lamps turn on, so as to provide the luminous intensity required to illuminate the emergency exits.
On the other hand, however, in industrial environments there is the need to effectively deliver, during emergency conditions (such as lack of power supply, danger or fire principles), a beam of light with high luminous intensity and concentrated in substantially rectangular areas, such as the workplace, the escape routes and/or the high-risk areas, where hazardous activities take place or areas in which the safety of persons depends on skilled workers.
In any case, there is a need to provide lighting fixtures, in particular emergency lighting fixtures, which can be used for the main types of electric installation and which are able to achieve a uniform illumination of rectangular areas, or which can be used only where it is necessary to ensure the presence of the emergency lighting.
The purpose of the present invention is therefore to indicate a lighting fixture with controlled photometric emission, which is suitable for the main types of installation and that achieves a high illumination only in prefixed areas or in areas of substantially rectangular shape, such as the high-risk areas, and that allows for a anti-panic lighting in industrial environments and/or along the escape routes, in emergency conditions.
Another purpose of the present invention is to indicate a lighting fixture with controlled photometric emission, which obtains a substantially uniform lighting on substantially rectangular or square surfaces.
A further purpose of the invention is to indicate a lighting fixture with controlled photometric emission of easy and inexpensive construction, without the use of complex and/or expensive technologies.
These and other purposes are achieved by a lighting fixture with controlled photometric emission controlled according to the attached claim 1.
Advantageously, the device according to the invention allows to obtain, at the same time, uniform lighting on the ground, so as to satisfy the national and international regulations on safety in civil and/or industrial environments, and suitable technical features in order to carry out emergency functions.
The uniform lighting is achieved on surfaces which substantially rectangular or square, especially by using a light source, such as a power LED, an electronic device for feeding the light source and one or more lenses that appropriately address the light beam.
The most common installations of the emergency lighting fixture, which is the object of the present invention, include built-in installations, installations on existing lighting installations, ceiling installations (at 3 or 7 meters in height) and wall installations.
Further purposes and advantages of the present invention will be clear from the description that follows, which refers to different and preferred, but not limited, embodiments of the lighting fixture which is the object of the present invention, and from the attached drawings, in which:
With particular reference to the attached
The lighting fixture 10 is used, with suitable adapters, for different types of products and installations used for emergency lighting devices, such as built-in installations, installations on existing lighting bodies, ceiling installations and/or wall installations.
In particular, for built-in installations (
Said type of installation, which also has a protective film 29 placed between the cover body 23 and the printed circuit board 20, is able to generate a symmetrical distribution of light, so that the illuminated area on the floor has a square shape (
Alternatively, it is possible to provide installations of the lighting fixture 10 which is fixed to a ceiling at 3 meters from the floor and equipped with so-called “Lungaluce” lenses 25, which generate an asymmetric distribution of light, so that the illuminated area on the floor has a rectangular shape (
In these configurations, the lighting fixture 10 is mounted on the metal frame 22 of the bracket 24 and the metal frame 22 is used, together with a pair of springs 28, to secure the polycarbonate body 23 against panels of plaster ceilings, while the cover body 23 can be made according to two different geometric types, one of them which is used for the two versions with symmetrical distribution of light and the other which is used for the version with asymmetric distribution of light.
The enclosed
For ceiling and/or wall installations, it is possible to provide, in a similar way to what has been described above, installations of the lighting fixture 10 at 7 meters from the floor, with a symmetrical distribution of light and a squared area which is illuminated at floor (
In the latter case, the lens 26 may have an outer satin surface.
In the above configurations, the lighting fixture 10 is mounted inside a metal box 15, where there are the power supply electronic devices 16, while the cover body 23 can be made in two different geometric types, one of them used for the two versions with symmetrical distribution of light and the other used for the version with asymmetric distribution of light.
In particular, the so-called “Altaluce”-type lens 27 (which is shown in detail in the enclosed
According to this application, the illuminated surface (equal to 12.5 m×12.5 m) satisfies the national and international rules of anti-panic (UNI EN 1838) for installations of the lighting fixture 10 at 7 meters from the floor.
The graph of the radiant intensity is shown in the enclosed
Moreover, the so-called “Largaluce”-type lens 26 (shown in detail in the enclosed
According to this application, the illuminated surface (equal to 11.5 m×11.5 m) satisfies the national and international rules of anti-panic (UNI EN 1838) for installation of the lighting fixture at 3 meters from the floor.
The graph of the radiant intensity is shown in the enclosed
Finally, the so-called “Lungaluce” type lens 25 (which is shown in detail in the enclosed
According to this application, the illuminated surface (which has to be 17 meter length with a light source at 3 meters from the floor, according to the national and international rules of emergency lighting) satisfies the rules for emergency escape routes which are 2 meters wide (according to the UNI EN 1838 rule) for installations of the lighting fixture 10 at 3 meters from the floor.
The graph of the radiant intensity is shown in the enclosed
Using each of the lenses 25, 26 and 27 (as an alternative to each other), with a geometric profile as detailed above, in order to direct appropriately the light beam, it is possible to made an emergency lighting device which is suitable for the main installation apparatus and which allows to obtain a uniform illumination on rectangular or square surfaces. In these cases the lens surfaces 25, 26 and 27 have a glossy surface, while in case the “Largaluce” lens 26 is used and if the lens 26 is made with a satin surface (a so-called “Diffusaluce” lens), said lens 26 is also suitable for wall installations.
From the above description the features, as well as the advantages, of the lighting fixture with photometric controlled emission, which is the object of the invention, are extremely clear.
In particular, said advantages are:
It is clear that many other variations may be made to the lighting fixture of the invention, without leaving the new principles of the invention, as well as it is clear that, in the practical implementation of the invention, the materials, forms and size of the details shown may be any according to requirements and they can be replaced with other technically equivalent.
In particular, the lighting fixture of the invention can be applied to walls or ceilings, also with a light beam orientation on both the longitudinal and transverse plane; the fixture is also suitable for installation in suspended or electrified rail, thanks to the high level of illumination which can be obtained at floor even from remarkable heights.
Number | Date | Country | Kind |
---|---|---|---|
VI2011A000038 | Mar 2011 | IT | national |