Lighting module for recessed lighting systems

Information

  • Patent Grant
  • 10591120
  • Patent Number
    10,591,120
  • Date Filed
    Friday, May 27, 2016
    8 years ago
  • Date Issued
    Tuesday, March 17, 2020
    4 years ago
Abstract
A housing has a sidewall that surrounds an interior cavity that has an open rear end and an open front end, and is divided by a partition into a top cavity and a bottom cavity. The top cavity extends to the open rear end, the bottom cavity extends to the open front end. A power supply circuit board is inside the top cavity, while a light source is inside the bottom cavity and emits light through the open front end to illuminate a room. First wires pass through an opening in the partition, and are coupled to the power supply circuit board at one end and to the light source at another end, to deliver power to the light source. A lid or cover covers the open rear end enclosing the top cavity, and is secured to the housing. Other embodiments are also described and claimed.
Description

An embodiment of the invention relates to a recessed lighting system with improved packaging of power supply circuitry, light source, and optics. Other embodiments are also described.


BACKGROUND

Recessed lighting fixtures are typically installed or mounted into an opening in a ceiling or a wall. Modern recessed lighting fixtures generally consist of a trim, an LED-based light source module, an electronic power supply or driver circuit, and a legacy incandescent “can” in which the light source module and driver circuit are housed. The can and a junction box are mounted to a frame or platform, which in turn is attached to the internal structural member that is behind the wall, via hangar bars.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one. Also, in the interest of conciseness and reducing the total number of figures, a given figure may be used to illustrate the features of more than one embodiment of the invention, and not all elements in the figure may be required for a given embodiment.



FIG. 1 shows an exploded view of a lighting module for recessed lighting systems, according to one embodiment of the invention.



FIG. 2 shows a side cross-section view of the embodiment if FIG. 1.



FIG. 3 shows a perspective view of the embodiment of FIG. 1.



FIG. 4 shows the lighting module installed as part of an example recessed lighting system.



FIG. 5 is an exploded view of a lighting module in accordance with another embodiment.





DETAILED DESCRIPTION

Several embodiments are described with reference to the appended drawings. While numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known circuits, structures, and techniques have not been shown in detail so as not to obscure the understanding of this description.


An embodiment of the recessed lighting system described here is shown in a section view in FIG. 4. The system serves to illuminate a room, and is located behind a ceiling or a wall 31 of the room. The system has a lighting module whose housing 2 has been installed, for this particular example only, within a junction box 34 that is secured to joists of the building, behind the wall 31, by a pair of hanger bars 37a, 37b. Electrical wires 13 that are behind the wall 31 serve to bring mains electricity power into the housing 2 of the lighting module, through the rear end of the housing 2. In this example, the wires 13 are routed through a knockout 33 of the junction box 34. The recessed lighting system in this example also includes a trim 35 that is affixed to front end of the housing 2 of the lighting module. The trim 35 covers the exposed edge of the ceiling or wall 31 where an opening is formed for light to emerge from the front end of the housing 2. Other applications of the lighting module include its installation within a legacy incandescent can or other enclosure, and the use of attachment mechanisms other than the hanger bars 37a, 37b to secure the system to other building structural members.



FIG. 1 shows an exploded view of the lighting module, in accordance with an embodiment of the invention. Not shown are the trim and the mechanism by which the recessed lighting system can be installed behind a wall or ceiling—such aspects may be entirely conventional as discussed above in connection with the example of FIG. 4, e.g. through the use of a legacy incandescent can and platform with hangar bars, or other suitable attachment mechanism. In one embodiment, the lighting module has a housing 2, a power supply circuit board 3, a light source 4, a light source holder 5, an optic 6, a retaining ring 7, a cover 8, and one or more screws 9. Not all of these components however are necessary for every embodiment of the invention, as discussed below. The housing 2 may be composed of any thermally conductive material, e.g., aluminum alloys, copper, copper-tungsten pseudoalloy, AlSiC (silicon carbide in aluminum matrix), Dymalloy (diamond in copper-silver alloy matrix), E-Material (beryllium oxide in beryllium matrix), and/or thermally conductive plastics or ceramics. The housing 2 is generally cylindrical with an open rear end and an open front end that are defined at opposite ends of a sidewall 22 that forms a closed loop as shown (surrounding an interior cavity). Note however that while FIG. 1 shows the sidewall 22 as having a circular cross-section, other shapes are possible including elliptical and polygonal. The exterior or outside surface of the sidewall 22 may include features that improve a heat sink function, such as fins 23 that may entirely surround the housing 2 as shown. These fins 23 are passive components that serve to cool the housing 2 and any nearby heat producing or heat sensitive components such as the power supply circuit board 3, the light source 4 and the optic 6. The fins 23 may be integrally formed, e.g., manufactured by being cast into the housing 2.


As also seen in the cross-section view of the module in FIG. 2, the interior cavity of the housing 2 is divided, in a longitudinal direction (up/down), into two chambers or portions, namely a rear or top cavity 11 that is directly above a front or bottom cavity 12, by a partition 10 that extends in a lateral direction (left/right) joining a left portion of the sidewall 22 to a right portion thereof. The top cavity 11 extends to the open rear end, while the bottom cavity extends to the open front end of the housing 2. Inside the top cavity 11 there is a power supply circuit board 3 that has an input, which is connected to a number of electrical wires 13 (e.g., at least a pair) which emerge from the housing 2 and serve to deliver mains electricity power. The wires 13 serve to deliver mains electricity power, for example 120V/240 VAC power, to the power supply input of the power supply circuit board 3. The power supply circuit board 3 also has a power supply output. A number of electrical wires 16 (e.g., at least a pair) are connected at one end to the power supply output, and at another other end to the light source 4, and in between those ends the wires 16 are routed through an opening (not shown) in the partition 10.


In one embodiment, once the power supply circuit board 3 is positioned inside the top cavity 11 through the open rear end of the housing 2, the cover 8 may be placed on top of the sidewall 22, to thereby completely enclose the top cavity 11 (with the power supply circuit board 3 inside.) The cover 8 may be a plate that is shaped to entirely cover the open rear end of the housing. In one embodiment the cover 8 is attached to the housing 2, by being directly fastened to the island 17 which may be viewed as an extension of the housing 2, as shown in FIG. 2. In that case, the cover 8 may be entirely solid except for one or more screw hole openings 28 (two are shown, only as an example) and a wire opening 14. The screws 9, respectively, are inserted through the openings 28 for securing the cover 8 to the top of the island 17 (although other fasteners or other mechanisms that serve to retain the cover 8 in the closed position as shown can be alternatively used, including an arrangement that only requires one screw for example.) The electrical wires 13 are routed through the opening 14, from one end of their connections at the power supply circuit board 3 inside the top cavity 11 to another end that is outside of the housing 2 and connected to a power source (e.g. building electrical power grid.) Also, in the case where the cover 8 is to be relied upon as a further heat sink element of the lighting module, a number fins 23 may be formed on the outside (or top) face of the cover 8 to enhance the heat sink function.


As shown in FIG. 2, the partition 10 serves as a physical barrier between a) the power supply circuit board 3 and b) the light source 4 and the optic 6. In the example shown, the partition 10 is not entirely flat or horizontal, but instead has a central portion from which the rest slopes downward as shown. In one embodiment, the partition 10 is entirely solid and completely isolates the top cavity 11 from the bottom cavity 12 except for an opening (not shown) through which the wires 16 pass (and which carry electrical power from an output of the power supply circuit board 3 to the light source 4.) This provides a fire barrier within the hole that is formed in the ceiling or wall (for the recessed lighting system), between the room and the building space between walls and ceilings, which is a typical requirement with recessed lighting systems that need to comply with building and safety codes/regulations. In addition, the partition 10 may reduce the risk of electrical shock when a user is reaching into the housing 2 through the open front end, because any conductors in the power supply circuit board 3 that carry for example 120/240 Vac are shielded against by the partition 10.


In one embodiment, the island 17 is provided to enhance the heat sink function of the lighting module and to secure the cover 8 to the housing 2. The island 17 is joined to, and protrudes or rises into the top cavity 11 from, the rear face of the partition 10 (as shown.) The island 17 may have a variety of shapes (e.g., circular cylinder, polygon cylinder, oval cylinder, etc.). In one embodiment (as shown in FIG. 1), the island 17 is a circular cylinder with a flat top, and that is received (height-wise or lengthwise) into and extends past a face-to-face opening 18 of the power supply circuit board 3. The face-to-face opening 18 may be a hole that has been cut through the opposing faces of the board 3, resulting in a structure that looks like a washer. The island 17 has one or more screw holes 19 in its top that are to be aligned with the openings 28 in the cover 8, to receive one or more screws 9 (or other fasteners), respectively, to fasten the cover 8 to the island 17. Other ways of fastening the cover 8 to the partition 10 may be possible.


In one embodiment, the island 17 may be formed integrally with the partition 10, e.g., as a single cast metal piece, and wherein the periphery of the partition 10 may be attached, e.g., bonded, to the inside surface of the sidewall 22. Alternatively, the partition 10 and the island 17 may both be integrally formed with the sidewall 22, as a single-piece housing 2 (e.g., as a single cast metal piece.) The island 17 may be located at the center of the housing 2 as shown, or at the common center axis of the housing 2 (which center axis is shared by the open rear end and by the open front end of the housing 2.) The island 17 may serve to enhance the heat sink function of the lighting module, by conducting the heat that has been generated by the power supply circuit board 3 and/or by the light source 4, through the partition 10 and then outward to the sidewall 22. In addition, in one embodiment, the island 17 is tall enough so that its top abuts the bottom face of the cover 8, so that the island 17 may perform heat transfer directly to the cover 8, e.g., through a thermal paste layer that joins or is directly sandwiched between the top (or top surface) of the island 17 and the inside (or bottom) face of the cover 8.


The power supply circuit board 3 has the needed light source driver circuit components installed thereon, that are designed to ensure that the appropriate voltage and current are fed to the light source 4 to enable the emission of light by one or more light emitting elements of the light source 4. The components of the driver circuit may be installed on both the top and bottom faces of the board 3 as shown. The driver circuit draws and converts power through the wires 13, and then supplies its output power through the wires 16, to the light source 4 (and thus powers the light source 4 to emit light.) The driver may be any type of electrical power supply circuit, including power supplies that deliver an alternating current (AC) or a direct current (DC) voltage to the light source 4. For example, the driver may drop the voltage of its input power to an acceptable, safe for a human touch level in its output power, for operating the light source 4 (e.g., from 120V-277Vac to 36Vdc-48Vdc). The output power may be delivered to the light source 4 through a removable connector, a permanent connector, or soldered leads, at the power supply circuit board 3 and on a carrier or substrate of the light source 4.


As shown in FIG. 1, the power supply circuit board 3 has a face-to-face opening 18 therein that may be entirely surrounded by the driver circuit components of the printed circuit board 3 (as opposed to being located at the edge or periphery of the board 13). In one embodiment, the opening 18 is shaped and sized so that when the island 17 is passed through it, the fit between the side surface of the island 17 and the inner edge of the board 13 along the opening 18 prevents the board 3 from moving laterally (left/right), inside the housing 2, to thereby prevent the outer edge of the board (along the periphery) from touching the inside surface of the sidewall 22.


In one embodiment, where the cover 8 is to be used to close off the open rear end of the housing 2, at least two electrically insulating spacers (not shown) may be mounted to the top face of the power supply circuit board 3. Another two or more electrically insulating spacers (not shown) may be mounted to the bottom face of the board 3. The cover 8 can then be installed over the open rear end and secured to housing 2, resulting in the spacers being compressed between the partition 10 at one end and the cover 8 at another end, which fixes the height position (in the up/down direction) of the board 3 within the upper cavity 11 of the housing 2, at a desired height between the partition 10 and the cover 8.


Another embodiment of the lighting module is shown in the exploded view of FIG. 5 in which all of the elements shown may be similar to those in FIG. 1 and in FIG. 2, except for the addition of a cup 41. In this embodiment, there may be a gap between the side surface or sidewall of the island 17 and the inner edge of the power supply circuit board 13 that defines the opening 18 which could allow the board 3 to move around inside the housing so as to possibly touch the sidewall 22, the partition 10, or the cover 8 (if the latter is being used.) The cup 41 is provided to limit such movement of the board 3, both longitudinally (up/down) as well as laterally (left/right or sideways.) The cup 41 may be made of an electrically insulating material, such as plastic or polycarbonate, which may serve to insulate the board 3 from the housing 2 and the cover 8, especially when the latter are made of a conductive material such as a metal (e.g., as a cast, aluminum piece.) The outside height of the cup 41 may be less than the height of the sidewall 22 that is between the top surface of the partition 10 and the top of the sidewall 22, so that the cup 41 can fit entirely inside the upper cavity 11 of the housing 2 (in the orientation shown.) The inside width of the cup 41 may be the same as or slightly greater than the outer width of the board 3, so as to allow the board 3 to be inserted into the cup 41 through its mouth (in the orientation shown in FIG. 5.) At least two separate openings may be formed in the base of the cup 41, namely one through which the wires 13 are passed, and another opening 42 that is large enough for the island 17 to be inserted therein (in the height direction as shown.) For example, the opening 42 may have the same shape and be about the same size as the opening 18 in the board 3. The opening 42 is located in the base of the cup 41 so that when the board 3 is inserted into the cup 41 the opening 18 of the board 3 is aligned with the opening 42.


The wall of the cup 41 has a snap lock (or snap fit) mechanism formed therein, to retain the board 3 in position. For example, at least two flaps 44 may be formed in the wall and that are positioned in the same plane but at different radial positions about the center longitudinal axis of the cup 41. As an example, each flap 44 may be formed as a partial, generally rectangular or square cut out portion of the wall such that the flap 44 remains connected with the wall on one of its sides while its other three sides are not. The flap 44 as formed is angled inward, i.e. towards the center longitudinal axis of the cup. As the board 3 is inserted into the cup (in the orientation shown), its top face at its outer periphery pushes against and pivots the flap 44 outward until the outer periphery clears the flap 44, at which point the flap 44 “pops” back (inward) and over the bottom face of the board 3. The flap 44 then stays in that inward position, by virtue of being made of a semi-rigid material for example, thereby holding the board 3 fixed in the height direction (up/down direction) between the flap 44 and the base of the cup 41. The cup 41 with the board 3 held therein is then inserted “upside down” into the upper cavity 11, in the orientation shown, through the open rear end of the housing 2, until for example the brim of the cup 41 lands on the top face of the partition 10. In one embodiment, the flaps 44 are positioned at a height such that the tallest electronic circuit components that are mounted onto the bottom face of the board 3 do not touch the top face of the partition 10, when the cup 41 has been inserted into the housing 2 to the full extent. In one embodiment, the height of the cup 41 may be defined so that when the brim of the cup is resting against the partition 10, the outside of the base of the cup is only slightly below the top of the island 17. This allows the cover 8 to then be placed into position covering the open rear end of the housing 2, with the bottom face of the cover 8 being joined to the top of the island 17 (e.g., through a layer of thermal paste) to promote heat transfer between the island 17 and the cover 8, and then secured in that position by installing the screw 9 (through the cover 8 and into its corresponding hole 19 in the island 7.)


In yet another embodiment, the island 17 is not provided. In that case, to secure the cover 8 to the housing 2, a snap lock mechanism, a thread type, or a twist and lock mechanism may be provided on the sidewall 22 of the housing 2 (while a complementary portion is provided on the cover 8.) In that case, the cup 41 (which serves as an insulator and holder for the board 3) would not need to have the opening 42 in it. Also, the power supply circuit board 3 would not have to have the opening 18 in it. The board 3 could still be held inside the cup 41 in the manner described above (e.g., using the flaps 44), and the cup 41 could still be held by compression between the cover 8 and the partition 10. In that case, centering of the board 3 inside the upper cavity 11 would depend on centering the cup 41, by for example making the cup 41 to have just the right width to fit inside the upper cavity 11 while lightly abutting the inside surface of the sidewall 22.


Assembly of the lighting module (as shown in FIG. 1 or in FIG. 5) may continue with inserting the light source 4 into the bottom cavity 12, through the open front end of the housing 2. The light source 4 may be composed of a carrier or substrate on the bottom face of which one or more light emitting devices are installed. The light emitting devices may be any electro-optical device, or combination of different electro-optical devices, for emitting visible light to illuminate a room, whose required voltage levels are “safe” even if any of their exposed terminals come into incidental contact with a human. For example, the light emitting devices may be “low voltage” light emitting diode (LED) elements, e.g., LED devices, organic LED (OLED) devices, and polymer LED (PLED) devices. In some embodiments, the light source 4 may have multiple LED elements connected in series, yet is still deemed a low voltage LED-based light source. The light source 4 receives electricity from the board 13, as described above, such that the light source 4 may emit a controlled beam of light into a room or surrounding area. The driver circuitry (in the power supply circuit board 3) is designed to ensure that the appropriate voltage and current are fed to the light source 4. In one embodiment, light emitted by the light source 4 through the open front end of the housing, to illuminate a room, is produced only by light emitting diode (LED) elements of the light source 4 that require input power at less than 50 Volts.


The light source 4 may be attached to the partition 10 by being held or captured between a light source holder 5 and a portion of the bottom face of the partition 10, which portion may be directly underneath the island 17 as shown. An indented region may be formed on the back face of the holder 5, as best seen in FIG. 1, into which the light source 4 is fitted as shown, so as to limit the compression forces that may be imparted on the carrier of the light source 4 (as it is sandwiched between the holder 5 and the bottom face of the partition 10.) A layer of thermal paste may be applied directly to the portion of the bottom face of the partition 10 or to the top face of the carrier of the light source 4, so as to enhance heat transfer from the light source 4 to the island 17. The light source holder 5 may be affixed to the partition 10 using screws or other fasteners, a snap lock mechanism, a twist and lock mechanism, or glue. In the example shown here, screws can be inserted through the two holes 26 in the holder 5 which are aligned with the two holes 20, respectively, in the partition 10. The light source holder 5 has an opening 21 that is positioned inward of the holes 26, and through which light from the emitting devices will emerge (and then enter the room through the optic 6 that is secured to the housing 2 in front of the holder 5.) The light source holder 5 may also have an open portion (that may be shared with the opening 21) through which the proximal ends of the wires 16 can be electrically connected (e.g., soldered) to electrical terminals that are exposed on the bottom face of the carrier of the light source 4. The carrier has wire traces (not shown) that route electrical power from the terminals to the one or more light emitting devices that are installed on the bottom face of the carrier. The distal ends of the wires 16 are electrically connected to the outputs of the power supply circuit board 3. There may be an opening (not shown) in the partition 10 through which the electrical wires 16 are led, from their electrical connection at the light source 4 (in the bottom cavity 12 of the housing 2), to their electrical connection at the power supply circuit board 3 that is in the top cavity 11.


The housing 2 also has a flange or lip 24 that may extend laterally outward from the sidewall 22 and surrounds the open front end of the housing 2 as shown. The lip 24 includes features that serve to couple the housing 2 to a trim (not shown), especially via a twist and lock mechanism that does not require the use of separate tools or other devices. The trim may have features that that are complementary to the features of the lip 24 shown in FIG. 2, that form the twist and lock mechanism. The twist and lock mechanism features may include a groove or slot 29 on the lip 24 of the housing 2, which is designed to produce a friction fit against corresponding or mating structures of the trim, to create a twist-and-lock friction connection. In other embodiments, however, the trim may be coupled to the housing 2 using a resin (a permanent attachment), clips, screws, bolts, or clamps. In one embodiment, different diameter trims may be capable of being coupled to the housing 2. The size and design of the trims may depend on the size of the ceiling or wall hole behind which the recessed lighting system is to be fitted, to conceal the exposed wall or ceiling edge that defines the hole. The recessed lighting system may include two or more trims of different sizes to cover ceiling or wall openings of different sizes. The trim may need to meet the aesthetic demands of the consumer. The trim may be made of aluminum plastic polymers, alloys, copper, copper-tungsten pseudoalloy, AlSiC (silicon carbide in aluminum matrix), Dymalloy (diamond in copper-silver alloy matrix), and E-Material (beryllium oxide in beryllium matrix).


Still referring to the housing 2, the lip 24 of the housing 2 may also have one or more fastener openings 25 formed therein that allow the housing 2 to be attached to a junction box (e.g., an octagonal junction box) or another suitable enclosure, using screws or other suitable fasteners. The top end of the housing 2 (where the cover 8 has been attached) may be inserted into the junction box while the one or more openings 25 of the lip 24 are aligned with corresponding screw holes of the junction box, and then screws can be inserted into the openings 25 and screw holes of the junction box to fasten the housing 2 to the junction box.


As shown in FIG. 1, the recessed lighting system may include an optic 6 that is positioned in the optical path of the emitted light from the light source 4, and may adjust the way light emitted by the light source 4 is directed into or focused inside the room in which the system is installed. In one embodiment, the optic 6 may be a separate piece, i.e., separate from the housing 2 and separate from a retaining ring 7 which is used to attached the optic 6 to the housing 2 (as described further below.) The optic 6 includes a reflector portion as shown, that has a closed, curved surface which is ring-like or annular, with a central opening that is aligned with the light source 4. The rear face of the reflector portion along its inner periphery may abut the bottom (or front) face of the light source holder 5. The reflector portion may be formed of any fire retardant material, including steel, aluminum, metal alloy, calcium silicate, or other similar materials. The reflector portion may be formed to redirect the emitted light and can have any shape that serves this purpose. For example, the shortest path along the closed, curved surface of the reflector portion between its inner periphery (that defines the central opening) and its outer periphery may be a straight line or it may be a curved line (e.g., a elliptic curve, a parabolic curve, circular curve. The front surface of the reflector portion (facing the room) which lies between the inner and outer peripheries may be coated with a reflective material or include one or more reflecting elements that assist in the adjustment of light emitted by the light source 4. For example, the reflective portion may be coated with a shiny enamel or include one or more mirrors or retroreflectors or a microcellular polyethylene terephthalate (MCPET) material to adjust the path of the light emitted by the light source 4.


In one embodiment, a lens/filter 27 which may be a lens only, a filter only, or a combination of the two, is attached to the outer periphery of the reflector portion—see also FIG. 3. The lens/filter 27 may serve as a protective barrier for the light source 4, and may shield the light source 4 from moisture or inclement weather. The lens/filter 27 also adjusts the emitted light that illuminates the room, via focusing and/or diffusion for example. The lens/filter 27 may be made of any at least partially transparent material, including glass and hard plastics. The reflector portion and the attached lens/filter 27 may form a single, indivisible unit of the optic 6. In one embodiment, the optic 6 may be interchangeable so that an adjustable light spread can be had in the field, by detaching the retaining ring 7 and then replacing the optic 6 with a different one. Different instances of the optic 6 may be produced, where each instance has a different combination of the lens/filter 27 and the reflector portion, so as to change the spread, angle, or other optical characteristics associated with the optic 6. The optic 6 may also have adjustable alignment features in which the orientation or position of the reflector portion or the lens/filter 27 can be changed in the field.


As shown in FIG. 1 and in FIG. 2 (and also in FIG. 5), the retaining ring 7 is attached to the housing 2, at the open front end of the housing 2, so as to hold or retain the optic 6 within the bottom cavity 12 of the housing 2. The mechanism for attaching the retaining ring 7 to the housing may be a twist and lock mechanism, with complementary features of the twist and lock mechanism being formed on a) the outside of the ring 7, such as a boss 30 as shown in FIG. 1, and b) the portion of the inside surface of the housing 2 that is next to the extended lip portion 24, as best seen in FIG. 2. In this manner, the ring 7, and thus the optic 6, may be installed into and removed from the housing 2 without requiring any tools. In one embodiment, where otherwise the optic 6 might, in one embodiment, fall out of the housing 2 due to gravity alone).


While certain embodiments of the lighting module have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. The description is thus to be regarded as illustrative instead of limiting.

Claims
  • 1. A lighting module for a recessed lighting system, the lighting module comprising: a housing having a sidewall, the sidewall surrounding an interior cavity of the housing that has an open rear end and an open front end, wherein the interior cavity is divided by a partition into a top interior cavity and a bottom interior cavity, the top interior cavity extending to the open rear end, the bottom interior cavity extending to the open front end;a power supply circuit board positioned inside the top interior cavity of the housing;a light source positioned inside the bottom interior cavity of the housing to emit light through the open front end of the housing that illuminates a room;a first plurality of wires that passes through an opening in the partition, wherein the first plurality of wires is coupled to the power supply circuit board at one end and to the light source at another end, to deliver power to the light source;a cover that covers the open rear end enclosing the top interior cavity, and is secured to the housing; andan optic position inside of the bottom cavity of the housing, the optic having a reflector portion,wherein the open rear end is sufficiently large so as to allow the power supply circuit board to be placed into and/or removed from the top interior cavity through the open rear end.
  • 2. A lighting module for a recessed lighting system, the lighting module comprising: a housing having a sidewall, the sidewall surrounding an interior cavity of the housing that has an open rear end and an open front end, wherein the interior cavity is divided by a partition into a top cavity and a bottom cavity, the top cavity extending to the open rear end, the bottom cavity extending to the open front end;a power supply circuit board positioned inside the top cavity of the housing;a light source positioned inside the bottom cavity of the housing to emit light through the open front end of the housing that illuminates a room;a first plurality of wires that passes through an opening in the partition, wherein the first plurality of wires is coupled to the power supply circuit board at one end and to the light source at another end, to deliver power to the light source;a cover that covers the open rear end enclosing the top cavity, and is secured to the housing; andan island extending from the partition into the top cavity of the housing, wherein the power supply circuit board has a face to face opening therein in which the island is positioned.
  • 3. The lighting module of claim 2 wherein a top of the island abuts a bottom face of the cover and the cover is held in that condition by a fastener that is secured to the top of the island.
  • 4. The lighting module of claim 3 further comprising a layer of thermal paste sandwiched directly between the bottom face of the cover and the top of the island.
  • 5. The lighting module of claim 1 further comprising a cup in which the power supply circuit board is held, wherein the cup is positioned upside down within the top interior cavity of the housing so that a base of the cup is at the top of the sidewall and a brim of the cup is at the partition.
  • 6. The lighting module of claim 1 wherein the cover has an opening formed therein through which a second plurality of wires emerges from the housing and that are connected to an input of the power supply circuit board inside the housing, wherein the second plurality of wires delivers main electricity power to the input of the power supply circuit board.
  • 7. The lighting module of claim 1 wherein the light source comprises a carrier having i) a top face that abuts a bottom face of the partition and ii) a bottom face on which there are a plurality light emitting diode (LED) elements, wherein the bottom face of the carrier has a plurality of electrical terminals to which the first plurality of wires is coupled, wherein the carrier routes electrical power from the terminals to the LED elements.
  • 8. The lighting module of claim 1 wherein: the reflector portion of the optic includes i) an inner periphery that defines a central opening which is aligned with the light source and through which the emitted light passes, and ii) an outer periphery;the optic further includes a lens/filter that is attached to the outer periphery of the reflector portion; andthe lighting module further comprises a retaining ring attached to the housing at the open front end so as to hold or retain the optic within the bottom cavity.
  • 9. The lighting module of claim 8 wherein the reflector portion and the attached lens/filter form a single, indivisible unit of the optic.
  • 10. The lighting module of claim 1 wherein the housing further comprises a lip that extends laterally outward from the sidewall of the housing and surrounds the open front end of the housing, wherein the lip comprises a twist and lock mechanism to couple the housing to a trim.
  • 11. The lighting module of claim 10 wherein the lip has an opening formed therein to receive a fastener for attaching the lighting module to a junction box or to another enclosure in which the lighting module has been inserted.
  • 12. A lighting module for a recessed lighting system, the lighting module comprising: a housing having a sidewall, the sidewall surrounding an interior cavity of the housing that has an open rear end and an open front end, wherein the interior cavity is divided by a partition into a top interior cavity and a bottom interior cavity, the top interior cavity extending to the open rear end, the bottom interior cavity extending to the open front end;a power supply circuit board positioned inside the top interior cavity of the housing;a light source positioned inside the bottom interior cavity of the housing, wherein light emitted by the light source through the open front end of the housing, to illuminate a room, is produced only by a plurality of light emitting diode (LED) elements of the light source that require input power at less than 50 Volts; anda first plurality of wires that passes through an opening in the partition, wherein the first plurality of wires is coupled to the power supply circuit board at one end and to the light source at another end, to deliver the input power at less than 50 Volts to the light source,wherein the open rear end is sufficiently large so as to allow the power supply circuit board to be placed into and/or removed from the top interior cavity through the open rear end.
  • 13. The lighting module of claim 12 wherein the partition is entirely solid and completely isolates the top cavity from the bottom cavity except for said opening through which the first plurality of wires passes.
  • 14. The lighting module of claim 12 further comprising a second plurality of wires that at one end is connected to an input of the power supply circuit board inside the housing, wherein the second plurality of wires delivers main electricity power to the input of the power supply circuit board.
  • 15. The lighting module of claim 14 further comprising a cover that covers the open rear end and encloses the top interior cavity, and is secured to the housing by a fastener, wherein the cover has an opening formed therein through which the second plurality of wires emerges from the housing.
  • 16. The lighting module of claim 12 wherein the light source comprises a carrier having i) a top face that abuts a bottom face of the partition and ii) a bottom face on which are installed a plurality light emitting diode (LED) elements that emit the light to illuminate the room, wherein the bottom face of the carrier has a plurality of electrical terminals to which the first plurality of wires is coupled, wherein the carrier routes electrical power from the terminals to the plurality of LED elements.
  • 17. The lighting module of claim 12 further comprising: an optic positioned inside of the bottom cavity of the housing, wherein the optic has a) a reflector portion having i) an inner periphery that defines a central opening which is aligned with the light source and through which the emitted light passes, and ii) an outer periphery, and b) a lens/filter that is attached to the outer periphery of the reflector portion; anda retaining ring attached to the housing at the open front end so as to hold or retain the optic within the bottom cavity, and wherein the retaining ring can be removed from the housing and reinstalled without any tool.
  • 18. The lighting module of claim 17 wherein the reflector portion and the attached lens/filter form a single, indivisible unit of the optic.
  • 19. A lighting module for a recessed lighting system, the lighting module comprising: a housing having a sidewall, the sidewall surrounding an interior cavity of the housing that has an open rear end and an open front end, wherein the interior cavity is divided by a partition into a top cavity and a bottom cavity, the top cavity extending to the open rear end, the bottom cavity extending to the open front end;a power supply circuit board positioned inside the top cavity of the housing;a light source positioned inside the bottom cavity of the housing, wherein light emitted by the light source through the open front end of the housing, to illuminate a room, is produced only by a plurality of light emitting diode (LED) elements of the light source that require input power at less than 50 Volts;a first plurality of wires that passes through an opening in the partition, wherein the first plurality of wires is coupled to the power supply circuit board at one end and to the light source at another end, to deliver the input power at less than 50 Volts to the light source; andan island extending from the partition into the top cavity of the housing, wherein the power supply circuit board has a face to face opening therein in which the island is positioned.
  • 20. The lighting module of claim 19 further comprising a cover that covers the open rear end of the housing and encloses the top cavity, and is secured to the housing by a fastener, wherein the cover has an opening formed therein through which the second plurality of wires emerges from the housing, and wherein a top of the island abuts a bottom face of the cover and the cover is held in that condition by the fastener.
  • 21. The lighting module of claim 19 further comprising a cup in which the power supply circuit board is held, wherein the cup is positioned upside down within the top interior cavity of the housing so that a base of the cup is at the top of the sidewall and a brim of the cup is at the partition.
  • 22. The lighting module of claim 21 further comprising a cover that covers the open rear end of the housing and encloses the top interior cavity and is secured to the housing by a fastener, wherein the base of the cup has an opening therein through which a top of the island abuts a bottom face of the cover and the cover is held in that condition by the fastener being secured to the top of the island.
  • 23. The lighting module of claim 1, wherein the partition and the sidewall are integrally formed as a single cast metal piece.
  • 24. The lighting module of claim 12, wherein the partition and the sidewall are integrally formed as a single cast metal piece.
Parent Case Info

This application claims the benefit of the earlier filing date of U.S. Provisional Patent Application No. 62/168,510, filed May 29, 2015.

US Referenced Citations (507)
Number Name Date Kind
1471340 Knight Oct 1923 A
2038784 Ghadiali Apr 1936 A
2197737 Appleton Apr 1940 A
2528989 Ammells Nov 1950 A
2642246 Larry Jun 1953 A
D180844 Poliakoff Aug 1957 S
3023920 Cook et al. Mar 1962 A
3422261 McGinty Jan 1969 A
3460299 Wilson Aug 1969 A
3650046 Skinner Mar 1972 A
3711053 Drake Jan 1973 A
D227989 Geisel Jul 1973 S
3812342 Mcnamara May 1974 A
D245905 Taylor Sep 1977 S
4088827 Kohaut May 1978 A
4176758 Glick Dec 1979 A
4399497 Druffel Aug 1983 A
4520435 Baldwin May 1985 A
4601145 Wilcox Jul 1986 A
4723747 Karp et al. Feb 1988 A
4729080 Fremont et al. Mar 1988 A
4754377 Wenman Jun 1988 A
4930054 Krebs May 1990 A
5216203 Gower Jun 1993 A
5239132 Bartow Aug 1993 A
5250269 Langer et al. Oct 1993 A
5266050 O'Neil et al. Nov 1993 A
5382752 Reyhan et al. Jan 1995 A
5465199 Bray et al. Nov 1995 A
5505419 Gabrius Apr 1996 A
5544870 Kelley et al. Aug 1996 A
5562343 Chan et al. Oct 1996 A
5571993 Jones et al. Nov 1996 A
5580158 Aubrey et al. Dec 1996 A
5588737 Kusmer Dec 1996 A
5603424 Bordwell et al. Feb 1997 A
5613338 Esposito Mar 1997 A
D381111 Lecluze Jul 1997 S
5662413 Akiyama Sep 1997 A
D386277 Lecluze Nov 1997 S
D387466 Lecluze Dec 1997 S
5738436 Cummings et al. Apr 1998 A
5836678 Wright et al. Nov 1998 A
5942726 Reiker Aug 1999 A
5944412 Janos et al. Sep 1999 A
6082878 Doubek et al. Jul 2000 A
6105334 Monson et al. Aug 2000 A
6161910 Reisenauer et al. Dec 2000 A
6170685 Currier Jan 2001 B1
6174076 Petrakis et al. Jan 2001 B1
6176599 Farzen Jan 2001 B1
6267491 Parrigin Jul 2001 B1
6332597 Korcz et al. Dec 2001 B1
6350043 Gloisten Feb 2002 B1
6364511 Cohen Apr 2002 B1
6402112 Thomas et al. Jun 2002 B1
D461455 Forbes Aug 2002 S
6461016 Jamison et al. Oct 2002 B1
6474846 Kelmelis et al. Nov 2002 B1
6491413 Benesohn Dec 2002 B1
D468697 Straub, Jr. Jan 2003 S
6515313 Ibbetson et al. Feb 2003 B1
6583573 Bierman Jun 2003 B2
6585389 Bonazzi Jul 2003 B2
6600175 Baretz et al. Jul 2003 B1
D478872 Heggem Aug 2003 S
6657236 Thibeault et al. Dec 2003 B1
6666419 Vrame Dec 2003 B1
D488583 Benghozi Apr 2004 S
6719438 Sevack et al. Apr 2004 B2
6758578 Chou Jul 2004 B1
6777615 Gretz Aug 2004 B1
6827229 Dinh et al. Dec 2004 B2
6906352 Edmond et al. Jun 2005 B2
D509314 Rashidi Sep 2005 S
6948829 Verdes et al. Sep 2005 B2
6958497 Emerson et al. Oct 2005 B2
6964501 Ryan Nov 2005 B2
D516235 Rashidi Feb 2006 S
7064269 Smith Jun 2006 B2
D528673 Maxik et al. Sep 2006 S
D531740 Maxik Nov 2006 S
D532532 Maxik Nov 2006 S
7148420 Johnson et al. Dec 2006 B1
7154040 Tompkins Dec 2006 B1
7170015 Roesch et al. Jan 2007 B1
D536349 Humber et al. Feb 2007 S
D537039 Pincek Feb 2007 S
D539229 Murphey Mar 2007 S
7186008 Patti Mar 2007 B2
7190126 Paton Mar 2007 B1
7211833 Slater, Jr. et al. May 2007 B2
7213940 Van De Ven et al. May 2007 B1
D547889 Huang Jul 2007 S
D552969 Bobrowski et al. Oct 2007 S
D553267 Yuen Oct 2007 S
D555106 Pape et al. Nov 2007 S
D556144 Dinh Nov 2007 S
7297870 Sartini Nov 2007 B1
7312474 Emerson et al. Dec 2007 B2
7320536 Petrakis et al. Jan 2008 B2
D561372 Yan Feb 2008 S
D561373 Yan Feb 2008 S
7335920 Denbaars et al. Feb 2008 B2
D563896 Greenslate Mar 2008 S
7347580 Blackman et al. Mar 2008 B2
D570012 Huang May 2008 S
7374308 Sevack et al. May 2008 B2
D570504 Maxik et al. Jun 2008 S
D570505 Maxik et al. Jun 2008 S
7399104 Rappaport Jul 2008 B2
D578677 Huang Oct 2008 S
7431482 Morgan et al. Oct 2008 B1
7432440 Hull et al. Oct 2008 B2
7442883 Jolly et al. Oct 2008 B2
7446345 Emerson et al. Nov 2008 B2
7473005 O'Brien Jan 2009 B2
7488097 Reisenauer et al. Feb 2009 B2
7503145 Newbold et al. Mar 2009 B2
7524089 Park Apr 2009 B2
D591894 Flank May 2009 S
7534989 Suehara et al. May 2009 B2
D596154 Rivkin Jul 2009 S
7566154 Gloisten et al. Jul 2009 B2
D599040 Alexander et al. Aug 2009 S
D600836 Hanley et al. Sep 2009 S
7588359 Coushaine et al. Sep 2009 B2
7592583 Page et al. Sep 2009 B2
D606696 Chen et al. Dec 2009 S
7625105 Johnson Dec 2009 B1
7628513 Chiu Dec 2009 B2
7651238 O'Brien Jan 2010 B2
7654705 Czech et al. Feb 2010 B2
D611650 Broekhoff Mar 2010 S
7670021 Chou Mar 2010 B2
7673841 Wronski Mar 2010 B2
7677766 Boyer Mar 2010 B2
7692182 Bergmann et al. Apr 2010 B2
7704763 Fujii et al. Apr 2010 B2
D616118 Thomas et al. May 2010 S
7722208 Dupre et al. May 2010 B1
7722227 Zhang et al. May 2010 B2
7735795 Wronski Jun 2010 B2
7735798 Kojima Jun 2010 B2
7748887 Zampini, II et al. Jul 2010 B2
7766518 Piepgras et al. Aug 2010 B2
7769192 Takagi et al. Aug 2010 B2
7771082 Peng Aug 2010 B2
7771094 Goode Aug 2010 B2
D624692 Mackin et al. Sep 2010 S
D625847 Maglica Oct 2010 S
D625876 Chen et al. Oct 2010 S
D627727 Alexander et al. Nov 2010 S
D629366 Ericson et al. Dec 2010 S
7871184 Peng Jan 2011 B2
7874539 Wright et al. Jan 2011 B2
7874709 Beadle Jan 2011 B1
D633224 Lee Feb 2011 S
D636903 Torenbeek Apr 2011 S
D637339 Hasan et al. May 2011 S
D637340 Hasan et al. May 2011 S
7950832 Tanaka et al. May 2011 B2
D639499 Choi et al. Jun 2011 S
D640819 Pan Jun 2011 S
7959332 Tickner et al. Jun 2011 B2
7967480 Pickard et al. Jun 2011 B2
D642317 Rashidi Jul 2011 S
7972035 Boyer Jul 2011 B2
7972043 Schutte Jul 2011 B2
D642536 Robinson Aug 2011 S
D643970 Kim et al. Aug 2011 S
D646011 Rashidi Sep 2011 S
8013243 Korcz et al. Sep 2011 B2
8038113 Fryzek et al. Oct 2011 B2
D648476 Choi et al. Nov 2011 S
D648477 Kim et al. Nov 2011 S
D650115 Kim et al. Dec 2011 S
8070328 Knoble et al. Dec 2011 B1
8096670 Trott et al. Jan 2012 B2
D654205 Rashidi Feb 2012 S
D656263 Ogawa et al. Mar 2012 S
8142057 Roos et al. Mar 2012 B2
8152334 Krogman Apr 2012 B2
D658788 Dudik et al. May 2012 S
D658802 Chen May 2012 S
D659862 Tsai May 2012 S
D659879 Rashidi May 2012 S
D660814 Wilson May 2012 S
8182116 Zhang et al. May 2012 B2
8201968 Maxik et al. Jun 2012 B2
D663058 Pan Jul 2012 S
D663466 Rashidi Jul 2012 S
D664274 de Visser et al. Jul 2012 S
D664705 Kong et al. Jul 2012 S
8215805 Cogliano et al. Jul 2012 B2
8220970 Khazi Jul 2012 B1
8226270 Yamamoto et al. Jul 2012 B2
8240630 Wronski Aug 2012 B2
D667155 Rashidi Sep 2012 S
8262255 Rashidi Sep 2012 B1
D668372 Renshaw et al. Oct 2012 S
D668809 Rashidi Oct 2012 S
D669198 Qui Oct 2012 S
D669199 Chuang Oct 2012 S
D669620 Rashidi Oct 2012 S
8277090 Fryzek et al. Oct 2012 B2
8308322 Santiago et al. Nov 2012 B2
D673869 Yu Jan 2013 S
D676263 Birke Feb 2013 S
D676814 Paul Feb 2013 S
8376593 Bazydola et al. Feb 2013 B2
D677417 Rashidi Mar 2013 S
D677634 Korcz et al. Mar 2013 S
D679047 Tickner et al. Mar 2013 S
8403533 Paulsel Mar 2013 B1
8403541 Rashidi Mar 2013 B1
D681259 Kong Apr 2013 S
8408759 Rashidi Apr 2013 B1
D682459 Gordin et al. May 2013 S
D683063 Lopez et al. May 2013 S
D683890 Lopez et al. Jun 2013 S
D684269 Wang et al. Jun 2013 S
D684719 Rashidi Jun 2013 S
D685118 Rashidi Jun 2013 S
D685120 Rashidi Jun 2013 S
8454204 Chang et al. Jun 2013 B1
D685507 Sun Jul 2013 S
D687586 Rashidi Aug 2013 S
D687587 Rashidi Aug 2013 S
D687588 Rashidi Aug 2013 S
D687980 Gravely et al. Aug 2013 S
D688405 Kim et al. Aug 2013 S
D690049 Rashidi Sep 2013 S
D690864 Rashidi Oct 2013 S
D690865 Rashidi Oct 2013 S
D690866 Rashidi Oct 2013 S
D691314 Rashidi Oct 2013 S
D691315 Samson Oct 2013 S
D691763 Hand et al. Oct 2013 S
8550669 Macwan et al. Oct 2013 B2
D693043 Schmalfuss et al. Nov 2013 S
D693517 Davis Nov 2013 S
D694456 Rowlette, Jr. et al. Nov 2013 S
8573816 Negley et al. Nov 2013 B2
D695441 Lui et al. Dec 2013 S
D696446 Huh Dec 2013 S
D696447 Huh Dec 2013 S
D696448 Huh Dec 2013 S
8602601 Khazi et al. Dec 2013 B2
D698067 Rashidi Jan 2014 S
D698068 Rashidi Jan 2014 S
8622361 Wronski Jan 2014 B2
D698985 Lopez et al. Feb 2014 S
D699384 Rashidi Feb 2014 S
D699687 Baldwin et al. Feb 2014 S
D700387 Snell Feb 2014 S
8641243 Rashidi Feb 2014 B1
8659034 Baretz et al. Feb 2014 B2
D701175 Baldwin et al. Mar 2014 S
D701466 Clifford et al. Mar 2014 S
D702867 Kim et al. Apr 2014 S
D703843 Cheng Apr 2014 S
8684569 Pickard et al. Apr 2014 B2
D705472 Huh May 2014 S
8727582 Brown et al. May 2014 B2
D708381 Rashidi Jul 2014 S
8777449 Ven et al. Jul 2014 B2
D710529 Lopez et al. Aug 2014 S
8801217 Oehle et al. Aug 2014 B2
8820985 Tam et al. Sep 2014 B1
8833013 Harman Sep 2014 B2
D714989 Rowlette, Jr. et al. Oct 2014 S
8870426 Biebl et al. Oct 2014 B2
8890414 Rowlette, Jr. et al. Nov 2014 B2
D721845 Lui et al. Jan 2015 S
8939418 Green et al. Jan 2015 B2
D722296 Taylor Feb 2015 S
D722977 Hagarty Feb 2015 S
D722978 Hagarty Feb 2015 S
8950898 Catalano Feb 2015 B2
D726363 Danesh Apr 2015 S
D726949 Redfern Apr 2015 S
9004435 Wronski Apr 2015 B2
9039254 Danesh May 2015 B2
D731689 Bernard et al. Jun 2015 S
9062866 Christ et al. Jun 2015 B1
9065264 Cooper et al. Jun 2015 B2
9068719 Van De Ven et al. Jun 2015 B2
D734525 Gordin et al. Jul 2015 S
D735012 Cowie Jul 2015 S
D735142 Hagarty Jul 2015 S
9078299 Ashdown Jul 2015 B2
D739590 Redfern Sep 2015 S
9140441 Goelz et al. Sep 2015 B2
D742325 Leung Oct 2015 S
9151457 Pickard et al. Oct 2015 B2
9151477 Pickard et al. Oct 2015 B2
9217560 Harbers et al. Dec 2015 B2
9222661 Kim et al. Dec 2015 B2
9239131 Wronski et al. Jan 2016 B1
9285103 Van De Ven et al. Mar 2016 B2
9291319 Kathawate et al. Mar 2016 B2
9301362 Dohn et al. Mar 2016 B2
D754078 Baldwin et al. Apr 2016 S
D754079 Baldwin et al. Apr 2016 S
D754605 McMillan Apr 2016 S
9303812 Green et al. Apr 2016 B2
9310038 Athalye Apr 2016 B2
9322543 Hussell et al. Apr 2016 B2
9347655 Boomgaarden et al. May 2016 B2
9366418 Gifford Jun 2016 B2
9371966 Rowlette, Jr. et al. Jun 2016 B2
D762181 Lin Jul 2016 S
9395051 Hussell et al. Jul 2016 B2
D762906 Jeswani et al. Aug 2016 S
D764079 Wu Aug 2016 S
9417506 Tirosh Aug 2016 B1
D766185 Hagarty Sep 2016 S
D767199 Wronski et al. Sep 2016 S
9447917 Wronski et al. Sep 2016 B1
D768325 Xu Oct 2016 S
D768326 Guzzini Oct 2016 S
D769501 Jeswani et al. Oct 2016 S
D770065 Tittle Oct 2016 S
9476552 Myers et al. Oct 2016 B2
D776324 Gierl et al. Jan 2017 S
D777967 Redfern Jan 2017 S
9534751 Maglica et al. Jan 2017 B2
D778241 Holbrook et al. Feb 2017 S
D778484 Guzzini Feb 2017 S
D779100 Redfern Feb 2017 S
9581302 Danesh Feb 2017 B2
9599315 Harpenau et al. Mar 2017 B1
9605910 Swedberg et al. Mar 2017 B2
D785228 Guzzini Apr 2017 S
D786472 Redfern May 2017 S
D786474 Fujisawa May 2017 S
D788330 Johnson et al. May 2017 S
D790102 Guzzini Jun 2017 S
9673597 Lee Jun 2017 B2
9689541 Wronski Jun 2017 B2
D791709 Holton Jul 2017 S
D791711 Holton Jul 2017 S
D791712 Holton Jul 2017 S
9696021 Wronski Jul 2017 B2
9702516 Vasquez et al. Jul 2017 B1
D795820 Wengreen Aug 2017 S
9732904 Wronski Aug 2017 B1
9739464 Wronski Aug 2017 B2
9791111 Huang et al. Oct 2017 B1
9803839 Visser et al. Oct 2017 B2
D805660 Creasman et al. Dec 2017 S
D809176 Partington Jan 2018 S
9863619 Mak Jan 2018 B2
D809465 Keirstead Feb 2018 S
9964266 Danesh May 2018 B2
D820494 Cohen Jun 2018 S
9995441 Power et al. Jun 2018 B2
29653142 Danesh et al. Jun 2018
D824494 Martins et al. Jul 2018 S
29664471 Danesh et al. Sep 2018
D832218 Wronski et al. Oct 2018 S
D833977 Danesh et al. Nov 2018 S
10139059 Danesh Nov 2018 B2
D836976 Reese et al. Jan 2019 S
D848375 Danesh et al. May 2019 S
20020172047 Ashley Nov 2002 A1
20030006353 Dinh et al. Jan 2003 A1
20030021104 Tsao Jan 2003 A1
20030161153 Patti Aug 2003 A1
20040001337 Defouw et al. Jan 2004 A1
20050225966 Hartmann et al. Oct 2005 A1
20050227536 Gamache et al. Oct 2005 A1
20050231962 Koba et al. Oct 2005 A1
20050237746 Yiu Oct 2005 A1
20060005988 Jorgensen Jan 2006 A1
20060158873 Newbold et al. Jul 2006 A1
20060198126 Jones Sep 2006 A1
20060215408 Lee Sep 2006 A1
20060237601 Rinderer Oct 2006 A1
20060243877 Rippel Nov 2006 A1
20060250788 Hodge et al. Nov 2006 A1
20070035951 Tseng Feb 2007 A1
20070185675 Papamichael et al. Aug 2007 A1
20070200039 Petak Aug 2007 A1
20070206374 Petrakis et al. Sep 2007 A1
20080002414 Miletich et al. Jan 2008 A1
20080112168 Pickard et al. May 2008 A1
20080112170 Trott May 2008 A1
20080112171 Patti et al. May 2008 A1
20080137347 Trott et al. Jun 2008 A1
20080165545 O'Brien Jul 2008 A1
20080232116 Kim Sep 2008 A1
20080247181 Dixon Oct 2008 A1
20090003009 Tessnow et al. Jan 2009 A1
20090034261 Grove Feb 2009 A1
20090080189 Wegner Mar 2009 A1
20090086484 Johnson Apr 2009 A1
20090135613 Peng May 2009 A1
20090141500 Peng Jun 2009 A1
20090141506 Lan et al. Jun 2009 A1
20090141508 Peng Jun 2009 A1
20090147517 Li Jun 2009 A1
20090161356 Negley et al. Jun 2009 A1
20090237924 Ladewig Sep 2009 A1
20090280695 Sekela et al. Nov 2009 A1
20090283292 Lehr Nov 2009 A1
20090290343 Brown et al. Nov 2009 A1
20100014282 Danesh Jan 2010 A1
20100061108 Zhang et al. Mar 2010 A1
20100110690 Hsu et al. May 2010 A1
20100110698 Harwood et al. May 2010 A1
20100148673 Stewart et al. Jun 2010 A1
20100149822 Cogliano et al. Jun 2010 A1
20100165643 Russo et al. Jul 2010 A1
20100244709 Steiner et al. Sep 2010 A1
20100246172 Liu Sep 2010 A1
20100259919 Khazi Oct 2010 A1
20100270903 Jao et al. Oct 2010 A1
20100284185 Ngai Nov 2010 A1
20100302778 Dabiet et al. Dec 2010 A1
20110043040 Porter et al. Feb 2011 A1
20110063831 Cook Mar 2011 A1
20110068687 Takahasi et al. Mar 2011 A1
20110069499 Trott et al. Mar 2011 A1
20110080750 Jones et al. Apr 2011 A1
20110116276 Okamura et al. May 2011 A1
20110134634 Gingrich, III et al. Jun 2011 A1
20110134651 Berman Jun 2011 A1
20110140633 Archenhold Jun 2011 A1
20110170294 Mier-Langner et al. Jul 2011 A1
20110194299 Crooks et al. Aug 2011 A1
20110216534 Tickner et al. Sep 2011 A1
20110226919 Fryzek et al. Sep 2011 A1
20110241557 Grotkowski et al. Oct 2011 A1
20110255292 Shen Oct 2011 A1
20110267828 Bazydola et al. Nov 2011 A1
20110285314 Carney et al. Nov 2011 A1
20120020104 Biebl et al. Jan 2012 A1
20120074852 Delnoij Mar 2012 A1
20120106176 Lopez et al. May 2012 A1
20120113642 Catalano May 2012 A1
20120140442 Woo et al. Jun 2012 A1
20120140490 Rowlette, Jr. Jun 2012 A1
20120162994 Wasniewski et al. Jun 2012 A1
20120182744 Santiago et al. Jul 2012 A1
20120188762 Joung et al. Jul 2012 A1
20120243237 Toda et al. Sep 2012 A1
20120287625 Macwan et al. Nov 2012 A1
20120305868 Callahan et al. Dec 2012 A1
20130009552 Page Jan 2013 A1
20130010476 Pickard et al. Jan 2013 A1
20130016864 Ivey et al. Jan 2013 A1
20130033872 Randolph et al. Feb 2013 A1
20130051012 Oehle et al. Feb 2013 A1
20130141913 Sachsenweger Jun 2013 A1
20130163254 Chang et al. Jun 2013 A1
20130170232 Park et al. Jul 2013 A1
20130170233 Nezu et al. Jul 2013 A1
20130258677 Fryzek et al. Oct 2013 A1
20130265750 Pickard et al. Oct 2013 A1
20130271989 Hussell et al. Oct 2013 A1
20130294084 Kathawate et al. Nov 2013 A1
20130301252 Hussell et al. Nov 2013 A1
20130322062 Danesh Dec 2013 A1
20130322084 Ebisawa Dec 2013 A1
20130335980 Nakasuji et al. Dec 2013 A1
20140036497 Hussell et al. Feb 2014 A1
20140049957 Goelz et al. Feb 2014 A1
20140063776 Clark et al. Mar 2014 A1
20140063818 Randolph Mar 2014 A1
20140071679 Booth Mar 2014 A1
20140071687 Tickner et al. Mar 2014 A1
20140140490 Roberts et al. May 2014 A1
20140159616 Wang et al. Jun 2014 A1
20140233246 Lafreniere et al. Aug 2014 A1
20140254177 Danesh Sep 2014 A1
20140265933 Melanson et al. Sep 2014 A1
20140268836 Thompson Sep 2014 A1
20140299730 Green et al. Oct 2014 A1
20140321122 Domagala et al. Oct 2014 A1
20140347848 Pisavadia et al. Nov 2014 A1
20150009676 Danesh Jan 2015 A1
20150029732 Hatch Jan 2015 A1
20150138779 Livesay et al. May 2015 A1
20150184837 Zhang et al. Jul 2015 A1
20150198324 O'Brien et al. Jul 2015 A1
20150219317 Gatof et al. Aug 2015 A1
20150233556 Danesh Aug 2015 A1
20150241039 Fryzek Aug 2015 A1
20150263497 Korcz et al. Sep 2015 A1
20150276185 Bailey et al. Oct 2015 A1
20150308662 Vice et al. Oct 2015 A1
20150345761 Lawlor Dec 2015 A1
20150362159 Ludyjan Dec 2015 A1
20160126860 Summerland May 2016 A1
20160209007 Belmonte et al. Jul 2016 A1
20160218626 Del Carmen Jul 2016 A1
20160308342 Witherbee et al. Oct 2016 A1
20160312987 Danesh Oct 2016 A1
20160348860 Danesh Dec 2016 A1
20160366738 Boulanger et al. Dec 2016 A1
20170045213 Williams et al. Feb 2017 A1
20170059135 Jones Mar 2017 A1
20170138576 Peng et al. May 2017 A1
20170138581 Doust May 2017 A1
20170307188 Oudina et al. Oct 2017 A1
Foreign Referenced Citations (62)
Number Date Country
2243934 Jun 2002 CA
2502637 Sep 2005 CA
2691480 Apr 2012 CA
2734369 Oct 2013 CA
2561459 Nov 2013 CA
2815067 Nov 2013 CA
2848289 Oct 2014 CA
2182475 Nov 1994 CN
201059503 May 2008 CN
201259125 Jun 2009 CN
101608781 Dec 2009 CN
201636626 Nov 2010 CN
102062373 May 2011 CN
202014067 Oct 2011 CN
202392473 Nov 2011 CN
103307518 Mar 2012 CN
202733693 Feb 2013 CN
103322476 Sep 2013 CN
203215483 Sep 2013 CN
101498411 Nov 2013 CN
104654142 Nov 2013 CN
203273663 Nov 2013 CN
203297980 Nov 2013 CN
103712135 Dec 2013 CN
203628464 Dec 2013 CN
203641919 Jun 2014 CN
204300818 Apr 2015 CN
204513161 Jul 2015 CN
204611541 Sep 2015 CN
204786225 Nov 2015 CN
204829578 Dec 2015 CN
205606362 Sep 2016 CN
2016130742 Apr 2017 CN
103154606 May 2017 CN
206222112 Jun 2017 CN
107013845 Aug 2017 CN
107084343 Aug 2017 CN
9109828 Feb 1992 DE
199 47 208 May 2001 DE
1672155 Jun 2006 EP
2 306 072 Apr 2011 EP
2 453 169 May 2012 EP
2 193 309 Jul 2012 EP
2 735 787 May 2014 EP
3 104 024 Dec 2016 EP
2427020 Dec 2006 GB
2509772 Jul 2014 GB
H02113002 Sep 1990 JP
2007091052 Apr 2007 JP
2007265961 Oct 2007 JP
2011060450 Mar 2011 JP
2012064551 Mar 2012 JP
2015002027 Jun 2013 JP
2015002028 Jan 2015 JP
20171076699 Jun 2017 JP
1020110008796 Jan 2011 KR
1020120061625 Jun 2012 KR
2011002947 Sep 2011 MX
474382 Jan 2002 TW
WO 2013128896 Sep 2013 WO
WO 2015000212 Jan 2015 WO
WO 2016152166 Aug 2016 WO
Non-Patent Literature Citations (95)
Entry
DMF, Inc., “dmfLighting: LED Recessed Lighting Solutions”, Info sheets, (Mar. 19, 2012), 4 pages.
Halo, Halo LED H4 H7 Collection, SustainabLEDesign, Cooper Lighting, (emphasis on p. 18 “H7 Collection LED Modules—Halo LED H7 Module Features”), (Mar. 28, 2012), 52 pages.
Halo, H7 LED Downlight Trims 49x Series, 6-inch LED Trims for Use with ML7x LED Modules, Cooper Lighting, ADV110422, (rev. Aug. 12, 2011), 15 pages.
HALO, LED Module ML706x, Cooper Lighting, General Installation for All Modules/p. 1; Tether Installation/pp. 2-3; Installation into HALO H750x Series LED—only (Non-Screw based) Recessed Fixture/p. 4, (Oct. 20, 2009), 4 pages.
Non-Final Office Action (dated Oct. 16, 2014), U.S. Appl. No. 13/484,901, filed May 31, 2012, First Named Inventor: Michael D. Danesh, 15 pages.
Final Office Action (dated Apr. 2, 2015), U.S. Appl. No. 13/484,901, filed May 31, 2012, First Named Inventor: Michael D. Danesh, 13 pages.
Non-Final Office Action (dated Jul. 20, 2015), U.S. Appl. No. 14/184,601, filed Feb. 19, 2014, First Named Inventor: Michael D. Danesh, 19 pages.
Non-Final Office Action (dated Sep. 15, 2015) U.S. Appl. No. 13/484,901, filed May 31, 2012. First Named Inventor: Michael D. Danesh, 16.
Final Office Action (dated Apr. 27, 2016), U.S. Appl. No. 14/184,601, filed Feb. 19, 2014, First Named Inventor: Michael D. Danesh, 18.
Final Office Action (dated Jun. 23, 2016), U.S. Appl. No. 13/484,901, filed May 31, 2012 First Named Inventor: Michael D. Danesh, 18 pages.
“DME Series Installation Instructions”, (Oct. 18, 2011).
Canadian Office Action dated Dec. 23, 2013 from Canadian Application No. 2,778,581, 3 pages.
Canadian Office Action dated Mar. 22, 2016 from Canadian Application No. 2,879,629, 4 pages.
Canadian Office Action dated Feb. 1, 2016 from Canadian Application No. 2,879,486, 5 pages.
Canadian Office Action dated Jun. 12, 2017 from Canadian Application No. 2,927,601, 4 pages.
Canadian Office Action dated Aug. 11, 2017 from Canadian Application No. 2,941,051, 4 pages.
Final Office Action dated Jul. 26, 2017 from U.S. Appl. No. 14/184,601, 18 pages.
Final Office Action dated Jan. 29, 2016 from U.S. Appl. No. 14/183,424, 21 pages.
Non-Final Office Action dated May 17, 2017 from U.S. Appl. No. 14/183,424, 20 pages.
Non-Final Office Action dated Jun. 2, 2015 from U.S. Appl. No. 14/183,424, 20 pages.
Notice of Allowance dated Aug. 23, 2017 from Canadian Application No. 2,879,629, 1 page.
Notice of Allowance dated Oct. 21, 2016 from U.S. Appl. No. 13/484,901, 7 pages.
Canadian Office Action, dated Mar. 9, 2017, Canadian Application No. 2,931,588.
Non-Final Office Action, dated Dec. 15, 2016, U.S. Appl. No. 14/184,601.
Canadian Office Action, dated Dec. 6, 2016, Canadian Application No. 2,879,629.
Acrich COB Zhaga Module, Product Description, Seoul Semiconductor, Nov. 2016, 39 pages.
<https://www.zhagastandard.org/books/book18/>, Mar. 2017, 5 pages.
Non-Final Office Action dated May 16, 2018 for U.S. Appl. No. 15/132,875, 18 pages.
Notice of Allowance dated May 10, 2018 from U.S. Appl. No. 14/726,064, 7 pages.
2006 International Building Code, Section 712 Penetrations, 2006, 4 pages.
BXUV.GuideInfo, Fire Resistance Ratings—ANSI/UL 263, UL Online Certifications Directory, last updated Nov. 3, 2016, 27 pages.
CEYY.GuideInfo, Outlet Boxes and Fittings Certified for Fire Resistance, UL Online Certifications Directory, last updated May 16, 2013, 2 pages.
DMF, Inc., “dmfLIGHTING: LED Recessed Downlighting,” DRD2 Product Brochure, Oct. 23, 2014, 50 pages.
DMF, Inc., “dmfLIGHTING: LED Recessed Downlighting,” Product Catalog, Aug. 2012, 68 pages.
“Membrane Penetrations in Fire-Resistance Rated Walls,” https://www.ulcom/wp-content/uploads/2014/04/ul_MembranePenetrations.pdf, Issue 1, 2009, 2 pages.
“Metallic Outlet Boxes,” UL 514A, Underwriters Laboratories, Inc., Feb. 16, 2004 (Title Page Reprinted Aug. 10, 2007), 106 pages.
“Metallic and Non-metallic Outlet Boxes Used in Fire-rated Assembly,” https://iaeimagazine.org/magazine/2000/09/16/metallic-and-non-metallic-outlet-boxes-used-in-fire-rated-assembly/, Sep. 16, 2000, 5 pages.
Notice of Allowance dated Mar. 26, 2018 for U.S. Appl. No. 14/184,601, 10 pages.
Non-Final Office Action dated Mar. 15, 2010 from U.S. Appl. No. 12/100,148, 8 pages.
Non-Final Office Action dated Apr. 30, 2010 from U.S. Appl. No. 12/173,232, 13 pages.
Non-Final Office Action dated Sep. 5, 2014 from U.S. Appl. No. 13/791,087, 8 pages.
Non-Final Office Action dated Sep. 6, 2017 from U.S. Appl. No. 14/726,064, 8 pages.
Non-Final Office Action dated Apr. 12, 2018 for U.S. Appl. No. 29/638,259, 5 pages.
Notice of Allowance dated Jan. 30, 2015 from U.S. Appl. No. 13/791,087, 9 pages.
Notice of Allowance dated Jan. 16, 2015 from U.S. Appl. No. 29/467,026, 9 pages.
Notice of Allowance dated Mar. 24, 2016 from U.S. Appl. No. 14/247,149, 8 pages.
“Outlet Boxes for Use in Fire Rated Assemblies,” https://www.ul.com/wp-content/uploads/2014/04/Ul_outletboxes.pdf, 2011, 2 pages.
Cree LED Lamp Family Sales Sheet - Better light is beautiful light , Apr. 24, 2017, 2 pages.
“Advanced LED Solutions,” lmtra Marine Lighting. 2011. 39 pages.
“Portland Bi-Color, Warm White/Red,” item:ILIM30941.Imtra Marine Products. 2012. 3 pages
“Cree LMH2 LED Modules,” Mouser Electronics. 2 pages.
“Cree LMH2 LED Module with TrueWhite Technology,” Cree Product Family Data Sheet. 2011. 3 pages.
“Cree LMH2 LED Modules Design Guide,” Cree Product Design Guide. 2011. 20 pages.
“Undercabinet Pucks, Xyris Mini LED Puck Light,” ELCO Lighting. Sep. 2018. 1 page.
“LED Undercabinet Pocket Guide,” ELCO Lighting.12 pages.
“VERSI LED Mini Flush,” Lithonia Lghting. 6 pages.
OneFrame Recessed LED Downlight. Dmflighting.com. Published Jun. 6, 2018. Retrieved at https://www.dmflighting.com/product/oneframe on Jun. 6, 2018. 11 pages.
Notice of Allowance dated May 22, 2018 from U.S. Appl. No. 14/183,424, 9 pages.
Non-Final Office Action dated Jun. 25, 2018 for U.S. Appl. No. 29/541,565, 10 pages.
Notice of Allowance dated Sep. 21, 2018 from U.S. Appl. No. 29/645,941, 5 pages.
Notice of Allowance dated Oct. 4, 2018 from U.S. Appl. No. 15/947,065, 9 pages.
Notice of Allowance dated Oct. 9, 2018 from U.S. Appl. No. 29/653,142, 7 pages.
Non-Final Office Action dated Oct. 24, 2018 for U.S. Appl. No. 15/688,266, 14 pages.
Civil Action No. 2:18-cv-07090. Complaint for Infringement and Unfair Competition. DMF, Inc. v. AMP Plus, Inc. d/b/a Elco Lighting. 52 pages, dated Aug. 15, 2018.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/39048 dated Dec. 14, 2018 24 pages.
International Search Report and Written Opinion in PCT/US2018/048357 dated Nov. 14, 2018, 13 pages.
Non-Final Office Action dated Dec. 5, 2018 from U.S. Appl. No. 14/942,937, 13 pages.
Non-Final Office Action dated Feb. 7, 2019 from U.S. Appl. No. 16/200,393, 32 pages.
Non-Final Office Action dated Jul. 24, 2018 from U.S. Appl. No. 29/638,259, 5 pages.
Notice of Allowance dated Feb. 8, 2019 from U.S. Appl. No. 29/541,565, 5 pages.
Notice of Allowance dated Jan. 2, 2019 from U.S. Appl. No. 29/541,565, 6 pages.
Notice of Allowance dated Jan. 28, 2019 from U.S. Appl. No. 29/664,471, 8 pages.
RACO 4 in. Octagon Welded Concrete Ring, 3-1/2 in. Deep with 1/2 and 3/4 in. Knockouts and ilcludes 890 cover (20-Pack). Model # 280. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-3-1-2-in-Deep-with-1-2-and-3-4-in-Knockouts-and-ilcludes-890-cover-20-Pack-280/203638679 on Jan. 18, 2019. 3 pages.
RACO 4 in. Octagon Welded Concrete Ring, 6 in. Deep with 1/2 and 3/4 in. Knockouts (10-Pack). Model # 276. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-6-in-Deep-with-1-2-and-3-4-in-Knockouts-10-Pack-276/203638675 on Jan. 16, 2019. 4 pages.
4″ Octagon Concrete Boxes and Back Plates. Appleton. Accessed at www.appletonelec.com on May 6, 2019. 1 page.
Cooper Lighting HALO ML56 LED System Product Sheet. Mar. 2, 2015. Accessed at http://www.cooperindustries.com/content/dam/public/lighting/products/documents/halo/spec_sheets/halo-ml56600-80cri-141689-sss.pdf. 8 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 61 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/67614 dated Apr. 24, 2019, 53 pages.
Ex-Parte Quayle Action dated Jun. 27, 2019 from U.S. Appl. No. 29/683,730, 5 pages.
Final Office Action dated Jun. 6, 2019 from U.S. Appl. No. 15/688,266, 7 pages.
Final Office Action dated Mar. 15, 2019 from U.S. Appl. No. 15/132,875,15 pages.
IC1JB Housing 4″ IC-Rated New Construction Junction Box Housing. AcuityBrands. Accessed at https://www.acuitybrands.com/en/products/detail/845886/juno/ic1jb-housing/4-ic-rated-new-construction-junction-box-housing on Jun. 27, 2019.
Imtra Marine Lighting 2008 Catalog. 40 pages.
Imtra Marine Lighting 2009 Catalog. 32 pages.
Imtra Marine Lighting Spring 2007 Catalog. 36 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 13 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/67614 dated Apr. 25, 2019, 20 pages.
Kwikbrace@ New Construction Braces for Lighting Fixtures or Ceiling Fans 1-1/2 in. Depth. Hubbel. Accessed at https://hubbellcdn.com/specsheet/926.pdf on Jun. 27, 2019. 1 page.
Non-Final Office Action dated Apr. 4, 2019 from U.S. Appl. No. 29/678,482, 8 pages.
Non-Final Office Action dated Jun. 11, 2019 from U.S. Appl. No. 15/901,738, 6 pages.
Notice of Allowance dated Apr. 17, 2019 from U.S. Appl. No. 29/678,478, 7 pages.
Notice of Allowance dated Apr. 8, 2019 from U.S. Appl. No. 29/653,142, 8 pages.
Notice of Allowance dated Jun. 12, 2019 from U.S. Appl. No. 16/016,040, 8 pages.
RACO Commercial, Industrial and Residential Electrical Products. Hubbell. Accessed at www.Hubbell-RTB.com on May 6, 2019. 356 pages.
Specification & Features 4″ Octagonal Concrete Box Covers. Orbit Industries, Inc. Accessed at https://www.orbitelectric.com on May 6, 2019. 1 page.
Related Publications (1)
Number Date Country
20160348861 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62168510 May 2015 US