The present invention relates to the field of light-emitting diode (LED) or laser diode projectors for stage or spectacle lighting, and it relates more particularly to a diode lighting module presenting optimized heat dissipation.
Present light-emitting diode or laser diode technology requires the temperature of such diodes to be maintained at a constant value. For this purpose, it is essential to be able to dump all excess heat, preferably in uniform manner, while also regulating temperature.
A first method that is commonly used for dumping heat is to have recourse to a finned aluminum radiator that is placed on the surface for cooling. A fan is also often added to accelerate the dissipation of heat.
A second known method consists in using the technique of heat pipes in which heat is taken away from the hot point by pipes filled with cooling fluid and coupled to ventilated fins.
Nevertheless, those two methods are poorly adapted to present diode lighting technologies since they require cooling that is more considerable and also more accurate in order to ensure optimum efficiency for the diodes. Cooling by fluid (generally by water) has thus become essential and it is nowadays common practice to use cold block systems with a compressor. In such systems, plates, which are often aluminum plates, are used to sandwich the circuits or pipes conveying the fluids cooled by the cold block in order to capture a maximum amount of heat. This results in a system that is heavy, complex, and expensive, suffering from considerable drawbacks. Specifically, the stack of different materials creates numerous heat bridges and the fluid flow pipes require a large amount of space, while limiting heat dissipation.
The present invention proposes overcoming these limitations with a heat dissipation device for a diode matrix that makes it possible, effectively and at low cost to obtain a temperature that is constant in a manner that is simple and reliable. An object of the invention is also to control temperature without significantly modifying the matrix.
These objects are achieved by a diode lighting module comprising both a diode matrix mounted on a support plate and heat dissipator means for dissipating the heat given off by said diode matrix, the module being characterized in that said heat dissipator means comprise:
a metal plate having an outside face in contact with said support plate and an inside face supporting a cellular metal foam, said cellular metal foam including a plurality of calibrated holes passing through each cell in two perpendicular directions; and
a vessel-forming box filled with said cellular metal foam and for which said metal plate constitutes a lid, said box including:
With this cellular foam passing the fluid over its entire surface area, the cold fluid coming from the cold block enters into an emulsion by a vortex effect, thereby picking up the heat that is given off as well as possible.
Preferably, said diodes are light-emitting diodes or laser diodes, and said separator forms an integral portion of said box.
In an embodiment, said cellular metal foam has two superposed levels of cells, each having calibrated holes pierced along said two perpendicular directions, additional holes also being provided at least in the top of each cell for communication between these two superposed levels and, preferably, said two perpendicular directions are inclined respectively at about 45° and at about 135° relative to an injector or return direction for the cooling fluid.
Advantageously, said box includes at least one groove, and preferably two concentric grooves, for receiving one or two annular gaskets providing sealing with said metal plate, said support plate being fastened to said box by a plurality of screws arranged regularly outside said at least one groove.
Preferably, said support plate includes a blind orifice suitable for receiving a temperature sensor, and said cooling fluid is water in the liquid phase or a mixture of water plus glycol.
The characteristics and advantages of the present invention appear better from the following description made by way of non-limiting indication, and given with reference to the accompanying drawing, in which:
As known and shown in
In the invention, and as shown in
The partitioning of the vessel that separates the cellular foam into two independent identical portions is provided by a separator 28 (see
The partitioned vessel 26 and the metal junction plate 22 shown in
In order to guarantee that the fluid pressure in the box never exceeds its operating pressure by more than 50 kilopascals (kPa) (0.5 bar) because that is the pressure below which specific safety devices are not required by regulation, given the absence of any significant risk of leakage (i.e. for an operating pressure of 3 bar, a fluid pressure of 3.5 bar is selected), the cellular metal foam 24 has a plurality of calibrated holes passing through each cell in two perpendicular directions so as to form four holes in each cell in the metal foam. Advantageously, each cell is substantially spherical in shape. Preferably, and as shown in
In the example shown, the cellular metal foam 24 has two superposed levels of cells, and each of them is provided with at least one additional hole 24A at its top for fluid communication between the two levels of cells. More particularly, each cell has two facing holes passing therethrough, one at its top and the other at its base, the holes at the top in the top level of cells providing direct contact for the cooling fluid with the plate 22, and the holes in the base in the bottom level of cells providing contact with the bottom of the vessel 26.
In order to guarantee lighting with brightness that is always identical, in particular after long durations of operation, it is necessary to maintain the diode matrix 12 at a constant temperature around 20° C. to 30° C. (i.e. plus or minus 5° C. relative to a reference temperature that is typically 25° C.), and to control this temperature. Thus, the support plate 14 includes in its periphery a blind orifice 14A for receiving a temperature sensor that is to be connected to a control unit for injecting cooling fluid into the box 26. The injection of cooling fluid, advantageously water in the liquid phase or in a water-glycol mixture, takes place at a flow rate that is constant and at a temperature that preferably lies in the range 15° C. to 25° C., and in order to maintain the diode matrix at the above-mentioned desired temperature, the return of this cooling fluid after passing through the cellular metal foam 24 and exchanging heat with the support plate of the diode matrix then takes place at a temperature lying in the range 35° C. to 45° C.
Advantageously, the inclination of the directions in which calibrated holes are formed in the cellular foam relative to the injection of the cooling fluid leads to shocks being created against the cells, thereby imparting a vortex effect to the fluid and thus maximizing exchanges of heat. By entering into an “emulsion”, the cooling fluid is better at picking up the heat that is given off, with this taking place over the entire surface area of the diode matrix.
The invention thus proposes a diode lighting module that is simple to make, particularly effective from a thermal point of view because of the proximity of the cooling fluid to the diode matrix, and that enables the dissipation of the heat given by the diode matrix to be optimized in a manner that is regular and uniform.
Number | Date | Country | Kind |
---|---|---|---|
1550210 | Jan 2015 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2016/050041 | 1/11/2016 | WO | 00 |