The present invention relates to a horticultural lighting system, the use of such a lighting system for exposing plants to pulsed light, and a method of irradiating plants in a greenhouse with pulsed light.
Generally, lighting systems are used for horticultural applications in greenhouses or other environments where living organisms are to be irradiated with light, e.g. photo-bioreactors, to support plant growth. When developing new horticultural systems, one of the most important goals is the reduction of the total cost of ownership (TCO).
In the art, different documents report on the influence of pulsed light on the growth of plants, e.g. US 2004/0109302 A1. The described studies show that pulsed light (frequency, duty cycle), compared to continuous light, has a positive effect on energy consumption but no negative effect on plant growth. It is believed that a plant's pigment cannot directly absorb a second photon after absorption of a first photon. So, pulsed light decreases the TCO due to reduced power consumption, thereby increasing the overall efficiency of the system. A light source that can be easily pulsed is a light emitting diode (LED). The efficiency of today's LEDs (measured in micromole/J) is getting close to or is already above that of state-of-the-art high pressure sodium lamps. In addition, the emission spectra can be tuned to the absorption spectra of the pigments. A problem, however, is that drivers for LEDs do not offer a high efficiency, a high power density, high reliability and galvanic isolation at the same time.
Another problem relating to high pressure sodium lamps for horticultural applications is that they typically generate light in the green/yellow spectrum. However, the absorption spectra of most common pigments are in a different frequency range.
In view of the above, it is an object of the present invention to provide a lighting system which overcomes the deficiencies of prior art lighting systems, particularly systems using high pressure sodium lamps. A further object is to reduce the total cost of ownership of the lighting system.
These objects are achieved by a horticultural lighting system, preferably for greenhouses or other environments where living organisms are irradiated with light, like photo-bioreactors, comprising a first string of at least one light element, a second string of at least one light element, both strings being electrically connected in parallel with each other, a power supply unit providing an AC current/voltage to the parallel circuit of the strings, and means for energizing the first string during a first half period of the AC voltage and the second string during a second half period of the AC voltage, so that each string radiates pulsed light, said first string and said second string being arranged such that different areas are irradiated.
It is known from literature that pigments are not able to absorb a second photon directly after absorption of the first photon. This means that a break between two offered photons increases the efficiency of the system. The inventive horticultural lighting system uses this effect by providing two strings of light elements which are alternately energized by the same power supply unit, both strings of light elements being arranged to irradiate different areas of the greenhouse or the mentioned environment. Preferably, the output of the power supply unit is sinusoidal so that the resulting current through one of the two strings is the half cycle of a sinusoid. Hence, each string produces pulsed light, the frequency of which is dependent on the frequency of the AC current/voltage of the power supply unit. Since both strings do not irradiate the same area, the pulsed radiation is not balanced or equalized with respect to the illuminated area of the greenhouse.
In the context of the present invention, power supply unit means any component or circuitry being able to provide the required AC current/voltage. In the simplest case, the power supply unit only comprises electrical lines and input terminals which are connected with the mains or any other AC grid. Typically, the power supply unit comprises driver circuitry to provide an AC voltage with a predetermined frequency other than the mains frequency.
In the context of the present invention, means for energizing is any device or component which may enable or disable current flow in at least one direction, like switches which can block current flow in two directions, or diodes which can block current in one direction,
One of the advantages of this inventive lighting system is that it is very efficient in terms of energy consumption, since both half periods of the AC current/voltage are used for generating light which illuminates two different areas. Hence, the total cost of ownership may be reduced. In other words, the inventive lighting system combines pulsed light for irradiating plants or any other living organisms with modern driver technology for achieving a very energy-efficient system.
In a preferred embodiment, said means for energizing comprises a first diode assigned to the first string and a second diode assigned to the second string, both diodes being provided anti-parallel to each other.
In other words, each string comprises a diode connected in series with the at least one light element of the string, both diodes being provided anti-parallel to each other so that current of the power supply unit flows to both strings alternately and in different directions. The use of diodes as means for controlling the current flow is cheap and less complex compared to other solutions to control current flow, like electronic switches, etc.
In a further preferred embodiment, said light elements comprise light emitting diodes (LED) and/or organic light emitting diodes.
This measure has the advantage that light emitting diodes are very energy-efficient elements compared to high pressure sodium lamps generally used in horticultural applications. It is to be noted that “light emitting diode” in the context of the present invention also means organic light emitting diode.
A further advantage of light emitting diodes is that they also take over the function of the energizing means. It is only necessary to arrange the LEDs in both strings anti-parallel to each other.
A further preferred embodiment comprises electrical lamps.
It is to be noted that the light elements may also comprise any combination of light emitting diodes and lamps. Further, the strings may be asymmetrical, meaning that the number of light elements and/or the type of light elements are different in the strings.
Preferably, each string comprises a plurality of light elements, preferably LEDs, which are connected to each other in series, parallel or any combination of parallel and series connections.
The aforementioned measures have the advantage that the implementation of a very cost-effective and energy-efficient lighting system is achievable.
In a further preferred embodiment, said power unit comprises a DC-to-AC converter. More preferably, said converter comprises a resonant half-bridge converter or a resonant full-bridge converter.
The provision of a resonant converter offers a plurality of advantages, for example galvanic isolation which is often required if the power supply unit is fed by mains voltage. Further, the power supply unit has a high efficiency due to soft-switching. Further, high power density is achievable because a very high switching frequency can be used. Hence, the passive components can be designed small. Further, the reliability is very high due to reduced stress of the components.
In a further preferred embodiment, said light elements are selected such that their emission spectra match the absorption spectra of plants to be irradiated in the greenhouse. Preferably, some of the light elements have different wavelengths. More preferably, the frequency of said AC voltage is selected such that the pulse period of the light elements is between 2 microseconds and 20 milliseconds, preferably between 10 microseconds and 1 millisecond, preferably 100 microseconds.
The aforementioned measures have the advantage that the growth of the plants irradiated by the lighting system is additionally supported and enhanced.
An object of the present invention as mentioned above is also achieved by using the inventive lighting system in an environment where living organism can be irradiated with light, or a greenhouse for exposing plants to pulsed light.
The object mentioned above is also achieved by a method of irradiating plants in a greenhouse or other living organisms in a special environment with pulsed light from light elements arranged in two parallel-connected strings, which strings are both adapted to radiate light to different areas of the greenhouse or the environment, said method comprising the steps of:
This method achieves the same advantages as mentioned above, so that reference is made thereto.
It is further preferred that said AC voltage is selected such that the pulse period is between 2 microseconds and 20 milliseconds, preferably between 10 microseconds and 1 millisecond, preferably 100 microseconds.
This pulse period has proved to be advantageous.
Further features and advantages can be taken from the following description and the enclosed drawings.
It is to be understood that the features mentioned above and those yet to be explained below can be used not only in the respective combinations indicated, but also in other combinations or in isolation, without leaving the scope of the present invention.
Embodiments of the invention are shown in the drawings and will be explained in more detail in the description below with reference to same. In the drawings:
a is a schematic block diagram of an inventive horticultural lighting system for greenhouses;
b is a voltage diagram illustrating the output of the power supply unit;
c is a schematic top view diagram of a greenhouse with different areas;
In
The lighting system 10 comprises a power supply unit 12 which provides, at output terminals 14, an AC voltage. The performance of the power supply unit 12 is adapted to the type and number of light elements supplied with power. The light elements are indicated with reference numeral 16 in
Further, each string 22, 24 comprises a current control means 26 which controls the current flow through the respective light elements 16 of the string. Particularly, the current control means 26 are adapted such that current flows through the light elements 16 of the first string 22 during a first period and through the light elements 16 of the second string 24 during a second period. It is preferred that the first period corresponds to the first half of the period of the AC voltage supplied by the power supply unit 12 and the second period corresponds to the second half of the AC voltage, as schematically shown in
Both current control means 26 cause the light elements 16 to generate pulsed light, such that the light pulses of the first string and the second string 22, 24 alternate.
In
It is to be noted that the assignment of strings 22, 24 to adjacent sub-areas 32, 34 is only an example and not the only solution. The arrangement and orientation of the light elements 16 of both strings 22, 24 should only ensure that the strings 22, 24 irradiate different areas of the greenhouse 30 and hence different plants.
In
Further, in this embodiment the light elements 16 are light emitting diodes 40, the LEDs 40 of the first string 22 being anti-parallel to the LEDs 40 of the second string 24.
Due to the fact that light emitting diodes 40 have also the function of current control means, namely to allow current flow only in one direction, the LEDs 40 replace also the current control means 26, shown in
By providing the LEDs 40 in the strings 22, 24 so as to be anti-parallel to each other, it is ensured that current I1, I2 passes through the LEDs 40 only during a half period of the sinusoid of the current/voltage supply.
The frequency of the supplied AC voltage is selected such that the period of the light pulses generated by the LEDs 40 is between 2 microseconds and 1 millisecond. Preferably, the period is 100 microseconds. Hence, the AC frequency lies between 500 Hz and 250 kHz.
The LEDs 40 are preferably LEDs whose spectrum matches the absorption spectra of the plant's pigments. The adaptation of the LED spectrum to the absorption spectra of the plants further enhances the efficiency of the lighting system.
In
One preferred converter 50 is a so-called resonant half-bridge converter, which is indicated with reference numeral 60 in
The primary side of the transformer 66 is connected via a capacitor with the centre tap of the transistor series connection and with the centre tap of the capacitor series connection. The transistors 62 are driven such that they alternately conduct so that an AC current passes the primary side of the transformer 66.
The advantages of resonant converters, like the half-bridge converter 60, are for example galvanic isolation, high power density, because very high switching frequencies can be used, and high reliability due to the reduced stress of the components. Further, high efficiency is achievable due to soft-switching, the efficiency being even higher than in standard cases because the output rectifier has been illuminated.
The embodiments shown in
In the embodiment shown in
In
In
Generally, the structure and function of full-bridge converters is known in the art, so that a detailed description is refrained from. Contrary to the half-bridge converter, the full-bridge converter comprises two further switching elements (transistors) 62 which replace the series connection of the capacitors 64 in the half-bridge converter. To achieve current reversal on the primary side of the transformer 66, diagonal pairs of transistors 62 are alternately switched and hence alternately conduct.
In the embodiment of
The embodiment shown in
The embodiment shown in
The embodiments shown in
As already mentioned before, the various embodiments shown in
The main aspect of the invention is the provision of two strings of light elements connected parallel to each other and adapted such that both strings are energized alternately. Hence, the light elements of a string generate pulsed light, and the light pulses of the strings are generated alternately and hence not at the same time. Further, the light elements of the strings are arranged so that they irradiate different areas of the greenhouse. Consequently, the plants receive the light only from one string. Hence, there is always a “dark” phase between successive light pulses received by a plant.
Number | Date | Country | Kind |
---|---|---|---|
07109655 | Jun 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/052159 | 6/3/2008 | WO | 00 | 5/26/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/149286 | 12/11/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4298869 | Okuno | Nov 1981 | A |
4935859 | Kirchberg et al. | Jun 1990 | A |
5583402 | Moisin et al. | Dec 1996 | A |
6388393 | Illingworth | May 2002 | B1 |
6853150 | Clauberg et al. | Feb 2005 | B2 |
6921182 | Anderson, Jr. et al. | Jul 2005 | B2 |
7053560 | Ng | May 2006 | B1 |
7138770 | Uang et al. | Nov 2006 | B2 |
7852010 | Negley | Dec 2010 | B2 |
8074397 | Yoneda et al. | Dec 2011 | B2 |
20030043611 | Bockle et al. | Mar 2003 | A1 |
20040080941 | Jiang et al. | Apr 2004 | A1 |
20040109302 | Yoneda et al. | Jun 2004 | A1 |
20040110279 | Everett | Jun 2004 | A1 |
20040230102 | Anderson et al. | Nov 2004 | A1 |
20050136197 | Liu | Jun 2005 | A1 |
20050276046 | Oppor et al. | Dec 2005 | A1 |
20080231204 | Praiswater et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
1479286 | Nov 2004 | EP |
1574126 | Sep 2005 | EP |
2005048658 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100244724 A1 | Sep 2010 | US |