1. Field of the Invention
The present invention relates in general to the field of electronics, and more specifically to a system and method for mapping an output of a lighting dimmer in a lighting system to predetermined lighting output functions.
2. Description of the Related Art
Commercially practical incandescent light bulbs have been available for over 100 years. However, other light sources show promise as commercially viable alternatives to the incandescent light bulb. Gas discharge light sources, such as fluorescent, mercury vapor, low pressure sodium, and high pressure sodium lights and electroluminescent light sources, such as a light emitting diode (LED), represent two categories of light source alternatives to incandescent lights. LEDs are becoming particularly attractive as main stream light sources in part because of energy savings through high efficiency light output and environmental incentives such as the reduction of mercury.
Incandescent lights generate light by passing current through a filament located within a vacuum chamber. The current causes the filament to heat and produce light. The filament produces more heat as more current passes through the filament. For a clear vacuum chamber, the temperature of the filament determines the color of the light. A lower temperature results in yellowish tinted light and a high temperature results in a bluer, whiter light.
Gas discharge lamps include a housing that encloses gas. The housing is terminated by two electrodes. The electrodes are charged to create a voltage difference between the electrodes. The charged electrodes heat and cause the enclosed gas to ionize. The ionized gas produces light. Fluorescent lights contain mercury vapor that produces ultraviolet light. The housing interior of the fluorescent lights include a phosphor coating to convert the ultraviolet light into visible light.
LEDs are semiconductor devices and are driven by direct current. The lumen output intensity (i.e. brightness) of the LED varies approximately in direct proportion to the current flowing through the LED. Thus, increasing current supplied to an LED increases the intensity of the LED, and decreasing current supplied to the LED dims the LED. Current can be modified by either directly reducing the direct current level to the white LEDs or by reducing the average current through pulse width modulation.
Dimming a light source saves energy when operating a light source and also allows a user to adjust the intensity of the light source to a desired level. Many facilities, such as homes and buildings, include light source dimming circuits (referred to herein as a “dimmer”).
In at least one embodiment, the duty cycles, and, correspondingly, the phase angle, of dimmer output voltage VDIM represent dimming levels of dimmer 102. The limitations upon conventional dimmer 102 prevent duty cycles of 100% to 0% and generally can range from 95% to 10%. Thus, adjusting the resistance of variable resistor 106 adjusts the phase angle and, thus, the dimming level represented by the dimmer output voltage VDIM. Adjusting the phase angle of dimmer output voltage VDIM modifies the average power to light source 104, which adjusts the intensity of light source 104.
When the resistance of variable resistance 106 is increased, the duty cycles and phase angles of dimmer 102 also decreases. Between time t2 and time t3, the resistance of variable resistance 106 is increased, and, thus, dimmer 102 chops the full cycle 202.N at later times in the positive half cycle 204.N and the negative half cycle 206.N of full cycle 202.N with respect to cycle 202.0. Dimmer 102 continues to chop the positive half cycle 204.N with the same timing as the negative half cycle 206.N. So, the duty cycles and phase angles of each half cycle of cycle 202.N are the same.
Since times (t5−t4)<(t2−t1), less average power is delivered to light source 104 by the sine wave 202.N of dimmer voltage VDIM , and the intensity of light source 104 decreases at time t3 relative to the intensity at time t2.
A human eye responds to decreases in the measured light percentage by automatically enlarging the pupil to allow more light to enter the eye. Allowing more light to enter the eye results in the perception that the light is actually brighter. Thus, the light perceived by the human is always greater than the measured light. For example, the curve 302 indicates that at 1% measured light, the perceived light is 10%. In one embodiment, measured light and perceived light percentages do not completely converge until measured light is approximately 100%.
Many lighting applications, such as architectural dimming, higher performance dimming, and energy management dimming, involve measured light varying from 1% to 10%. Because of the non-linear relationship between measured light and perceived light, dimmer 102 has very little dimming level range and can be very sensitive at low measured output light levels. Thus, the ability of dimmers to provide precision control at low measured light levels is very limited.
In one embodiment of the present invention, a method for mapping dimming output signal values of a lighting dimmer using a predetermined lighting output function and driving a light source in response to mapped digital data includes receiving a dimmer output signal and receiving a clock signal having a clock signal frequency. The method also includes detecting duty cycles of the dimmer output signal based on the clock signal frequency and converting the duty cycles of the dimmer output signal into digital data representing the detected duty cycles, wherein the digital data correlates to dimming levels. The method further includes mapping the digital data to light source control signals using the predetermined lighting output function and operating a light source in accordance with the light source control signals.
In another embodiment of the present invention a method for mapping dimming output signal values of a lighting dimmer using a predetermined lighting output function and operating a light source in response to mapped dimming output signal values includes receiving a dimmer output signal, wherein values of the dimmer output signal represent duty cycles having a range of approximately 95% to 10%. The method also includes mapping the dimmer output signal values to light source control signals using the predetermined lighting output function, wherein the predetermined lighting output function maps the dimmer output signal values to the light source control signals to provide an intensity range of the light source of greater than 95% to less than 5%. The method further includes operating a light source in accordance with the light source control signals.
In another embodiment of the present invention, a method for mapping dimming output signal values of a lighting dimmer using a predetermined lighting output function and driving a light source in response to mapped dimmer output signal values includes receiving a dimmer output signal, wherein values of the dimmer output signal represents one of multiple dimming levels. The method also includes applying a signal processing function to alter transition timing from a first light source intensity level to a second light source intensity level and mapping the dimmer output signal values to light source control signals using the predetermined lighting output function. The method further includes operating a light source in accordance with the light source control signals.
In another embodiment of the present invention, a lighting system includes one or more input terminals to receive a dimmer output signal and a duty cycle detector to detect duty cycles of the dimmer output signal generated by a lighting dimmer The lighting system also includes a duty cycle to time converter to convert the duty cycles of the dimmer output signal into digital data representing the detected duty cycles, wherein the digital data correlates to dimming levels. The lighting system further includes circuitry to map the digital data to light source control signals using a predetermined lighting output function and a light source driver to operate a light source in accordance with the light source control signals.
In a further embodiment of the present invention, a lighting system includes one or more input terminals to receive a dimmer output signal, wherein values of the dimmer output signal represents one of multiple dimming levels. The lighting system also includes a filter to apply a signal processing function to alter transition timing from a first light source intensity level to a second light source intensity level and circuitry to map the dimmer output signal values to light source control signals using the predetermined lighting output function. The lighting system also includes a light source driver to operate a light source in accordance with signals derived from the light source control signals.
In another embodiment of the present invention, a lighting system for mapping dimming output signal values of a lighting dimmer using a predetermined lighting output function and operating a light source in response to mapped dimming output signal values includes one or more input terminals to receive a dimmer output signal, wherein values of the dimmer output signal represent duty cycles having a range of approximately 95% to 10%. The lighting system also includes circuitry to map the dimmer output signal values to light source control signals using the predetermined lighting output function, wherein the predetermined lighting output function maps the dimmer output signal values to the light source control signals to provide an intensity range of the light source of greater than 95% to less than 5%. The lighting system also includes a light source driver to operate a light source in accordance with the light source control signals.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
A system and method map dimming levels of a lighting dimmer to light source control signals using a predetermined lighting output function. In at least one embodiment, the dimmer generates a dimmer output signal value. At any particular period of time, the dimmer output signal value represents one of multiple dimming levels. In at least one embodiment, the lighting output function maps the dimmer output signal values to any lighting output function such as a light level function, a timing function, or any other light source control function. In at least one embodiment, the lighting output function maps the dimmer output signal value to one or more different dimming values that is/are different than the dimming level represented by the dimmer output signal value. In at least one embodiment, the lighting output function converts a dimmer output signal values corresponding to measured light levels to perception based light levels. A light source driver operates a light source in accordance with the predetermined lighting output function. In at least one embodiment, the system and method includes a filter to apply a signal processing function to alter transition timing from a first light source intensity level to a second light source intensity level.
In at least one embodiment, a user selects a dimmer output signal value DV using a control (not shown), such as a slider, push button, or remote control, to select the dimming level. In at least one embodiment, the dimmer output signal VDIM is a periodic AC voltage. In at least one embodiment, in response to a dimming level selection, dimmer 402 chops the line voltage Vline (
In another embodiment, dimmer output signal VDIM can be chopped to generated both leading and trailing edges of dimmer voltage VDIM. U.S. Pat. No. 6,713,974, entitled “Lamp Transformer For Use With An Electronic Dimmer And Method For Use Thereof For Reducing Acoustic Noise”, inventors Patchornik and Barak, describes an exemplary system and method for leading and trailing edge dimmer voltage VDIM chopping and edge detection. U.S. Pat. No. 6,713,974 is incorporated herein by reference in its entirety.
In at least one embodiment, the mapping circuitry 404 receives the dimmer output signal value DV. The mapping circuitry 404 includes lighting output function 401. The lighting output function 401 maps the dimmer output signal value DV to a control signal CV. The light source controller/driver 406 generates a drive signal DR in response to the control signal CV. In at least one embodiment, the control signal CV maps the dimmer output signal value to a different dimming level than the dimming level represented by the dimmer output signal value DV. For example, in at least one embodiment, the control signal CV maps the dimmer output signal value DV to a human perceived lighting output levels in, for example, with an approximately linear relationship. The lighting output function 401 can also map the dimmer output signal value Dv to other lighting functions. For example, the lighting output function 401 can map a particular dimmer output signal value DV to a timing signal that turns the lighting source 408 “off” after a predetermined amount of time if the dimmer output signal value DV does not change during the predetermined amount of time.
The lighting output function 401 can map dimming levels represented by values of a dimmer output signal to a virtually unlimited number of functions. For example, lighting output function 401 can map a low percentage dimming level, e.g. 90% dimming) to a light source flickering function that causes the light source 408 to randomly vary in intensity for a predetermined dimming range input. In at least one embodiment, the intensity of the light source results in a color temperature of no more than 2500 K. The light source controller/driver 406 can cause the lighting source 408 to flicker by providing random power oscillations to lighting source 408.
In one embodiment, values of the dimmer output signal dimmer output signal VDIM represent duty cycles having a range of approximately 95% to 10%. The lighting output function 402 maps dimmer output signal values to light source control signals using the lighting output function 401. The lighting output function maps the dimmer output signal values to the light source control signals to provide an intensity range of the light source 408 of greater than 95% to less than 5%.
The implementation of mapping circuitry 404 and the lighting output function 401 are a matter of design choice. For example, the lighting output function 401 can be predetermined and embodied in a memory. The memory can store the lighting output function 401 in a lookup table. For each dimmer output signal value DV, the lookup table can include one or more corresponding control signal values CV. Multiple control signal values CV can be used to generate multiple light source control signals DR. When multiple mapping values are present, control signal CV is a vector of multiple mapping values. In at least one embodiment, the lighting output function 401 is implemented as an analog function generator that correlates dimmer output signal values with mapping values.
In another embodiment, the lighting output function 401 includes a flickering function that maps a dimmer output signal value DV corresponding to a low light intensity, such as a 10% duty cycle, to control signals that cause lighting source 408 to flicker at a color temperature of no more than 2500 K. In at least one embodiment, flickering can be obtained by providing random power oscillations to lighting source 408.
The light source controller/driver 406 receives each control signal CV and converts the control signal CV into a control signal for each individual light source or each group of individual light sources in lighting source 408. The light source controller/driver 406 provides the raw DC voltage to lighting source 408 and controls the drive current(s) in lighting source 408. The control signals DR can, for example, provide pulse width modulation control signals to switches within lighting source 408. Filter components within lighting source 408 can filter the pulse width modulated control signals DR to provide a regulated drive current to each light source in lighting source 408. The value of the drive currents is controlled by the control signals DR, and the control signals DR are determined by the mapping values from mapping circuitry 404.
A signal processing function can be applied in lighting system 400 to alter transition timing from a first light source intensity level to a second light source intensity level. The function can be applied before or after mapping with the lighting output function 401. In at least one embodiment, the signal processing function is embodied in a filter. In at least one embodiment, lighting system 400 includes a filter 412. When using filter 412, filter 412 processes the dimmer output signal value DV prior to passing the filtered dimmer output signal value DV to mapping circuitry 404. The dimmer output voltage VDIM can change abruptly, for example, when a switch on dimmer 402 is quickly transitioned from 90% dimming level to 0% dimming level. Additionally, the dimmer output voltage can contain unwanted perturbations caused by, for example, fluctuations in line voltage that supplies power to lighting system 400 through dimmer 402. Filter 412 can represent any function that changes the dimming levels indicated by the dimmer output signal value DV. Filter 412 can be implemented with analog or digital components. In another embodiment, the filter filters the control signals DR to obtain the same results.
Lighting source 408 can include a single light source or a set of light sources. For example, lighting source 408 can include one more light emitting diodes or one or more gas discharge lamps. Each lighting source 408 can be controlled individually, collectively, or in groups in accordance with the control signal CV generated by mapping circuitry 404. The mapping circuitry 404, light source controller/driver 406, lighting source 408, dimmer output signal phase detector 410, and optional filter 412 can be collectively referred to as a lighting device. The lighting device 414 can include a housing to enclose mapping circuitry 404, light source controller/driver 406, lighting source 408, dimmer output signal phase detector 410, and optional filter 412. The housing can include terminals to connect to dimmer 402 and receive power from an alternating current (AC) voltage source. The components of lighting device 414 can also be packaged individually or in groups. In at least one embodiment, the mapping circuitry 404, light source controller/driver 406, dimmer output signal phase detector 410, and optional filter 412 are integrated in a single integrated circuit device. In another embodiment, integrated circuits and/or discrete components are used to build the mapping circuitry 404, light source controller/driver 406, dimmer output signal phase detector 410, and optional filter 412.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
This application is a continuation of co-pending application Ser. No. 12/474,714, filed May 29, 2009, which is a divisional application of application Ser. No. 11/695,024, filed Apr. 1, 2007, now U.S. Pat. No. 7,667,408, which claims the benefit of priority to U.S. Provisional Patent Application No. 60/894,295, filed Mar. 12, 2007. All of these applications are incorporated herein by reference in their entirety. This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 60/894,295, filed Mar. 12, 2007 and entitled “Lighting Fixture”. U.S. Provisional Application No. 60/894,295 includes exemplary systems and methods and is incorporated by reference in its entirety. U.S. Provisional Application No. 60/909,458 entitled “Ballast for Light Emitting Diode Light Sources”, inventor John L. Melanson, and filed on Mar. 31, 2007 describes exemplary methods and systems and is incorporated by reference in its entirety. U.S. patent application Ser. No. 11/695,023 entitled “Color Variations in a Dimmable Lighting Device with Stable Color Temperature Light Sources”, inventor John L. Melanson, and filed on Apr. 1, 2007 describes exemplary methods and systems and is incorporated by reference in its entirety. U.S. Provisional Application No. 60/909,457 entitled “Multi-Function Duty Cycle Modifier”, inventors John L. Melanson and John Paulos, and filed on Apr. 1, 2007 describes exemplary methods and systems and is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4523128 | Stamm et al. | Jun 1985 | A |
5055746 | Hu et al. | Oct 1991 | A |
5319301 | Callahan et al. | Jun 1994 | A |
5321350 | Haas | Jun 1994 | A |
5430635 | Liu | Jul 1995 | A |
5691605 | Xia et al. | Nov 1997 | A |
5770928 | Chansky et al. | Jun 1998 | A |
6043635 | Downey | Mar 2000 | A |
6046550 | Ference et al. | Apr 2000 | A |
6091205 | Newman et al. | Jul 2000 | A |
6211624 | Holzer | Apr 2001 | B1 |
6380692 | Newman et al. | Apr 2002 | B1 |
6407514 | Glaser et al. | Jun 2002 | B1 |
6621256 | Muratov et al. | Sep 2003 | B2 |
6858995 | Lee et al. | Feb 2005 | B2 |
7180250 | Gannon | Feb 2007 | B1 |
7184937 | Su et al. | Feb 2007 | B1 |
6900599 | Ribarich | Feb 2010 | B2 |
7656103 | Shteynberg et al. | Feb 2010 | B2 |
7667408 | Melanson et al. | Feb 2010 | B2 |
7719246 | Melanson | May 2010 | B2 |
7728530 | Wang et al. | Jun 2010 | B2 |
7733678 | Notohamiprodjo et al. | Jun 2010 | B1 |
7759881 | Melanson | Jul 2010 | B1 |
7786711 | Wei et al. | Aug 2010 | B2 |
7872427 | Scianna | Jan 2011 | B2 |
8102167 | Irissou et al. | Jan 2012 | B2 |
8115419 | Given et al. | Feb 2012 | B2 |
8169154 | Thompson et al. | May 2012 | B2 |
8212491 | Kost | Jul 2012 | B2 |
8212492 | Lam et al. | Jul 2012 | B2 |
8222832 | Zheng et al. | Jul 2012 | B2 |
8482220 | Melanson | Jul 2013 | B2 |
8536794 | Melanson et al. | Sep 2013 | B2 |
8569972 | Melanson | Oct 2013 | B2 |
8749173 | Melanson et al. | Jun 2014 | B1 |
20020140371 | Chou et al. | Oct 2002 | A1 |
20040105283 | Schie et al. | Jun 2004 | A1 |
20040212321 | Lys | Oct 2004 | A1 |
20060022648 | Ben-Yaakov et al. | Feb 2006 | A1 |
20060208669 | Huynh et al. | Sep 2006 | A1 |
20070182338 | Shteynberg | Aug 2007 | A1 |
20070182347 | Shteynberg | Aug 2007 | A1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080143266 | Langer | Jun 2008 | A1 |
20080192509 | Dhuyvetter et al. | Aug 2008 | A1 |
20080205103 | Sutardja et al. | Aug 2008 | A1 |
20080224629 | Melanson | Sep 2008 | A1 |
20080224633 | Melanson | Sep 2008 | A1 |
20080224636 | Melanson | Sep 2008 | A1 |
20090134817 | Jurngwirth et al. | May 2009 | A1 |
20090195186 | Guest et al. | Aug 2009 | A1 |
20090284182 | Cencur | Nov 2009 | A1 |
20100002480 | Huynh et al. | Jan 2010 | A1 |
20100013405 | Thompson et al. | Jan 2010 | A1 |
20100013409 | Quek et al. | Jan 2010 | A1 |
20100066328 | Shimizu et al. | Mar 2010 | A1 |
20100164406 | Kost et al. | Jul 2010 | A1 |
20100213859 | Shteynberg | Aug 2010 | A1 |
20100231136 | Reisenbauer et al. | Sep 2010 | A1 |
20100244726 | Melanson | Sep 2010 | A1 |
20110043133 | Van Laanen et al. | Feb 2011 | A1 |
20110080110 | Nuhfer et al. | Apr 2011 | A1 |
20110084622 | Barrow et al. | Apr 2011 | A1 |
20110084623 | Barrow | Apr 2011 | A1 |
20110115395 | Barrow et al. | May 2011 | A1 |
20110121754 | Shteynberg | May 2011 | A1 |
20110148318 | Shackle et al. | Jun 2011 | A1 |
20110204797 | Lin et al. | Aug 2011 | A1 |
20110204803 | Grotkowski et al. | Aug 2011 | A1 |
20110234115 | Shimizu et al. | Sep 2011 | A1 |
20110266968 | Bordin et al. | Nov 2011 | A1 |
20110291583 | Shen | Dec 2011 | A1 |
20110309759 | Shteynberg et al. | Dec 2011 | A1 |
20120049752 | King et al. | Mar 2012 | A1 |
20120068626 | Lekatsas et al. | Mar 2012 | A1 |
20120098454 | Grotkowski et al. | Apr 2012 | A1 |
20120133291 | Kitagawa et al. | May 2012 | A1 |
20120286686 | Watanabe et al. | Nov 2012 | A1 |
20130015768 | Roberts et al. | Jan 2013 | A1 |
20130154495 | He | Jun 2013 | A1 |
20140009082 | King et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1459216 | Nov 2004 | CN |
1843061 | Oct 2006 | CN |
1164819 | Dec 2001 | EP |
2257124 | Jan 2010 | EP |
2232949 | Sep 2010 | EP |
2008053181 | Mar 2008 | JP |
2009170240 | Jul 2009 | JP |
9917591 | Apr 1999 | WO |
02096162 | Nov 2002 | WO |
2006079937 | Aug 2006 | WO |
2008029108 | Mar 2008 | WO |
2008112822 | Sep 2008 | WO |
2010011971 | Jan 2010 | WO |
2010027493 | Mar 2010 | WO |
2010035155 | Apr 2010 | WO |
2011008635 | Jan 2011 | WO |
2011050453 | May 2011 | WO |
2011056068 | May 2011 | WO |
2012016197 | Feb 2012 | WO |
Entry |
---|
Restriction Requirement dated Oct. 8, 2008 mailed in parent U.S. Appl. No. 11/695,024, 5 pgs. |
Response to Restriction Requirement dated Oct. 8, 2008, in parent U.S. Appl. No. 11/695,024, filed Nov. 7, 2008, 2 pgs. |
Second Restriction Requirement dated Jan. 8, 2009 mailed in parent U.S. Appl. No. 11/695,024, 6 pgs. |
Response to Second Restriction Requirement dated Jan. 8, 2009, in parent U.S. Appl. No. 11/695,024, filed Feb. 6, 2008, 2 pgs. |
Ex-Parte Quayle Office Action dated Apr. 22, 2009 mailed in parent U.S. Appl. No. 11/695,024, 6 pgs. |
Response to Ex-Parte Quayle Office Action dated Apr. 22, 2009, in parent U.S. Appl. No. 11/695,024, filed May 22, 2009, 8 pgs. |
Notice of Allowance dated Aug. 25, 2009 mailed in parent U.S. Appl. No. 11/695,024, 6 pgs. |
Non-Final Office Action dated Aug. 9, 2011 mailed in parent U.S. Appl. No. 12/474,714, 90 pgs. |
Response to Non-Final Office Action dated Aug. 9, 2011 in parent U.S. Appl. No. 12/474,714, filed Feb. 9, 2012, 12 pgs. |
Final Office Action dated Jun. 21, 2012 mailed in parent U.S. Appl. No. 12/474,714, 16 pgs. |
Response to Final Office Action dated Jun. 21, 2012 in parent U.S. Appl. No. 12/474,714, filed Oct. 22, 2012, 12 pgs. |
Advisory Action dated Nov. 2, 2012 mailed in parent U.S. Appl. No. 12/474,714, 3 pgs. |
Request for Continued Examination and RCE Submission in parent U.S. Appl. No. 12/474,714, filed Nov. 21, 2012, 15 pgs. |
Non-Final Office Action dated Dec. 21, 2012 mailed in parent U.S. Appl. No. 12/474,714, 9 pgs. |
Response to Non-Final Office Action dated Dec. 21, 2012 in parent U.S. Appl. No. 12/474,714, filed Apr. 22, 2013, 11 pgs. |
Notice of Allowance dated May 15, 2013 mailed in parent U.S. Appl. No. 11/695,024, 16 pgs. |
Azoteq, IQS17 Family, IQ Switch—ProxSense Series, Touch Sensor, Load Control and User Interface, IQS17 Datasheet V2.00.doc, Jan. 2007, pp. 1-51, Azoteq (Pty) Ltd., Paarl, Western Cape, Republic of South Africa. |
Chan, Samuel, et al, Design and Implementation of Dimmable Electronic Ballast Based on Integrated Inductor, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007, pp. 291-300, Dept. of Electron. Eng., City Univ. of Hong Kong. |
Rand, Dustin, et al, Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps, Power Electronics Specialists Conference, 2007. PESC 2007. IEEE, Jun. 17-21, 2007, pp. 1398-1404, Boston, MA, USA. |
Gonthier, Laurent, et al, EN55015 Compliant 500W Dimmer with Low-Losses Symmetrical Switches, ST Microelectronics, Power Electronics and Applications, 2005 European Conference, pp. 1-9, Aug. 7, 2006, Dresden. |
Green, Peter, A Ballast That Can Be Dimmed from a Domestic (Phase Cut) Dimmer, International Rectifier, IRPLCFL3 rev.b, pp. 1-12, Aug. 15, 2003, El Segundo, California, USA. |
Hausman, Don, Real-Time Illumination Stability Systems for Trailing-Edge (Reverse Phase Control) Dimmers, Lutron RTISS, Lutron Electronics Co, Dec. 2004, pp. 1-4, Coopersburg, PA, USA. |
Lee, Stephen, et al, A Novel Electrode Power Profiler for Dimmable Ballasts Using DC Link Voltage and Switching Frequency Controls, IEEE Transactions on Power Electronics, vol. 19, No. 3, May 2004, pp. 847-833, City University of Hong Kong. |
Engdahl, Tomi, Light Dimmer Circuits, 1997-2000, www.epanorama.net. |
O'Rourke, Conan, et al, Dimming Electronic Ballasts, National Lighting Product Information Program, Specifier Reports, vol. 7, No. 3, Oct. 1999, pp. 1-24, Troy, NY, USA. |
Supertex Inc, 56W Off-line LED Driver, 120VAC with PFC, 160V, 350mA Load, Dimmer Switch Compatible, DN-H05, pp. 1-20, Jun. 17, 2008, Sunnyvale, California, USA. |
Lutron, Fluorescent Dimming Systems Technical Guide, copyright 2002, Why Different Dimming Ranges, http://www.lutron.com/TechnicalDocumentLibrary/LutronBallastpg3.pdf, p. 3, Coopersburg PA, USA. |
Wu, Tsai-Fu, et al, Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor, IEEE Transactions on Power Electronics, vol. 13, No. 3, May 1998, pp. 586-597. |
Amanci, et al, “Synchronization System with Zero-Crossing Peak Detection Algorithm for Power System Applications”, The 2010 International Power Electronics Conference, pp. 2984-2991, Toronto, Ontario, Canada. |
Patterson, James, “Efficient Method for Interfacing Triac Dimmers and LEDs”, National Semiconductor Corp., pp. 29-32, Jun. 23, 2011, USA. |
Vainio, Olli, “Digital Filtering for Robust 50/60 Hz Zero-Crossing Detectors”, IEEE Transactions on Instrumentation and Measurement, vol. 45, No. 2, pp. 426-430, Apr. 1996, University of Santa Barbara, California, USA. |
Number | Date | Country | |
---|---|---|---|
20130342130 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
60894295 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11695024 | Apr 2007 | US |
Child | 12474714 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12474714 | May 2009 | US |
Child | 14010087 | US |